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Abstract
Genetic studies of complex diseases often collect multiple phenotypes relevant to the disorders. As
these phenotypes can be correlated and share common genetic mechanisms, jointly analyzing
these traits may bring more power to detect genes influencing individual or multiple phenotypes.
Given the advancement brought by the multivariate phenotype approaches and the multimarker
kernel machine regression, we construct a multivariate regression based on kernel machine to
facilitate the joint evaluation of multimarker effects on multiple phenotypes. The kernel machine
serves as a powerful dimension-reduction tool to capture complex effects among markers. The
multivariate framework incorporates the potentially correlated multi-dimensional phenotypic
information and accommodates common or different environmental covariates for each trait. We
derive the multivariate kernel machine test based on a score-like statistic, and conduct simulations
to evaluate the validity and efficacy of the method. We also study the performance of the
commonly adapted strategies for kernel machine analysis on multiple phenotypes, including the
multiple univariate kernel machine tests with original phenotypes or with their principal
components. Our results suggest that none of these approaches has the uniformly best power, and
the optimal test depends on the magnitude of the phenotype correlation and the effect patterns.
However, the multivariate test retains to be a reasonable approach when the multiple phenotypes
have none or mild correlations, and gives the best power once the correlation becomes stronger or
when there exist genes that affect more than one phenotype. We illustrate the utility of the
multivariate kernel machine method through the CATIE antibody study.
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Introduction
Genetic studies of complex diseases commonly collect multiple phenotypes that are relevant
to the disorder under study. The multidimensional phenotypic information can consist of
traits that relate to the risk of the diseases, such as BMI and blood pressure to cardiovascular
disease. It may consist of subclinical phenotypes that underlie the disease syndromes, such
as lung function indices for asthma and the endophenotypes proposed to assist in delineating
the causes of psychiatric disorders like schizophrenia (e.g., brain imaging or neurocognition)
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[Gottesman and Gould, 2003]. It may also be the biochemical measurements that reflect the
physiological state of the diseases, such as metabolite concentrations [Suhre et al., 2011].
These multiple phenotypes better reflect the underlying molecular mechanisms and are more
directly related to the etiology of the diseases. They are also thought to be more heritable
and have a less complicated genetic basis than the final disease diagnosis [Klei et al., 2008].
As a result, genetic modeling of these intermediate phenotypes can have larger strengths of
association and be more informative to infer the potentially affected pathways and disease-
causing process.

The typical strategy of analyzing multiple phenotypes is to conduct separate analysis with
one phenotype vs. one marker at a time and then correct for multiple testing. Though
straightforward and computationally efficient, univariate phenotype analysis ignores the
correlation among phenotypes and only captures one aspect of the phenotypes. As a result,
the tests can be inefficient due to the penalty for multiple testing when phenotypes are
correlated. An alternative strategy is to model the principal components of the original
phenotypes. This principal component (PC) approach reduces dimensionality and yields
statistically independent PC-phenotypes. However these PC-phenotypes can have low
heritability and the association results can be difficult to interpret [Klei et al., 2008].

Several recent papers have developed methods for multivariate association analysis of
multiple phenotypes (e.g., Lange et al., 2002; Liu et al., 2009; Verzilli et al., 2005; Zapala
and Schork et al., 2006; Zhang et al., 2010). Compared to univariate phenotype analysis, the
multivariate approaches model the joint distribution of the multiple traits and improve the
statistical power to detect associated genetic variants. By taking into account the correlation
structure of multiple traits and collectively analyzing the multidimensional information,
multivariate approaches enhance the ability to identify genes that affect multiple traits,
especially when traits are genetically correlated due to pleiotropy [Zhu and Zhang, 2009].

Current multivariate approaches focus mainly on single marker analyses. As with univariate
analysis, multivariate phenotype analysis can also benefit from marker-set analysis,
including the ability to handle high-dimensional markers and the ability to amplify the
association signals via information collapsing (e.g., Wu et al., 2010, Tzeng et al., 2011). As
shown in previous work, kernel machine is an attractive dimension-reduction tool to model
the linear or nonlinear effects of multiple markers. It can account for epistatic effects among
markers, has been demonstrated to be more powerful over other marker-set approaches, and
is applicable to the detection of both common and rare variants [Kwee et al., 2007; Wu et
al., 2010; 2011]. To conduct kernel machine analyses with multiple phenotypes, the typical
strategy is to perform multiple univariate kernel machine regressions coupled with
Bonferroni correction for multiple testing. The univariate kernel machine regression can
take responses as the original phenotypes or the PCs of the phenotypes. However, these
strategies may share the same power concerns as observed in the single marker analysis.

Given the advancement brought by the multivariate approaches for single marker analysis,
in this work, we construct a multivariate regression framework based on kernel machine to
facilitate the joint evaluation of multimarker effects on multiple phenotypes. Through
simulations, we assess the validity and efficacy of the proposed multivariate method. We
also study the performance of the commonly adapted strategies for kernel machine analysis
on multiple phenotypes: the univariate kernel machine tests with original phenotypes and
with their PCs. Our results suggest that none of these approaches has the uniformly best
power, and the optimal test depends on the magnitude of the correlation among phenotypes
and the effect gene patterns. However, the multivariate test retains to be a reasonable
approach when the multiple phenotypes have none or mild correlations, and gives the best
power once the correlation becomes stronger.
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The rest of the article is organized as follows. First, we introduce the multivariate kernel
machine regression model, derive a score test to evaluate the multimarker effects on the
multivariate phenotypes, and show that the test statistic follows a weighted chi-squared
distribution under the null hypothesis. Next, we conduct simulations studies to evaluate the
performance of the multivariate tests and the typical strategies under a variety of scenarios.
We then illustrate the utility of the proposed method through the antibody study of the
Clinical Antipsychotic Trails of Intervention E ectiveness (CATIE) samples. Finally we give
some concluding remarks in the last section.

Material and Methods
Multivariate Kernel Machine Regression

Suppose we observe for each individual i = 1, …, n, the response vector Yi = (Y1i, …, Ypi)T,
covariates Xi such as age, gender etc., and a set of SNPs Zi = (Zi1, …, ZiM)T with Zim ∈ {0,
1, 2}, m = 1, …, m, recording the number of minor alleles. We assume the following model
to relate the health outcome Yi to the genetic covariates Zi and the clinical covariates Xi: for
k = 1, …, p and i = 1, …, n,

with (∊1i, …, ∊pi)T = Normal(0,Σ) with Σ = {σkℓ} and σkℓ reflects the correlation between
traits Yk and Yℓ of the same individual. To fix the ideas, here we let the covariates Zi and Xi
be common to all the phenotypes. However our methodology readily allows for a general
case where these can be different for individual outcomes. In the model, βk are unknown
coefficient vectors corresponding to the effect of X and hk(·) are unknown functions
corresponding to the effect of SNP set of interest. Our goal is to test whether the SNP set has
any effect of the outcome. In other words, we are interested in testing the null hypothesis

In this paper, we use kernel machine framework to allow h(·) to be specified parametrically
and nonparametrically. This approach is more convenient and powerful for multi-
dimensional data. Specifically, we specify hℓ(·) using a kernel function Kℓ(·, ·). Mercer's
theorem [Cristianini and Shawe-Taylor, 2000] guarantees that under some regularity
conditions, the kernel function Kℓ(·, ·) implicitly specifies a unique function space, say ,
spanned by a particular set of orthonormal basis functions {ϕℓj(z), j = 1, …, Jℓ}. Here
orthogonality is defined with respect to the L2 norm. Hence, the function space  has the
property that any function  can be represented in two ways: using a set of basis

functions as  known as the primal or basis representation; or equivalently
using the kernel function as  for some constants αℓ1, …, αℓn. The later
representation is called the dual representation.

In theory, given any basis functions ϕℓ(z) = {ϕℓ1(z), …, ϕℓJℓ(z)}T in the primal representation,

one can construct the corresponding kernel  to facilitate the
dual representation, and vice versa. For multi-dimensional data, it is more convenient to
work with the dual representation for hℓ(·) using the kernel function Kℓ(·, ·), as will be done
in this paper. This approach has two main advantages, namely, it can easily deal with high-
dimensional data and it can capture potentially complex interaction between SNP's via the
specified kernel function. Two most commonly used kernels for SNP data are the dth order
polynomial kernel and the IBS (identical by state) kernel. The dth order polynomial kernel

Maity et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 corresponds to the models with dth-order polynomials including the
cross product terms. For example, the first order polynomial kernel (d = 1) corresponds to

the model with only main effects , and the second order polynomial kernel (d =
2) corresponds to the model with linear and quadratic main effects and two-way interactions

. The IBS kernel is

. Both dth polynomial kernel (d > 1) and IBS kernels
allow for interactions between SNP's.

Score Test for the Marker-Set Effect
We develop a score based marker-set testing procedure in this section. Define

and similarly ∊. Also define X = diag(X1, …, Xp), and . We can rewrite the
model in matrix form as

where  with . That is,  is a p×p block matrix, and each block is a
diagonal matrix of σkℓ1n for k = 1, …, p and ℓ = 1, …, p. In other words, the correlation is
not zero between different phenotypes for the same individuals.

Under the full model, for a fixed covariance matrix Σ, we write the penalized log-likelihood
as

(1)

where  denotes the function norm of hℓ and τ's are penalty parameters. The function

norm is defined as , where ηℓ = (ηℓ1, …, ηℓ,Jℓ)T. The
penalized likelihood is needed to perform the inference on the genetic effect h, whose
dimension is the same as the sample size n. Note that each τℓ controls the smoothness of the
corresponding function hℓ so that for small values of τℓ, the penalty term for hℓ becomes large
and as a result hℓ becomes flat. On the other hand, larger values of τℓ implies rougher hℓ.

Relationship to Multivariate Linear Mixed Model—Recall that we have assumed for ℓ
= 1, …, p, hℓ belongs to a function space  with orthonormal basis functions {ϕℓj, j = 1 …,

Jℓ} and can be expressed in the primal form , where ϕℓ =
(ϕℓ1, …, ϕℓ,Jℓ)T. Define Φℓ = [ϕℓ(Z1), …, ϕℓ(Zn)]. Then it is easy to see that the penalized log-
likelihood in (1) can be written as
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(2)

where  and .

Differentiating (2) with respect to β and η, we obtain the estimating equations

Define K = diag(K1, …, Kp) and multiply ΦT to the second equation above. Using the facts
that ΦTΦ = K and ΦTη = h, we obtain the estimating equation for β and h as

where Λ = diag(τ1, …, τp) ⊗ In. Equivalently, we have the normal equation

From a computational point of view, these normal equations are exactly identical to those of
the mixed effects model

where h = Normal(0, KΛ) and  (see, e.g., Harville, 1977). Hence one can
think of the penalty parameters τ's as the variance components. Hence testing for H0 : h1(·) =

… = hp(·) = 0 is equivalent to testing for the variance components 

The REML Score Test Statistic—A straightforward way to test  is to use a likelihood
based score test. However, a major disadvantage of this maximum likelihood approach is
that it does not take into account the loss of degrees of freedom due to estimation of β and
hence the resulting test would suffer from loss of power. Instead we use the restricted
maximum likelihood (REML) estimation procedure (see for example, Maity and Lin, 2011
and Tzeng and Zhang, 2007) to derive a score test. We write the REML of (2) as
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where . Define P = V−1 − V−1XT(XV−1XT)−1XV−1 and denote P0 to be P

evaluated at . The score function of τℓ, evaluated at  is

where  is a block diagonal matrix with Kℓ as the ℓ-th block and zero otherwise,  is
estimated under null and V0 denotes V evaluated under null. Similar to Tzeng et al. [2011],

we use the first term as the test statistic, and to test for , we now propose to
use the combined score type test statistic

To derive the null distribution of the test statistic Tn, we first compute the eigenvalue
decomposition of K = UDUT and observe that T = rTDr is a quadratic form where

. Note that under , r follows a Gaussian distribution with mean zero
and covariance matrix UTP0U, and therefore the distribution of Tn is a mixture of chi-
squared random variables with weights being the diagonal elements of D. One can
approximate the distribution of Tn by moment matching (e.g., Duchesne and Lafaye [2010])
or by the empirical approach as described below. First, we generate independent and

identically distributed random vectors  from multivariate normal distribution with
mean zero and identity covariance matrix for a large number B, and compute the realizations

of r under  as . Then realizations of Tn can be generated as .
Finally, we compute the p-value as

where 1(·) denotes the indicator function.

Note that one needs to provide a working covariance matrix Σ in order to perform this test.
We propose to first use a working independence structure, that is assuming Σ is a diagonal
matrix with unknown variances, fit the null model Y = XTβ + ∊ and compute the residuals

. Then we estimate the covariance matrix under null using these residuals. The
final estimated covariance matrix can then be used to conduct the test.

Simulation Study
We demonstrate the performance of our proposed testing procedures through simulation
study. For i = 1, …, n and k = 1, …, p, we generated data from the following model:

where Zi = (Zi1, …, ZiM)T, Xi = (XI1, Xi2
T and (∊1i, …, ∊pi)T = Normal(0, Σtrue). We

generated Xi from a bivariate standard normal distribution and set the true value of βk = (0.2,
0.4)T for k = 1, …, p. We simulated the M-SNP genotype data Zi based on the first gene
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(SLC17A1) in the CATIE antibody study which contained 9 SNPs. The structure of linkage
disequilibrium (LD) is given in Figure 1, and the multimarker genotype distribution is
shown in Table 1. For simulation purposes, we only take genotypes with ≥ 7 occurrences
(i.e., 1% of sample size in data example, n = 690). We considered simulation scenarios: (1) n
= 100, M = 9, (2) n = 200, M = 9 and (3) n = 200, M = 30. In scenarios (1) and (2), Zi = (Zi1,
…, ZiM)T were generated directly from SLC17A1 by Table 1, and in scenario (3), we added
additional 21 nuisance SNPs where each Zim took value 0, 1 or 2 with probability 0.3, 0.5
and 0.2, respectively. We considered the following choices of the functions h: (a) sparse
effect, where h1 = δ(z1 + z2 + z3 + z1z4z5 − z6/3 − z7z8/2 + (1 − z9)) for δ = 0, 0.04, …, 0.16

and h2 = … = hp = 0, and (b) common effect, where  and h2 = … = hp = δz3 for δ
= 0, 0.04, …, 0.16. For the dimension of phenotypes, we considered p = 3 and p = 10. The
case with p = 3 was in accordance to the CATIE data, and the case p = 10 represented the
case of larger number of phenotypes. For p = 3, we used three choices of Σtrue:

The second covariance matrix Σ2 was the estimated covariance matrix from the CATIE data
under the null model, where the correlations among phenotypes ranged from 0.11 to 0.28.
The first choice Σ1 was just the diagonal part of Σ2 and was used to evaluate the
performance of our procedure where the responses are actually independent. The third
choice Σ3 introduced higher correlation between Y1 and (Y2, Y3) (i.e., correlation
coefficient r = (0.63, 0.62)), and was used to demonstrate the impact of correlations on the
power of our testing procedure. For p = 10, we added 7 more error variables independent to
others, each with variance 1.

We compared the proposed multivariate kernel machine (MV-KM) test with (1) univariate
kernel machine test (referred to as UV-KM) and (2) principal component based tests. In UV-
KM, we performed p separate univariate kernel machine regressions using each of the
phenotypes as response and corrected for multiple testing using Bonferroni method. In
principal component based tests, we first performed a PCA on the phenotypes to obtain the p
principal components. We then conducted kernel machine test either using the first PC as
response (referred to as PC1-KM) or using the top k PCs that retained 90% of the variations
with the Bonferroni correction (referred to as PCk-KM). We used the IBS kernel for this
comparison. When fitting the MV-KM model, we first fitted a working independence model
and estimated Σ using residual covariance matrix, and then used the estimated Σ as the
working covariance matrix in the testing procedure. For each scenario, we generated 20,000
simulated data sets for type I error evaluation and 1,000 data sets for power comparison. The
p-values were calculated based on B = 10000 resampled statistics.

We provide the type I error analysis in Table 2. Significance levels of α = 0.05 and α =
0.005 were considered. Roughly speaking, MV-KM retained the nominal type I error rate in
all the scenarios, UV-KM were conservative especially in high correlation setting and when
α = 0.005, PC1-KM and PCk-KM had their type I error rates between the two. When
phenotypes were correlated, UV-KM appeared to be more conservative than PC1-KM and
PCk-KM when p = 3, but was about the same or more conservative when p = 10. The
conservative results of UV-KM and PCk-KM can be attributed to the correlation among the
test statistics. Even in the case of independent phenotypes (i.e., Σ1), different test statistics
were correlated because they were based on the same predictor values from the same
subjects.
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Results for power analysis are displayed in tables 3 and 4. For power analysis, we first focus
on p = 3, case (a): sparse effect, where only Y1 was associated with the gene. We see that
UV-KM had the best power when the phenotypes were independent (Σ1) or in low
correlation (Σ2), and MV-KM had the best power when correlation was high (e.g., Σ3). PC1-
KM had inferior power compared to UV-KM and MV-KM. However, PCk-KM had similar
power to MV-KM in the zero or low correlation cases but had inferior power in the high
correlation case. For p = 3 case with case (b) (common effect), where all the responses
shared some common genetic effects, MV-KM had similar power as UV-KM for zero or
low correlation, and had better power than UV-KM for high correlation. In this case PC1-
KM and PCk-KM showed similar pattern as in the sparse case.

For p = 10 case with sparse effect, we observed a similar pattern as in p = 3 except that the
gap between UV-KM and MV-KM become larger for case (a) with zero (Σ1) or low
correlation (Σ2). This is not too surprising because in case (a), there was only one phenotype
(Y1) exhibiting association, and the correlations among the phenotypes were mostly 0 (i.e.,
in Σ1, all Y s had 0 correlations with each other; in Σ2, all Y s had 0 correlation except that r
= 0.11 ~ 0.28 between Y1, Y2 and Y3). The results suggested that when signal is sparse
among Y s and Y s also have little correlations, multiple correction may be more efficient
than multivariate modeling. Nevertheless, once some correlations became moderate — even
only among a few Y s (e.g., in Σ3, all Y s had 0 correlation except that r = 0.28 ~ 0.63
between Y1, Y2 and Y3), we saw MV-KM can still utilize the information from other
phenotypes and gave significant power gain over UV-KM and PC-based tests. The results of
p = 10 with common effect were also similar to p = 3 case (b). When correlation was higher,
MV-KM had the best power as seen earlier. In cases (a) and (b), both PC-based tests had
worse power than both MV-KM and UV-KM across all scenarios.

We also investigated the effect of choosing different kernel functions on Type-I error and
power of the proposed MV-KM test. We consider the setting with n = 100, m = 9 and p = 3
with sparse and common effects as above. We consider three different kernel functions to
summarize the multi-SNP information: (a) IBS kernel, (b) quadratic kernel, i.e., the second
order polynomial kernel, and (c) linear kernel, i.e., the first order polynomial kernel. Both
IBS kernel and quadratic kernel model epistatic and nonlinear SNP effects, but unlike IBS
kernel that modeled such effect implicitly, the quadratic kernel uses specific forms, i.e., the
linear and quadratic main effects plus the pairwise interactions. In contrast, the linear kernel
only consider the linear additive SNP effects. The type I errors at 5% and 0.5% level are
given in Table 5 (based on 20, 000 simulated data sets), and the power analysis at α = 0.05
is displayed in Table 6 (based on 1, 000 simulated data sets). It is evident that in terms of
both Type-I error and power, the three kernel behave similarly for the h(·) functions
considered in the simulation study.

Data Analysis
The CATIE antibody study is motivated by the availability of genome-wide association SNP
data and antibody level quantification for three neurotrophic herpesviruses in schizophrenia
cases from the CATIE studies [Lieberman et al., 2005; Sullivan et al., 2008; Yolken et al.,
2011]. Given that (1) genetic variation in the MHC has emerged as a robust and replicable
risk factor for schizophrenia [Shi et al., 2009; Stefansson et al., 2009; International
Schizophrenia Consortium, 2009], (2) the known role of genetic variation in this region in
responses to infectious agents, and (3) the epidemiological and clinical associations of
exposure to these infectious agents on risk of schizophrenia [Yolken et al., 2011], one major
goal is to understand the association between antibody responses to the neurotrophic
herpesviruses and genes that are related to schizophrenia and located around the MHC
region.
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The original CATIE study examined whether atypical antipsychotics can reduce morbidity
and resource use compared to a conventional antipsychotic drug for patients suffering from
chronic schizophrenia. About 51% of the 1460 CATIE participants provided DNA samples,
and genotype data were available for 492K SNPs [Sullivan et al. 2008]. Focused on the
CATIE schizophrenia samples, Yolken et al. [2011] measured the IgG class antibodies to
three herpesviruses that are capable of establishing persistent infection within the human
central nervous system: Herpes Simplex Virus type 1 (HSV-1), Herpes Simplex Virus type 2
(HSV-2), and Cytomegalovirus (CMV). They found that exposure to these neurotrophic
infectious agents were associated with cognitive deficits in schizophrenia samples. In our
analysis, we examined the association between antibody levels and those genes that were
located on chromosome 6p22.1 and were reported to be associated with schizophrenia.
There were 12 gene regions selected for evaluation (Table 7). We note that in a complete
gene-based study, the analysis should include two steps: first to detect genes that exhibited
global association with the traits, and second to evaluate variant-specific effects within the
associated genes using refined approaches, such as single-SNP analysis or haplotype
penalized regression [Tzeng and Bondell, 2009]. In this data application, we focus on the
illustration of how MV-KM can be used as a tool for the first detection step.

For each of the gene regions, we consider three kernel functions to summarize the multi-
SNP information: the IBS kernel, the quadratic kernel, and the linear kernel. We applied
four approaches to evaluate the gene-level effect: the proposed MV-KM method, PC1-KM,
PCk-KM and UV-KM. The p-values were obtained using B = 100, 000 resampled statistics.
Each analysis adjusted for age and sex. The correlation between the antibody levels were
estimated as 0.011 for HSV-1 and HSV-2, 0.203 for HSV-1 and CMV, and 0.280 for HSV-2
and CMV, which indicated a weak dependence among different antibody levels. The
proportion of the variance explained by the top k PCs was 59%, 87%, and 100% for k = 1, 2,
and 3, respectively. So we reported the results of PC1-KM and PC2-KM. The significance
level for the 12-gene analysis was 0.05/12= 0.0042.

The p-values based on IBS kernel are given in Table 7. The p-values reported were adjusted
for the multi-phenotype tests for UV-KM and PC2-KM. MV-KM identified one significant
gene region, i.e., MHC (p-value=0.0006). The UV-KM method identified three significant
regions, including MHC (p-value=0.0006) and two additional genes, BTN2A1 (p-value
0.0036) and POM121L2 (p-value=0.0009). This data set consisted of small-dimensional
phenotype data with low correlations, which is an ideal scenario for UV-KM according to
the simulation findings. In this regard, it is not surprising that MV-KM did not identify as
many signals as UV-KM, but it has exhibited ability to identify the most biologically
meaningful region (i.e., MHC). PC1-KM did not identify any regions. PC2-KM identified
BTN2A1 (p-value 0.0038) to be significant.

The p-values based on quadratic and linear kernels are shown in Table 8. Comparing to
Table 7, we observed that using quadratic kernels yielded more significant results than IBS
kernel and linear kernel regardless of univariate, PC-based, or multivariate analyses,
especially for genes BTN2A1 and POM121L2. This suggested that there might be some
nonadditive effect among SNPs within those genes, and the quadratic function was more
efficient in modeling such effects for the CATIE antibody data.

Discussion
In this work, we present a multivariate kernel machine testing procedure for studying the
joint effect of multiple markers on multiple phenotypes simultaneously. The kernel machine
serves as a powerful dimension-reduction tool to capture interaction and non-linear effects
among markers. The multivariate framework incorporates the potentially correlated
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multidimensional phenotypic information, accommodates common or different
environmental covariates for each trait, and detects genetic effects that affect single or
multiple traits. We derived a score based test to assess the multimarker effects on the
multiple traits collectively. We conducted simulations to evaluate the performance of the
proposed MV-KM testing procedure. We also studied the performance of the commonly
adapted strategies for kernel machine analysis on multiple phenotypes, i.e., UV-KM, PC1-
KM and PCk-KM. The results indicated that none of these approaches has the uniformly
best power: UV-KM gave the highest power when the phenotypes are independent or have
weak correlations. MV-KM had the highest power once the correlation became stronger.
Finally, PC-based tests tended to have similar or less power that MV-KM for zero or low
correlation cases but had inferior power for high correlation cases. Although the optimal test
depends on the magnitude of the phenotype correlation and the effect patterns, MV-KM can
still serve as a reasonable tool for multiple phenotype analysis — it often yields comparable
power to UV-KM even when phenotypes have none or mild correlations, and performs the
best when phenotypes have increased correlation or share common genetic mechanisms.

We note that despite the fact that the methods presented here aimed towards testing the
effect of SNP sets, one could also employ similar techniques to include environmental
factors and interaction terms in the model, and develop tests on the overall effect of gene
and gene-environment interactions. In addition, the proposed methodology can be readily
generalized to accommodate other types of predictors such as those encountered in the
analysis of expression, methylation or metabolism. One would need to use different kernels
suitable for each data type while keeping the methodology same. In that sense, we have
presented here a general framework to perform set analysis on multivariate phenotypes for
different “omic” data types.

As noted in the data analysis, a complete gene-level analysis should include two aspects: (1)
to detect the global association between gene and traits, and (2) to comprehend the signal
identified at gene level. The proposed MV-KM method can serve as a screening tool for step
(1), and then follow-up analysis could be performed to dissect the gene-level signals
identified. In this regard, it is desired to perform phenotype-specific tests to identify the
source of the global signals and understand the effect patterns. These inference procedures
require estimating the genetic effects for each trait and we are currently working on the
extensions along this direction.

Finally, in this work we illustrated how MV-KM can be used to screen for promising genes
using common SNPs through a chromosome-wide search. The proposed method is directly
applicable to other scenarios: The set aggregation can be performed at the level of exons,
linkage-disequilibrium blocks, genes, pathways or networks; the analyzed variants can be
common or rare; and the search can be extended to exome-wide or genome-wide. MV-KM
is computationally efficient due to its permutation-free features. For the case with (n, m, p) =
(100, 9, 3), B = 10000 and using IBS kernel, it takes 1.2 seconds, on an average, to run one
MV-KM test on an Intel Xeon 3.33GHz machine with 12 Gb RAM (using only one
processing core). To focus on rare variants, one can incorporate weights into the kernel
function based on minor allele frequencies, functionality, or estimated effect size to better
target variants of interest.
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Figure 1.
LD of gene SLC17A1.
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Table 1

Frequency of multimarker genotypes as observed in SLC17A1 of CATIE schizophrenia samples. Displayed
are the genotypes appearing ≥ 1%.

Genotype Frequency (in real data) Relative frequency (used in simulation)

221212211* 113 0.191

222202220 103 0.174

112111121 72 0.121

111121112 46 0.078

220222202 41 0.069

112112221 38 0.064

111122212 28 0.047

211122212 26 0.044

111222212 24 0.041

002021122 20 0.034

212112221 15 0.025

002020022 10 0.017

102122222 10 0.017

102022222 9 0.015

002121122 8 0.013

002122222 8 0.013

220222211 8 0.013

102021122 7 0.012

202022222 7 0.012

*
The string represents the multimarker genotype of the 9 SNPs, with each digit showing the minor allele count of a locus.
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Table 2

Simulation results for p = 3 and 10. Displayed are the type I error rates in percent of our test (MV-KM) along
with the univariate KM-test with Bonferroni correction (UV-KM) and principal component based KM-tests
(PC1-KM and PCk-KM), as described in the simulation section, for α = 5% and 0.5%.

Case : p = 3

(n, m) Σ 1 Σ 2 Σ 3

α : 5% 0.5% 5% 0.5% 5% 0.5%

(100, 9)

MV-KM 5.11 0.45 5.10 0.46 5.16 0.47

PC1-KM 4.52 0.41 4.62 0.41 4.54 0.43

PCk-KM 4.41 0.36 4.45 0.41 4.55 0.35

UV-KM 4.56 0.35 4.34 0.36 3.99 0.37

(200, 9)

MV-KM 5.01 0.47 5.05 0.47 4.91 0.43

PC1-KM 4.55 0.42 4.52 0.41 4.53 0.43

PCk-KM 4.49 0.39 4.45 0.43 4.21 0.37

UV-KM 4.66 0.38 4.54 0.40 4.03 0.34

(200, 30)

MV-KM 5.10 0.46 5.07 0.48 5.13 0.45

PC1-KM 4.51 0.43 4.71 0.46 4.55 0.43

PCk-KM 4.44 0.38 4.49 0.46 4.51 0.41

UV-KM 4.50 0.33 4.41 0.37 3.97 0.37

Case : p = 10

(n, m) Σ 1 Σ 2 Σ 3

α : 5% 0.5% 5% 0.5% 5% 0.5%

(100, 9)

MV-KM 4.71 0.42 4.70 0.43 5.20 0.43

PC1-KM 4.82 0.47 4.66 0.42 4.64 0.48

PCk-KM 4.43 0.40 4.15 0.41 4.12 0.32

UV-KM 4.10 0.38 4.43 0.37 4.18 0.37

(200, 9)

MV-KM 4.59 0.47 5.10 0.44 4.20 0.51

PC1-KM 3.62 0.32 1.12 0.38 4.00 0.35

PCk-KM 3.61 0.32 3.71 0.33 3.80 0.30

UV-KM 3.68 0.37 3.70 0.33 3.50 0.30

(200, 30)

MV-KM 4.88 0.41 4.67 0.39 4.92 0.40

PC1-KM 3.88 0.30 4.26 0.34 4.00 0.32

PCk-KM 3.03 0.31 3.03 0.28 3.27 0.24

UV-KM 2.91 0.27 2.91 0.25 2.90 0.23
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Table 5

Simulation results for (n, m, p) = (100,9,3). Displayed are the type I rates (in percent) of our test (MV-KM) for
different choices of kernels: linear, quadratic and IBS, for α = 5% and 0.5%.

Σ 1 Σ 2 Σ 3

α : 5% 0.5% 5% 0.5% 5% 0.5%

Linear 5.11 0.41 5.30 0.40 5.3 0.44

Quadratic 5.13 0.40 5.23 0.41 5.26 0.44

IBS 5.11 0.45 5.10 0.46 5.16 0.47
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Table 7

Results of CATIE Antibody analysis using IBS kernel. The genes are ordered accordingly to the genomic
regions.

Gene No. of Subjects No. of SNPs p-values of IBS kernel

MV-KM PC1-KM PC2-KM UV-KM

SLC17A1 690 9 0.0060 0.1224 0.0217 0.0090

SLC17A3 404 13 0.3235 0.0048 0.0096 0.0152

BTN3A2 666 5 0.0271 0.0116 0.0231 0.0605

BTN2A2 437 5 0.6566 0.9489 0.8658 0.7934

BTN2A1 693 4 0.0129 0.0235 0.0038 0.0036

HIST1H2AG 436 2 0.7133 0.8254 0.5476 0.7181

HIST1H2BJ 678 2 0.0501 0.5375 0.0231 0.0259

PRSS16 425 1 0.9826 0.7031 0.9119 0.9749

POM121L2 676 4 0.0042 0.0758 0.0048 0.0009

ZNF184 406 8 0.0605 0.0662 0.0840 0.0367

NOTCH4 618 24 0.4977 0.0725 0.1397 0.2588

MHC 516 787 0.0006 0.0287 0.0185 0.0006

The significant threshold for the p-value is based on Bonferroni correction for 12 genes analysis, i.e., 0.05=12 = 0.0042. Values given in bold
indicate p-values that are less than the significant threshold.
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Table 8

Results of CATIE Antibody analysis using quadratic and linear kernels. The genes are ordered accordingly to
the genomic regions.

Gene p-values of Quadratic kernel p-values of Linear kernel

MV-KM PC1-KM PC2-KM UV-KM MV-KM PC1-KM PC2-KM UV-KM

SLC17A1 0.0015 0.0563 0.0066 0.0006 0.0039 0.0567 0.0118 0.0036

SLC17A3 0.2853 0.0044 0.0088 0.0146 0.2827 0.0075 0.0149 0.0155

BTN3A2 0.0362 0.0358 0.0703 0.0452 0.0189 0.0177 0.0351 0.0794

BTN2A2 0.5100 0.8943 0.6911 0.5848 0.5775 0.9316 0.8093 0.7464

BTN2A1 0.0014 0.0094 0.0018 0.0006 0.0046 0.0131 0.0014 0.0027

HIST1H2AG 0.8610 0.7581 0.7949 0.8819 0.7693 0.6806 0.8174 0.8217

HIST1H2BJ 0.0328 0.6816 0.0118 0.0161 0.0393 0.6641 0.0266 0.0170

PRSS16 0.9826 0.6999 0.9099 0.9728 0.9826 0.7071 0.9142 0.9695

POM121L2 0.0015 0.0351 0.0042 < 10−5 0.0038 0.1180 0.0102 0.0006

ZNF184 0.0643 0.8879 0.0529 0.0432 0.0782 0.6922 0.0834 0.1238

NOTCH4 0.4311 0.0909 0.1735 0.2683 0.4172 0.0577 0.1121 0.1633

MHC 0.0005 0.0220 0.0155 0.0003 0.0005 0.0245 0.0201 0.0003

The significant threshold for the p-value is based on Bonferroni correction for 12 genes analysis, i.e., 0.05/12 = 0.0042. Values given in bold
indicate p-values that are less than the significant threshold.
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