
Biometrics 72, 1194–1205 DOI: 10.1111/biom.12495
December 2016

Estimation and Testing for Multiple Regulation of
Multivariate Mixed Outcomes

Denis Agniel,1* Katherine P. Liao,2 and Tianxi Cai3

1Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, U.S.A. 02115
2Brigham and Women’s Hospital, Boston, Massachusetts, U.S.A. 02115

3Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, U.S.A. 02115
∗email: denis.agniel@mail.harvard.edu

Summary. Considerable interest has recently been focused on studying multiple phenotypes simultaneously in both epi-
demiological and genomic studies, either to capture the multidimensionality of complex disorders or to understand shared
etiology of related disorders. We seek to identify multiple regulators or predictors that are associated with multiple outcomes
when these outcomes may be measured on very different scales or composed of a mixture of continuous, binary, and not-fully
observed elements. We first propose an estimation technique to put all effects on similar scales, and we induce sparsity on
the estimated effects. We provide standard asymptotic results for this estimator and show that resampling can be used to
quantify uncertainty in finite samples. We finally provide a multiple testing procedure which can be geared specifically to
the types of multiple regulators of interest, and we establish that, under standard regularity conditions, the familywise error
rate will approach 0 as sample size diverges. Simulation results indicate that our approach can improve over unregularized
methods both in reducing bias in estimation and improving power for testing.
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1. Introduction
Considerable recent interest has been focused on studying
multiple phenotypes simultaneously in both epidemiological
and genomic studies. There are several reasons for such stud-
ies to be important. First, a complex disorder is usually
associated with multiple correlated phenotypes. Hence, even
when the focus of the study is on a single disease, multiple
phenotypes might be needed to fully capture the complex-
ity and multidimensionality of the disorder. Second, multiple
related disorders might share the same etiology and a joint
assessment will enable researchers to identify factors associ-
ated with risk of multiple diseases. As an example, recent
studies have identified common genes associated with a higher
risk of what were previously considered distinct autoimmune
diseases (Zhernakova et al., 2009). Similar shared genetic
bases have also been suggested for various types of cancers and
related psychiatric disorders (Solovieff et al., 2013). Identifica-
tion of predictors of multiple outcomes, also commonly known
as multiple traits in the genetics literature, can improve under-
standing of disease etiology, genetic regulatory pathways, and
treatment. Further complicating matters, the outcome mea-
sures may be diverse: they may be binary (e.g., presence of
disease), continuous (disease activity score), ordinal (severity
of disease), not completely observable (perhaps due to a limit
of quantification), or any combination thereof.

To address these questions statistically, we seek to
assess the association between a vector of predictors x =
(x1, . . . , xp)

T and a vector of outcomes y = (y(1), . . . , y(M))T

by estimating and testing all relevant effects. For each predic-

tor xj, we desire an estimation and testing procedure that will
identify its associated subset of y. In particular, researchers
often want to identify predictors that are important for mul-
tiple or all outcomes. We will call xj a “multiple regulator” if
it is associated with multiple outcomes, a terminology which
we adapt from Peng et al. (2010). An example of what we
call multiple regulation is known as pleiotropy in the genetics
literature. Our goal of identifying multiple regulation is not
to be confused with identifying predictors that are associated
with any outcome. Association with any outcome is an active
area of research, with two examples being global association
tests and group-sparse regularization. Global tests provide a
test for the relationship between xj and the entire set y (Jiang
and Zeng, 1995; He et al., 2013) and have been shown in some
situations to have higher power than marginal tests to detect
associations when xj relates to multiple outcomes. Group-
sparse methods, largely based on the group lasso (Yuan and
Lin, 2006), use model selection to identify predictors that are
relevant for any outcome (Turlach et al., 2005). These meth-
ods, while powerful and useful, do not address the question of
which outcomes are relevant for each predictor and in general
are unsuited for diverse outcomes that may contain censoring.

Here, we are particularly interested in identifying predic-
tors that are relevant for multiple outcomes and inferring
which subset of y each of the xj’s are associated with. There
is a paucity of literature that addresses these specific ques-
tions. Under linear regression models, the remMap procedure
(Peng et al., 2010) addresses such a question via variable
selection by jointly penalizing both the L1 and L2 group
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norms of a squared loss. Under generalized linear models,
one could potentially modify the hierarchical lasso (Zhou and
Zhu, 2010) procedure, originally proposed to handle grouped
predictors with a single outcome, to address the multiple reg-
ulator problem. When making joint inference on a diverse
set of outcomes, it is also desirable to put all effects on sim-
ilar scales. A simple example of this idea can be found in
(Schifano et al., 2013), where linear regression models were
considered for multiple continuous outcomes and each out-
come was scaled by its standard deviation. However, none of
these methods are applicable to settings where y consists of a
diverse set of outcomes whose scales may not be easily compa-
rable to each other, especially when y may contain censored
time-to-event variables. To accommodate modeling of multi-
ple outcomes of different scales and/or type, we propose in
this article the use of semiparametric transformation models
which give all effects of x on y a similar interpretation. A lia-
bility thresholding version of such models can naturally model
binary or ordinal outcomes.

Regardless of estimation technique, a multiple test-
ing procedure is required to control error rates when
identifying multiple regulation, which operates on the (poten-

tially large) set of hypotheses {H(m)
j : xj unassociated with

y(m)}j=1,...,p;m=1,...,M . Neither Peng et al. (2010) nor Zhou and
Zhu (2010) tackles this issue. In general, multiple testing
based on regularized estimation is challenging for two rea-
sons. First, while many of the regularization procedures such
as Zhou and Zhu (2010) established asymptotic oracle prop-
erties for their estimators—noninformative predictors can be
detected with no uncertainty and their detection induces no
additional variation in the estimation of the informative pre-
dictors (Fan and Li, 2001; Zou, 2006)—in finite samples those
properties may be far from holding. Consequently, basing
testing procedures on such asymptotic results may lead to
inflated type I error in finite samples. Second, the estimators
and hence their corresponding test statistics could be highly
correlated from the regression fitting. Standard methods for
controlling the familywise error rate (FWER), like the Bon-
ferroni procedure, tend to be conservative in the presence of
correlation, and they ignore the dependence structure in the
data.

We propose a two-stage technique to both estimate the
effects of x on y and identify multiple regulation while con-
trolling error rates. In the first stage, we posit models to put
all effects on the same scale, and we use regularization to
induce sparsity in the estimated effects. To do this, we gener-
alize the adaptive hierarchical lasso of Zhou and Zhu (2010)
to handle the case of semiparametric models. In the second
stage, we employ a stepdown procedure analogous to Romano
and Wolf (2005) to identify multiple regulation while con-
trolling error rates. Our two-stage method, entitled Sparse
Multiple Regulation Testing (SMRT), is powerful for several
reasons. First, our modeling strategy allows us to do estima-
tion and make inference on outcomes that may be measured
on completely different scales. Next, regularization enables us
to more efficiently estimate both the null and non-null effects.
The null effects are estimated as 0 with probability tending to
1 and the non-null effects are estimated with lower variability
compared to unregularized estimators. Furthermore, the dis-
tributions of the estimates of null effects and the distributions

of the estimates of non-null effects are distinctly separated
through regularization, giving us more power to detect the
non-null effects (see Figure 1 in Web Appendix A for an illus-
tration from our simulations). Finally, our testing procedure
can be specifically geared to detect associations with multiple
outcomes.

However, it is generally challenging to perform testing
based on regularized estimators since their distributions in
finite samples cannot be approximated well by asymptotic
results. We lay out permutation- and resampling-based pro-
cedures to better approximate the finite-sample distributions
of the proposed test statistics and the regression param-
eter estimators. This enables us to properly control error
rates for both hypothesis testing and interval estimation.
Thus, in addition to providing the estimator β̂ based on
joint regularization, the main contributions of this article
include providing resampling procedures to make joint infer-
ence about β̂ and deriving the SMRT testing procedure to
identify the subset of outcomes associated with each of the
predictors. Our proposed estimation and testing procedures
can account for the joint effects of the predictors and the
correlation among both the predictors and the outcomes.

The rest of the article is organized as follows. In Section 2,
we give an overview of SMRT. In Section 3, we discuss details
regarding our sparse estimator, including its asymptotic prop-
erties and quantifying its variability. In Section 4, we discuss
issues related to testing, including the asymptotic guarantee
of familywise error control and practical approaches to finite-
sample error control. In Section 5, we apply our method to
a genetic study of autoantibodies with the goal of identifying
multiple regulators of autoimmunity. Simulation results which
validate our method are provided in Section 6. And finally, in
Section 7, we discuss implications and further directions.

2. Overview of SMRT

Suppose the data for analysis consists of n indepen-
dent and identically distributed random vectors V ={
Vi = (yT

i ,x
T

i )
T
}

i=1,...,n
where yi = (y

(1)
i , . . . , y

(M)
i )T are the M

outcomes and xi = (xi1, . . . , xip)
T are the p predictors for the

ith subject. We first propose a unified modeling strategy for
diverse y by assuming that

P(y(m) ≤ y | x) = g(m){xT β
(m)
0 + h(m)(y)}, m = 1, . . . , M,

(1)

where β
(m)
0 represents the unknown effect of x on y(m), h(m)(·)

is an unspecified smooth, increasing function, and the link
function, g(m), is given although the correlation structure of
y is left unspecified. For ease of presentation, we assume that
y is fully observed although the proposed method can easily
accommodate censored outcomes. When y(m) is continuous,
(1) is equivalent to

h(m)(y(m)) = −xT β
(m)
0 + ε(m),

with P(ε(m) ≤ z | x) = P(ε(m) ≤ z) = g(m)(z).

(2)
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Generalized linear models for a binary or ordinal outcome
can be written in the form of (1) and (2) by viewing the
observed outcome as a thresholded version of a latent contin-
uous outcome and h(m) as only defined at the threshold values,
as previously suggested in the literature (Thomas et al., 1998,
e.g.). Choice of g(m) determines the type of model being fit. For
example, g(m)(x) = ex/(1 + ex) corresponds to a proportional
odds model for continuous y(m) and a logistic regression model
if y(m) is binary. Models (1) and (2) have also been previously
used to analyze censored survival outcomes (Cai et al., 2000;
Zeng and Lin, 2007). The virtue of this approach is that the
scale of the β(m) will be comparable across m = 1, . . . , M when
the same or comparable g(m)(x) are used whether y(m) is con-
tinuous, discrete, or not fully observed because each marginal
model has a similar form. For example if g(m)(x) = ex/(1 + ex),

then each β
(m)
j has the interpretation of a log odds ratio

regardless of whether y(m) is continuous, binary, ordinal, or
censored.

To estimate β
(m)
0 , one may employ the nonparamet-

ric maximum-likelihood estimator (NPMLE) under model
(1) (Murphy and Van der Vaart, 2000; Zeng and Lin,
2007) based on data observed on the mth outcome, V(m) =
{(y(m)

i ,xT

i )
T }i=1,...,n. Let L(m)(β(m)) denote the resulting profile

log-likelihood (PLL) function corresponding to the NPMLE.
It has been shown that under mild smoothness conditions, the
profile likelihood can be treated as a regular likelihood, and

the maximum PLL estimator β̃
(m) = argmaxβ(m) L(m)(β(m)) is

regular and semiparametric efficient (Murphy and Van der
Vaart, 2000). However, when p is not too small and β0 =
(β

(1)T

0 , . . . ,β
(M)T

0 )T might be sparse, an improved estimator
may be obtained by imposing regularization on the PLL.
To do this, we simultaneously consider all M outcomes and

obtain a sparse β̂ = (β̂
(1)T

, . . . , β̂
(M)T

)T as the minimizer of the
penalized sum of negative PLLs

−
M∑

m=1

L(m)(β(m)) + pλ,w(β), (3)

with penalty function pλ,w(β) = ∑p

j=1
dj +

λ
∑M

m=1

∑p

j=1
w

(m)
j

∣∣∣α(m)
j

∣∣∣, with β
(m)
j = djα

(m)
j , subject to dj ≥ 0.

The penalty function pλ,w(·) was previously proposed in
Zhou and Zhu (2010) for generalized linear models with
grouped predictor variables. The tuning parameter λ controls

the amount of regularization and weight w
(m)
j = |β̃(m)

j |−1 is

chosen to ensure oracle properties of β̂. Summing over the
PLLs in (3) essentially imposes a working independence
assumption across the outcomes (Liang and Zeger, 1986).
Imposing the joint penalty pλ,w(β) incorporates the potential
for joint sparsity across all outcomes for some xj’s. Setting
dj = 0 declares xj to be noninformative for all outcomes

or equivalently β0j = (β
(1)
0j , . . . , β

(M)
0j )T = 0; while setting

α
(m)
j = 0 suggests that β

(m)
0j = 0. We will show that β̂ pos-

sesses a sparsistency property, i.e., P(β̂
(m)
j = 0|β(m)

0j = 0) → 1.
This ensures desirable asymptotic properties for our testing
procedures. We give further details regarding β̂ and its
asymptotic properties in Section 3. We now turn to the topic
of testing.

2.1. Testing a Single Predictor xj

In order to make inference on a single predictor, SMRT
employs a stepdown procedure for xj considering the

M hypotheses Hj = {H(m)
j : β

(m)
0j = 0}m=1,...,M with alternative

hypotheses denoted {H̄(m)
j : β

(m)
0j �= 0}m=1,...,M . To test H

(m)
j , we

consider the statistic t
(m)
j = n

1
2

∣∣∣β̂(m)
j

∣∣∣ /σ̃
(m)
j and its reference

distribution T(m)
j = {t∗b(m)

j }b=1,...,B which approximates the dis-

tribution of t
(m)
j | H

(m)
j and can be obtained by, for example,

resampling or permutation (see Section 4.2). We scale β̂
(m)
j by

σ̃
(m)
j , which is an estimated standard error of n

1
2 (β̃

(m)
j − β

(m)
0j ),

since under H
(m)
j , σ̂

(m)
j = v̂ar{n 1

2 (β̂
(m)
j − β

(m)
0j )}1/2 → 0 and the

null distribution of n
1
2 β̂

(m)
j /σ̂

(m)
j is difficult to approximate.

To test Hj simultaneously, we order the test statis-

tics tj = (t
(1)
j , . . . , t

(M)
j )T from largest to smallest, t

(r1)
j ≥

t
(r2)
j ≥ . . . ≥ t

(rM)
j , and identify their corresponding hypothe-

ses H
(r1)
j , . . . , H

(rM)
j . Define for every � ⊂ {1, . . . , M} the

sup-statistic over � and its corresponding reference dis-

tribution: s�
j = maxm∈� t

(m)
j and S�

j = {maxm∈� t
∗b(m)
j }b=1,..,B.

Furthermore, denote the ψth quantile of S�
j by c�

j (ψ), which
approximates the ψth quantile of s�

j under the null that

{β(m)
j = 0 : m ∈ �}. We identify the subset of hypotheses to

reject, denoted by R j, as follows.

1) Let �1 = {1, . . . , M}. If s
�1
j ≤ c

�1
j (ψ), accept all

hypotheses and stop. Otherwise, let R j = {r1} and con-
tinue. . . .

l) Let �l = �1 \ R j. If s
�l
j ≤ c

�l
j (ψ), accept all hypotheses

in {H (m)

j }m∈�l
and stop. Otherwise, let R j = R j ∪ {rl}

and continue. . . .
M) Let �M = {rM}. If s

�M
j ≤ c

rM
j (ψ), accept H

(rM)
j . Other-

wise, let R j = R j ∪ {rM}.

The stepdown procedure for the simultaneous testing of Hj

then rejects all hypotheses in {H(m)
j }m∈R j

and concludes that

xj is associated with {y(m)}m∈R j
. If the reference distribution

and ψ are chosen such that the probability of making a type
I error at each step is at most α:

P

(
s
�k
j > c

�k
j (ψ)

∣∣ ⋂
m∈�k

H
(m)

j

)
≤ α, (4)

for any k, then the FWER of the stepdown procedure—that
is, the probability of making at least one false rejection over
the set Hj—is maintained at α. We discuss in detail issues
relating to the choice of reference distribution and ψ in Section
4. We also describe how, regardless of the choices of reference
distribution and ψ, the FWER is asymptotically 0 because β̂

is sparsistent.

2.2. Multiple Regulation Testing

Now suppose scientific interest lies only with a predictor
if it regulates at least k outcomes. That is, we only care
to conclude that xj is associated with {y(m)}m∈Rj

, for some
R j ⊂ {1, . . . , M} if the number of rejections (i.e., the cardi-
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nality of R j) is at least k. Then, we can modify the testing
procedure in the previous section to increase power to detect
k-multiple regulators (kMRs) at the expense of being able to
detect if xj appears to be associated with fewer than k out-
comes. The testing procedure proceeds by essentially skipping
the first k − 1 steps in the previous section and only reject-
ing the first k − 1 hypotheses if any other hypotheses are
rejected. Thus, we will either reject 0 hypotheses or k or more
hypotheses. Throughout, when we refer to SMRT, we mean
the combination of our sparse estimation technique and our
multiple regulation testing procedure for a given k, with k = 1
corresponding to the application of the test in the previous
section.

We identify the subset of hypotheses to reject, denoted by
R j, as follows: (i) let �1 = {rk, . . . , rM}. If s

�1
j ≤ c

�1
j (ψ), accept

all hypotheses and stop. Otherwise, let R j = {r1, . . . , rk} and
continue; (ii) let �2 = {1, . . . , M} \ R j. If s

�2
j ≤ c

�2
j (ψ), accept

all hypotheses in {H (m)

j }m∈�2 and stop. Otherwise, let R j =
R j ∪ {rk+1} and continue. Steps 3 through M − k + 1 proceed
as in the previous section.

As discussed in Section 4, the stepdown test with k > 1
also has asymptotic FWER of 0. In addition to requiring (4),
which we will call controlling the common type I error, we also
require the control of a second type of error: incorrectly reject-

ing one of {H(m)
j }m=r1,...,rk−1 based on correctly rejecting H

(rk)
j

in step one. We will call this a type I error by implication.
Since the distribution of null effects gets shrunk dramatically
toward 0 (see Figure 1 in Web Appendix A), it is unlikely
for this type of error to occur in practice because it requires
a test statistic corresponding to a null hypothesis to be larger
than a test statistic from a rejected alternative hypothesis.
We leave discussion of controlling the FWER for all pre-
dictors to Web Appendix A. The extension of the testing
procedure for a single predictor is straightforward.

3. Inference about β̂

We next detail the construction of β̂ as well as the asymp-
totic distribution for the zero and nonzero components, which
is crucial for the validity of our estimator, confidence inter-
vals, and proposed testing procedures. Estimation proceeds
by minimizing (3). Now, since the profile log-likelihoods
{L(m)}m=1,...,M are nonlinear functions without closed form in
most cases, direct maximization of (3) may be numerically
challenging, especially when p is not small. To reduce the
computational complexity and enable the use of widely avail-
able software, we propose to take a quadratic expansion of
L(m)(β(m)) in (3) similar to Zhang and Lu (2007) and Wang
and Leng (2007). Specifically, we instead minimize

‖Ỹ − X̃β‖2
2 + pλ,w(β), (5)

where Ĩ(m) = −L̈(m)
(β̃

(m)
), L̈(m)

(b) = ∂2L(m)(b)/∂b∂bT , X̃ =
diag(�̃

(1)
, . . . , �̃

(M)
), Ỹ = X̃β̃ and �̃

(m)
is a symmetric half

matrix of Ĩ(m) such that Ĩ(m) = �̃
(m)

�̃
(m)

. Computational sim-
plifications and a full algorithm for fitting are discussed in
Web Appendix D.

3.1. Asymptotic Theory

In this section, we present the properties of our proposed
estimator β̂. It has the property of sparsistency in that it
asymptotically sets truly null effects to exactly 0. Specifically,
define A and Ac as indexing the nonzero and zero compo-
nents of β0, respectively, where βA denotes the subvector of β

corresponding to A. Then, a sparsistent estimator β̂ is one

that satisfies P(β̂Ac = 0) → 1 as n → ∞. Furthermore, our
estimates of non-null effects are asymptotically normal and
possess the oracle property, in that they are as efficient in the
limit as if we knew which effects were truly null a priori. Let
IA,B denotes the submatrix of I corresponding to rows in A
and columns in B.

In Web Appendix A, we show that for PLLs
{L(m)(β(m))}m=1,...,M that satisfy certain regularity condi-
tions (also listed in Web Appendix A), if n−1

√
λ = op(n

−1/2),

then there exists a root-n consistent local maximizer β̂ such

that P(β̂Ac = 0) → 1 and n
1
2 (β̂A − β0A) → N(0, I−1

A,A�A,AI−1
A,A)

in distribution, where �A,A = cov(ϕiA(β0)), ϕiA(βA) denotes
the contribution of the ith subject to the profile score func-
tion for βA, I = diag{I(1), . . . , I(m)}, and I(m) is the limiting
information matrix. This result, parallel to that given in Zhou
and Zhu (2010), offers the promise of identifying null effects
with probability approaching 1, while efficiently estimating
non-null effects. From a testing perspective, it ensures that
the type I error of SMRT for any k decreases to 0 as n → ∞.

3.2. Estimating the Variability in β̂

The asymptotic results on β̂ suggest that we are as efficient in
the limit as if we knew which parameters were truly 0 from the
outset. However, in finite samples the added variability due
to estimating Ac may not be negligible, and hence relying
on the asymptotic result will underestimate the variability
in β̂. To better approximate the finite-sample distribution,
we propose a perturbation resampling procedure to estimate
the distribution of n

1
2 (β̂ − β0). This procedure, by accounting

for the variability in estimating Ac, provides a more precise
estimate of the variability in β̂ and maintains the correlation

structure in β̂.

We generate a resampled counterpart of β̂, denoted by β̂
∗
,

in two steps. We first generate β̃
∗
, a resampled version of

β̃, by either perturbing the profile likelihood or directly per-

turbing the influence function corresponding to β̃. In essence,
each perturbation is achieved by multiplying Gi to the like-
lihood contribution from the ith subject, where the positive
perturbation variables {Gi} are generated independently with
mean 1 and variance 1. Then, we minimize our objective

function (5) using β̃
∗

in place of β̃, yielding resampled esti-

mates β̂
∗
. Similar resampling procedures have been proposed

for making inference with a wide range of standard objec-
tive functions without regularization (Tian et al., 2007; Uno
et al., 2007, e.g.) and recently extended to accommodate L1-
type regularized estimators (Minnier et al., 2011). Here, we
propose such a resampling procedure to both account for the
potential correlation among the outcomes and better approx-
imate the finite-sample behavior of hierarchically regularized
estimators.
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In Web Appendix B, we detail the perturbation procedure
and establish its asymptotic properties, which are paral-

lel to those for β̂. A key feature of the resampled β̂
∗

is

that n
1
2

(
β̂

∗
A − β̂A

)
| V has the same limiting distribution

as n
1
2 (β̂A − β0A). Thus, to approximate the distribution of

β̂ for a given dataset, we may generate a large number of β̂
∗
s,{

β̂
∗b
}

b=1,...,B

for some suitably large B. To construct a confi-

dence interval (CI) for a specific β
(m)
j , one may estimate the

standard error of β̂
(m)
j as σ̂

(m)
j the empirical standard error

of its perturbed realizations,
{

β̂
∗b(m)
j

}
b=1,...,B

. A 100(1 − α)%

level confidence interval can then be constructed based on the
normal confidence interval β̂

(m)
j ± Z1−α/2σ̂

(m)
j or alternatively

the lower and upper α/2 percentiles of
{

β̂
∗b(m)
j

}
b=1,...,B

.

3.3. Tuning

SMRT involves a large number of minimizations and
tuning parameter selections. It is thus not feasible to
select λ using time-consuming methods such as cross-
validation. We propose a modified BIC criteria: λ =
argminλ

(
‖Ỹ − X̃βλ‖2

2 + min{n0.1, log n}dfλ

)
, where βλ is the

minimizer of (5) corresponding to λ and dfλ is the number
of nonzero entries in βλ. In small and moderate sample sizes,
n0.1 is much smaller than log n and is used here. However,
when n becomes large log n may be preferred. Wang and Leng
(2007) showed that this BIC criteria (with either log n or
n0.1) satisfies the rate requirements for a standard adaptive
LASSO-type penalty. Similar arguments can be used to jus-
tify the rate for the adaptive hierarchical LASSO-type penalty
used in (5).

4. Testing

In this section, we show that the FWER of our testing proce-
dure is asymptotically 0 because of the sparsistency of β̂. We
also discuss in more detail the choice of reference distribution.

4.1. Properties of SMRT

One of the main results of this article is that, given a
suitably estimated β̂, the FWER of our stepdown proce-
dure approaches 0 as n → ∞ for any k regardless of the
reference distribution or what quantile ψ we use to deter-
mine the cutoff for rejection. Specifically, we show in Web
Appendix C that if β̂ is sparsistent, then for every j and �,

P

(
s�
j > c�

j (ψ)
∣∣⋂

m∈�
H

(m)

j

)
→ 0 as n → ∞, and SMRT has

an asymptotic FWER of 0, for any reference distribution, k,
and ψ. The result follows from showing that common type I
errors and type I errors by implication both occur with prob-
ability tending to 0. With regard to common type I errors,

under a given null H
(m)
j , the test statistic t

(m)
j is estimated

at exactly 0 with probability tending to 1 and, under the

composite null
⋂

m∈�
H

(m)
j , s�

j tends to 0 as well. Thus, we

cannot reject
⋂

m∈�
H

(m)
j , regardless of the value of c�

j (ψ), and
therefore common type I errors will occur with probability
approaching 0 as n → ∞. The other potential source of type

I error occurs for k > 1 when incorrectly rejecting H
(rk′ )
j based

on correctly rejecting H
(rk)
j , k′ < k. However, this sort of type

I error will only occur if the test statistic for a null hypoth-
esis (which is tending to 0) is larger in magnitude than the
test statistic for an alternative hypothesis, which is of course
impossible asymptotically.

While the foregoing result shows that the asymptotic
behavior of SMRT is ensured by the sparsistency of β̂, of
course in finite samples choice of reference distribution and ψ

is paramount in maintaining the desired error rate. Maintain-
ing the FWER at approximately α can be ensured by choosing
the reference distribution and ψ such that the probability of
making a type I error at each step of the testing procedure is
maintained at approximately α.

4.2. Choosing a Reference Distribution

As discussed in the previous section, any reference distribu-

tion T(m)
j = {t∗b(m)

j }b=1,...,B will provide asymptotic control of

the FWER by virtue of sparsistency of the estimator β̂. We
explore resampling- and permutation-based reference distri-
butions. The resampling-based reference distribution is based

on t
∗b(m)
j = n

1
2

∣∣∣β̂∗b(m)
j − β̂

(m)
j

∣∣∣ /σ̃
(m)
j . Simulation results suggest

that, although resampling provides good approximation to the
finite-sample distribution of β̂A, it tends to over-estimate the

variability of β̂Ac (see Figure 1). As an alternative, we consider

a permutation-based reference distribution with t
∗b(m)
j based

on an estimate of β0 from a dataset where y(m) is permuted.
See Web Appendix E for further details about the procedure
and Section 6 for simulation results. Numerical results suggest
that, the permutation-based reference distribution does a bet-
ter job of approximating the finite-sample null distribution of

t
(m)
j , as shown in Figure 1.

4.3. Choosing ψ

To control the FWER at α-level, it seems reasonable to choose
ψ = 1 − α. This ensures that, for a suitable reference distri-

bution and n large enough, P

(
s�
j > c�

j (ψ)
∣∣⋂

m∈�
H

(m)

j

)
� α,

for any �, which, along with negligible type I error by
implication, will give approximate FWER control. In light
of the fact that all type I errors are tending to probability
0, one could obtain improved power by choosing ψ < 1 − α,
while maintaining the level at α. This is particularly impor-
tant if using the resampling-based reference distribution. One
could use another layer of permutation or resampling to esti-
mate the smallest ψ that would still maintain the level α.
However, that requires computing a large number of permu-
tations/resamples for each of the B members of the reference
distribution, which becomes prohibitively computationally
demanding quickly. Computing a suitable ψ < 1 − α is a topic
of future research.

5. Genetic Study to Identify Shared
Autoimmune Risk Loci

We apply SMRT to a study of shared autoimmunity with
the goal of identifying genetic markers associated with four
autoantibodies: anti-nuclear antibodies (ANA), anti-cyclic
citrullinated protein (CCP) antibodies, anti-transglutaminase
(TTG) antibodies, and anti-thyroid peroxidase antibodies
(TPO). These four autoantibodies are, respectively, markers
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Figure 1. Simulation-based empirical and estimated distribution of null effects. Empirical null distribution of β̂
(m)
j (labeled

“Empirical”) agrees closely in the tails with the permutation-based estimate (labeled “Permutation estimated”), while the
resampling-based estimate (labeled “Resampling estimated”) overestimates the density in the tails.

for four autoimmune diseases (ADs): systemic lupus erythe-
matosus (SLE), rheumatoid arthritis (RA), celiac disease, and
autoimmune thyroid disease. The genetic markers consists of
67 single-nucleotide polymorphisms (SNPs) previously pub-
lished as potential risk markers for these four ADs. Discover-
ing which SNPs regulate multiple ADs can aid in understand-
ing potential shared pathways or etiology of these diseases
(Zhernakova et al., 2009). While it is rare for an individual
to have multiple ADs, multiple autoantibodies can be present
in individuals predisposed to having the multiple ADs even
in the absence of the disease phenotypes. Here, we consider
the autoantibodies markers for subjects at higher risk for the
ADs.

The study cohort includes 1265 individuals of Euro-
pean ancestry with RA identified through electronic medical
records at Partners Healthcare (Liao et al., 2010). Due to a
limit of quantification, the antibody measurements are highly
unreliable when the values are either very low or very high. A
convenient approach to incorporating such limitations is by
assuming a marginal proportional odds model and truncating

the observations at the limit of quantification. Hence, β
(m)
0j

still has the interpretation of being a log odds ratio (OR).
Results for the autoantibody data are summarized in Fig-

ure 2. Figure 2a shows results for the sparse estimation step.
In the figure, SNPs are denoted along the y-axis, and out-
comes are denoted along the x-axis. Color of the tile indicates
the OR estimate, with darker colors indicating stronger asso-
ciation. In order to measure the strength of association with
respect to the FWER, we provide adjusted p-values as the
smallest α such that the test would reject while controlling
the FWER for the SNP at α. Figure 2b shows this p-value for
each test.

Due to the large number of hypotheses, we do not have suffi-
cient power to detect multiple regulation while simultaneously
controlling the FWER across all SNPs. Taking a less conserva-
tive view, if we control the FWER at the SNP level, five SNPs

show some evidence of multiple regulation at α = 0.1. The two
strongest associations were with rs2187668 and rs3129860.
Having previously shown associations to SLE (Taylor et al.,
2011) and celiac (van Heel et al., 2007), rs2187668 was esti-
mated to be related to the autoantibodies for those diseases
at OR = 1.45 (p-value 0.005) for ANA and OR = 1.62 (p-
value 0.005) for TTG, as well as to CCP (OR = 0.78, p-value
0.05). This SNP is in the MHC region, which is known to
affect immune function. Similarly, rs3129860, also in the MHC
region, which had previously shown an association to SLE
(Taylor et al., 2011), here demonstrated an association to
ANA (OR = 1.28, p-value 0.05), CCP (OR = 1.50, p-value
0.003), and TPO (OR = 1.30, p-value 0.05).

6. Simulation Results

We ran simulations to assess the performance of our point and
interval estimation procedures as well as SMRT. We loosely
based our simulations on the autoantibody dataset, allowing
the relationship between x and y to be specified by a propor-
tional odds model. We considered sample sizes of 150, 250,
and 500 and ran 1000 simulations for each sample size. For

each simulation, 1000 resampled β̂
∗
s were generated.

We set the number of predictors of interest p to be 30
and the number of outcomes M to be 4. Covariates x took
values in {0, 1, 2} with probability {π2, 2π(1 − π), (1 − π)2}
where π = 0.15. Outcomes y were generated according to
the marginal proportional odds model, conditional on x. We
allowed correlation in y, which was accomplished by first
generating correlated normal random variables zi ∼ N4(0, �)
where � = 0.85I + 0.1511T is exchangeable. Then, let ui =
�(zi) for Gaussian distribution function �(·), and finally
yi = exp(xiβ0 + εi) where εi = log( ui

1−ui
) ∼ logistic. For com-

putational simplicity, we discretized y into 10 levels of roughly
equal sizes according to deciles. The only change when dis-
cretizing is to the number of locations at which h(m) is
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Figure 2. Results for autoantibody data. SNPs are listed on the y-axis, and autoantibodies are listed on the x-axis. (a)
Sparse odds ratio effect estimates. Darker colors indicate larger magnitudes, and white indicates no estimated association. (b)
Adjusted p-values. Darker color indicates smaller p-value and more evidence against the null hypothesis of no association.

estimated. In practice, this is not an issue (note that we did
not discretize in the data analysis), but for the purposes of
simulation it was a moderate speed-up with little information
loss.

The relationship between x and y is defined by

(β
(1)
0 , . . . ,β

(M)
0 )30×4 =

(
120

1
2 16

112
1
2 8

010 014 018 022

)
30×4

,

where 1k is a k × 1 vector of ones, 0k = 0 × 1k, and 1
2 k

=
1
2

× 1k. This configuration indicates that there are eight pre-
dictors related to all four outcomes, four related to just
the first three outcomes, four related to just the first two
outcomes, and four related to just the first outcome. The
remaining 10 predictors are null, unrelated to any outcome.
We also see that associations to outcomes y(2) and y(4) are

weak, so we would expect there to be less power to detect
those effects.

6.1. Estimation

We first demonstrate that our point and interval estimation
procedures perform well in finite samples. Figure 3 (top panel)

shows the average bias in β̂ and β̃ across simulations, plotted
according to true effect size β0 and sample size. The regu-

larized β̂ exhibits much smaller bias than the unregularized

β̃ for all sample sizes and effect sizes. Particularly at smaller
sample sizes, regularization substantially reduces the bias in
the estimator.

In Figure 3 (middle panel), we plot the average bias in SE
estimates obtained based on our proposed resampling pro-
cedures as well as those based on the asymptotic variance.
Both the asymptotic SE estimate and the resampling-based
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Figure 3. Average performance of point estimates, standard errors, and confidence intervals across 1000 simulations at

sample sizes of n = 150, 250, 500. All quantities are aggregated over β
(m)
0j and plotted against β

(m)
0j . Top panel: average estimated

bias in regularized β̂
(m)
j and unregularized β̃

(m)
j . Middle panel: average estimated bias of estimates of σ

(m)
j , the standard error of

β̂
(m)
j , comparing resampling-based estimates to asymptotic estimates. Bottom panel: 95% CI coverage comparing asymptotic,

resampling-based normal, and resampling-based quantile CIs.

one σ̂
(m)
j overestimate the variability in β̂

(m)
j when β

(m)
0j = 0,

but σ̂
(m)
j more closely approximates σ

(m)
j . When β

(m)
0j �= 0, the

asymptotic SE tends to underestimate the true variability,

while σ̂
(m)
j approximates it well.

We examine CI coverage in the bottom panel of Figure
3 and see that underestimating the SEs leads to poor 95%
CI coverage levels for the normal-based CI methods, based

on σ̃
(m)
j and σ̂

(m)
j . Resampling-based quantile 95% CIs have

good coverage for all values of β
(m)
0j and all sample sizes. The

coverage levels of asymptotic-based CIs are as low as 78% for
nonzero effects and remain lower than the nominal level even
when n = 500. Hence in practice, we recommend the quantile-
based CIs.

6.2. Testing

In the following sections, we examine the performance of
SMRT. We first characterize the performance of our proce-
dure with k = 1 when testing is performed for each predictor
individually considering both the resampling-based and the
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Figure 4. Threshold ψ (y-axis) plotted against its associ-
ated empirical rejection rate (x-axis) for the marginal test of

H
(m)
j across 1000 simulations, with color denoting the mag-

nitude of β
(m)
j0 and linetype indicating whether regularization

was used. The value on the y-axis ψr represents the thresh-
old at which the empirical type I error was controlled for the
regularized test, and ψu represents the threshold at which the
empirical type I error was controlled for the unregularized
test. Results for effects of the same magnitude are averaged
for ease of presentation.

permutation-based reference distribution. Then, we consider
testing with k > 1 and controlling error rates for all predictors.

6.3. Resampling-Based Reference Distribution

We briefly demonstrate the gains in power possible by using
the resampling-based reference distribution. For ease of pre-
sentation, we demonstrate the performance of the testing

procedure for the marginal test of H
(m)
j with and without

regularization. Results for the full stepdown procedure are
similar.

Figure 4 demonstrates the power gain possible when using
the regularized estimator with the resampling-based refer-
ence distribution. The plot shows the threshold necessary
to obtain a given rejection rate. The ideal threshold main-

tains the rejection rate for null effects (β
(m)
0j = 0) at a given

level, say α = 0.05, indicated by the vertical-dashed line. That
threshold that maintains the type I error for the regular-
ized estimator, indicated by ψr in the plot, is much lower
than the threshold for the unregularized estimator, indicated
by ψu = 1 − α = 0.95 in the plot. Furthermore, the power to

detect weak effects (β
(m)
0j = 0.5) using the regularized estima-

tor at ψr is 58% compared to 52% using the unregularized
estimator at ψu, while the power to detect strong effects is
similar. Thus, if one could select ψr adaptively, it appears

that large power gains could be observed by using regulariza-
tion. Due to its computational burden, however, we did not
pursue this method further in our simulations.

6.4. Permutation-Based Reference Distribution

We pursue a more rigorous study of SMRT using the
permutation-based reference distribution mentioned in Sec-
tion 4.2 and described in detail in Web Appendix E. To
demonstrate the role of regularization in improving testing,
we compare SMRT to an identical testing procedure based on
the unregularized β̃, named MRT. We use the permutation-
based reference distribution for both SMRT and MRT and
take ψ = 1 − α. To demonstrate the advantages of the step-
down method, we compare to a single-step procedure, denoted

as Sup, where we reject all H
(m)
j for which t

(m)
j > c

�1
j (ψ)

where �1 = {1, . . . , M}. Finally, we compare to the Bonferroni
adjustment.

When controlling the FWER at α = 0.05 for each xj using
the basic test, SMRT and MRT performed similarly in con-
trolling FWER. The average empirical FWER was .046, .052,
and .055 at n = 150, 250, 500, respectively for SMRT. The cor-
responding average FWER for MRT was 0.042, 0.049, 0.054,
at those respective sample sizes. The more conservative Sup
test had average FWERs of .041, .044, and .043, respectively,
and the even more conservative Bonferroni .028, .026, .021.

In terms of power, SMRT dominates all other test pro-
cedures. Figure 5 depicts the power to detect non-null
effects at n = 250 (other sample sizes show similar relative
performances, with SMRT performing relatively better as
sample size decreases). Possible rejections are listed across
the bottom, and results are arranged according to how many
outcomes the predictor is actually associated with. The fig-
ure shows that SMRT is uniformly more powerful than MRT,
Bonferroni, and Sup, with the differences becoming more
apparent in identifying multiple regulation.

Results for controlling the FWER by applying SMRT to all
predictors and all hypotheses were qualitatively similar. All
methods maintained the nominal level of the test, and SMRT
obtained higher power than MRT, Sup, and Bonferroni at all
sample sizes. When we apply SMRT to each xj with k = 2,
the average FWER for SMRT decreases to .020, .027, and
.033 at n = 150, 250, 500. Taking k = 3 or k = 4 sees a further
reduction to FWERs.

6.5. Superiority of Joint Analysis over Marginal Models

In this section, we demonstrate the advantages of perform-
ing a joint analysis for the detection of multiple regulation.
We compare our estimator β̂ to the estimator obtained by
fitting each marginal model individually using L1 penaliza-
tion, which we will denote β†. The joint analysis improves our
ability to detect multiple regulation, with the improvement
over β† increasing with the number of outcomes a predictor is
associated with. For example, when n = 500, for the eight pre-
dictors associated with all four outcomes, the power to detect
association with y(4) and y(2) increased from 57 to 67% and
from 60 to 66%, respectively, when using SMRT based on the
joint penalty as opposed to marginal models, with a negligible
increase for y(3) and y(1). For predictors of three outcomes,
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Figure 5. Power to detect non-null effects across 1000 simulations at sample size n = 250 and level α = 0.05. Each plot
indicates how many outcomes the predictors tested are associated with. For example, the top left plot corresponds to predictors

with strong association to y(1), β
(1)
0j = 1 and weak association to y(2), β

(2)
0j = 0.5. Tests are listed on the x-axis. Power is indicated

on the y-axis. Power estimates are aggregated over all estimates that share the same effect sizes. To take a couple of examples,

the bar corresponding to “y1” in the figure corresponds to power to reject H
(1)
j , and the bar corresponding to “y1/y2/y3” in

the figure corresponds to power to reject each of H
(1)
j , H

(2)
j , H

(3)
j simultaneously.

SMRT based on β̂ increased the power for association with
y(2) to 61% from 57% for β†. For predictors of two outcomes,

β̂ had 58% power in detecting effects associated with y(2)

compared to 54% for β†. Furthermore, β̂ is much better at
eliminating completely noninformative predictors by estimat-
ing all of their effects at exactly 0. Using joint estimation, β̂

eliminates null predictors completely 52% of the time, while
the rate is only 23% using marginal models, when n = 500.
The relative performance patterns are similar for n = 150 and
250.

7. Discussion

We have proposed a framework for testing and estimation
across a diverse set of outcomes, with the explicit goal of
identifying predictors for multiple outcomes. This framework
allows the combination of information across continuous,
semi-continuous, and discrete outcomes while maintaining
control of the FWER. We have extended existing sparse
regression methods for identifying multiple regulation to the
complex scenario when the components of y may be on very
different scales or not completely observed. We have proven
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the asymptotic properties of this estimator and shown that
one can use resampling to estimate its variability. We have,
finally, provided a testing framework for identifying multi-
ple regulation and demonstrated that the properties of the
estimator ensure that the testing procedure has asymptotic
FWER of 0.

While we rely on the sparsistency properties of our esti-
mator, other penalty functions could potentially accomplish
similar results to the hierarchical penalty we proposed.
As long as sparsistency holds and a suitable finite-sample
reference distribution can be obtained, e.g., through permu-
tation or resampling, other penalty functions could be worth
exploring. For simplicity, we used a working independence
assumption to combine the profile log-likelihoods of multiple
outcomes. But when the outcomes are not independent, incor-
porating information about the covariance in y can improve
efficiency (Liang and Zeger, 1986). A further advantage to
using the quadratic approximation to L(m) in (5) instead of the
profile log-likelihood itself (besides computational tractabil-
ity) is that we can incorporate covariance information about

y through the initial estimate β̃. If the (unpenalized) initial

estimate β̃ is estimated in a way that gains efficiency by taking
correlation in y into account, then that increase in efficiency
will be propagated into our estimation of β̂.

Due to the fine-grained nature of multiple regulation anal-
ysis and the complexity of dealing with diverse y, SMRT
may not be preferred in genome-wide or other very high-
dimensional data where discovery is of primary importance.
Rather than using SMRT to discover novel markers, we sug-
gest using it to validate known markers. Global tests for all
outcomes (Jiang and Zeng, 1995; He et al., 2013) provide bet-
ter power to discover unknown risk markers. Theoretically, the
convergence of our estimators cannot be guaranteed jointly
unless the number of predictors p and outcomes M is finite.
Thus, we require M not to be too large compared to the sam-
ple size. Practically speaking, the computational complexity
of the estimation procedure grows with M. A brief simu-
lation yielded average run times of 0.4,1.7, 4.3, 11.0, 21.2,
44.9, and 343.8 seconds for M = 4, 8, 12, 16, 20, 25, and 50,
respectively, at n = 500, with results being quite similar with
n = 150.

Finally, we have focused on FWER as the error rate of
primary interest throughout this article, but it could be of
interest in some testing situations to employ less restrictive
error control, especially when the number of tests grows large
and signals are weak. We could easily extend SMRT with
k = 1 to include more generalized error rates, such as k-FWER
or the false discovery proportion, as in (Romano et al., 2010),
and testing when k > 1 could be adapted in that direction as
well.

8. Supplementary Materials

Web Appendices A, B, C, D, and E referenced in Sections 1,
2, 3, and 4 are available with this article at the Biometrics
website on Wiley Online Library. An R package implementing
the proposed estimation, perturbation, and testing procedures
is also available at the Biometrics website and may also be
accessed at github.com/denisagniel/smrtr.
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