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Multiple-trait genome-wide association study based on
principal component analysis for residual covariance matrix

H Gao1, T Zhang2, Y Wu3, Y Wu1, L Jiang4, J Zhan4, J Li1 and R Yang4

Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study
(GWAS), principal component analysis (PCA) has been widely used to generate independent ‘super traits’ from the original
multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same
as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA
for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to
a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal
component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis
under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse
oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical
and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and
meat quality traits in beef cattle.
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INTRODUCTION

With the advance of high-throughput genotyping technology, the
paradigm of mapping quantitative trait locus (QTL) based on the
linkage analysis of sparse genetic markers has gradually shifted to
genome-wide association studies (GWAS) based on thousands and
thousands of single-nucleotide polymorphisms (SNPs). On the other
hand, association studies tend to involve more than one quantitative
traits or complex diseases located in different regions of chromo-
somes, allowing the investigation of common genetic risk factors
underlying multiple traits. Although these traits could be analyzed
separately with univariate genetic model, statistical methods and
algorithms have been developed for simultaneously analyzing multiple
normal traits (Jiang and Zeng, 1995; Fang et al., 2008; Ayroles et al.,
2009; Zhu and Zhang, 2009; Stephens, 2010; Nadeau and Dudley,
2011; Shriner, 2012), multiple discrete traits (Lange and Whittaker,
2001; Xu et al., 2005; Yang et al., 2009) and multiple mixed traits of
normal and discrete traits (Prentice and Zhao, 1991; Fitzmaurice and
Laird, 1997; Liu et al., 2009).

With each quantitative trait being analyzed separately by the same
genetic model, least squares estimation or maximum likelihood
estimation gives the same genetic effect estimates as those from the
joint analysis of multiple correlated trait. However, its significance test
for QTL does not consider correlations among all the traits being
analyzed. In contrast, jointly analyzing all correlated traits exhibits
two distinct advantages. First, statistical power to detect QTL and the
precision of parameter estimation (Jiang and Zeng, 1995; Zhu and
Zhang, 2009) will be increased. Second, the complex statistical model

leads to biologically meaningful conclusions, facilitating to address
the issue of pleiotropy vs close linkage (Almasy et al., 1997; Liu et al.,
2007) and to access the endophenotypes intermediate between a gene
and a trait. Because of a large number of matrix calculations and the
increased degrees of freedom of the test statistic (Weller et al., 1996),
however, the multivariate analysis of all traits is extremely impractical
when the number of quantitative traits is large. More recently, Verzilli
et al. (2005) and Banerjee et al. (2008) employed seemingly unrelated
regression model (Zellner, 1962) to map QTLs of correlated traits.
With two multivariate models and the associated Bayesian algorithms,
their modeling scheme outperforms the conventional multivariate
model in terms of QTL identification.

When many correlated normal traits are collected, principal
component analysis (PCA) and discriminant analysis are candidates
to perform dimension reduction for these traits. By performing the
PCA on all phenotypic traits based on their covariance matrix, a
collection of the independent principal components of original traits,
or ‘super traits’, could be obtained. Then a few leading principal
components that explain the most variance of original phenotypes are
chosen for separately mapping analysis (Weller et al., 1996; Mangin
et al., 1998; Elston et al., 2000; Korol et al., 2001). With the regular
PCA transformation, mapping results lack biological interpretability,
as supper traits are a set of linear combinations of original traits.
Although genetic effects of detected QTLs on super traits can always
be back-transformed to those for original traits using the matrix of
principal eigenvectors (Weller et al., 1996; Knott and Haley, 2000),
this framework cannot produce equivalent parameter estimates to the
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joint analysis of original correlated traits. Specific to each tested
position, the discriminant analysis can obtain one best linear
combination of the traits from the estimated genetic and residual
covariance matrices (Gilbert and Le Roy, 2003, 2004), improving the
precision of parameter estimation and the statistical power of QTL
detection.

A great volume of transcriptional expressions that are regarded as
quantitative traits can be analyzed using the transcriptional expression
QTL (eQTL) mapping aproaches (Brem et al., 2002; Schadt et al.,
2003; Morley et al., 2004; Stranger et al., 2005; Wang et al., 2006).
Several methods for eQTL mapping also motivate the modeling
scheme of multiple quantitative trait mapping. By first clustering
transcripts with similar expression into groups, sparse partial least-
squares regression framework has been proposed to select markers
associated with each cluster of genes (Chun and Keles, 2009).
Adaptive multi-task least absolute shrinkage and selection operator
(LASSO; Zhu et al., 2008) has been developed for detecting eQTLs
that takes into account related expression traits simultaneously while
incorporating many regulatory features. On the other hand, the
graph-guided fused LASSO (Kim and Xing, 2009; Kim et al., 2009)
considers regulatory networks over multiple expression traits within
an association analysis, but previous knowledge on genomic locations
is not incorporated. To date, however, most of the eQTL mapping
approaches are still focusing on insufficient limited number of genetic
markers from relatively small populations.

This article presents a statistical framework for analyzing many
regular quantitative traits from GWAS, where a multivariate genetic
model is constructed and each trait’s associations with all SNPs are
tested using the same genetic model. An extremely fast LASSO (Yuan
and Lin, 2005; Friedman et al., 2010) is employed to solve sparse
oversaturated genetic model for each trait. Instead of working on
principal components from phenotypic traits, this framework imple-
ments PCA for the estimated residual covariance matrix, so that
multiple regular quantitative traits are transformed to a group of
pseudo principal components or a group of pseudo traits. Based on
this and the underlying transformation, the univariate analyses for
pseudo traits give equivalent parameter estimates to joint multivariate
analysis, but the computational burden for multiple quantitative traits
mapping is largely reduced. Statistical and computational efficiencies
of the proposed method are validated through extensive simulations
and a real data set from a GWAS of 20 slaughtering traits and meat
quality traits in beef cattle.

METHOD
Multivariate genetic model
In a GWAS involving multiple quantitative traits collected from a randomized

population, t traits of interest are observed and m SNPs are genotyped on

n subjects. By only considering the additive effects of SNPs, the phenotype of

each trait can be partitioned into:

yil ¼
Xs

j¼1
xijbljþ

Xm

j¼1
zijalj þ eil ð1Þ

for i¼ 1,2, � � � ,n, l¼ 1,2, � � � ,t.
Where yil is the phenotypic value of the lth trait for the ith subject, blj is the

jth systemic environmental effect for the lth trait, xij is the incidence value for

the ith subject in the jth systemic environmental effect, alj is genetic effect of

the jth marker on the lth trait, zij is the indicator variable of the jth marker

for the ith subject, defined as 0 for heterozygote, �1 and 1 for the two

homozygote, and eil is the residual error, which follows a multivariate normal

distribution eil � Nð0; s2
e Þ with s2

e being residual variance. We denote the

simultaneous linear equations consisting of such models for t traits as the

multivariate genetic model for mapping QTLs for multiple traits.

With vector notation, model (1) is written as

yi ¼
Xs

j¼1
xijbjþ

Xm

j¼1
zijaj þ ei ð2Þ

with yi ¼ ½ yi1 yi2 � � � yit �T , bj ¼ ½b1j b2j � � � btj �T and

aj ¼ ½ a1j a2j � � � atj �T .

The expectation of yi is

EðyiÞ ¼ li ¼
Xs

j¼1
xijbjþ

Xm

j¼1
zijaj ð3Þ

and its covariance matrix is V(yi)¼Re.

Shrinkage estimation for genetic effects
As phenotypes are correlated with each other but independent among subjects,

the likelihood function L is then the product of individual multivariate normal

distribution density, or

L ¼ ð2pÞ� 0:5tn j Re j� 0:5n exp � 1

2

Xn

i¼1
ðyi�liÞ

TR� 1
e ðyi�liÞ

� �
ð4Þ

Assuming li is known, the maximum likelihood estimate of residual

covariance matrix is given by

R̂e ¼
1

n

Xn

i¼1
ðyi� liÞ

Tðyi�liÞ ð5Þ

In general, R̂e is positive definite, and thus can be decomposed into

R̂e ¼ VTLV ð6Þ

according to the Eigen decomposition, where V is the matrix of eigenvectors

and K is a diagonal matrix consisting of eigenvalues. Let y
0

i ¼ Vyi and

l
0

i ¼ Vli, then the likelihood function becomes

L ¼ ð2pÞ� 0:5tn j Re j� 0:5n exp � 1

2

Xn

i¼1
ðy0i � l

0

iÞ
TL� 1ðy0i �l

0

iÞ
� �

¼ ð2pÞ� 0:5tn j Re j� 0:5n exp �
Xt

l¼1

1

2dl

Xn

i¼1
ðy0il�m

0

ilÞ
2

� �� � ð7Þ

where, dl is the lth eigenvalue along the diagonal of matrix K, y
0

il is defined as

the lth pseudo principal component (or pseudo traits) for the ith subject and

m
0

il is the expected value of y
0

il. As Equation (7), with this decomposition, can

be partitioned into the product of t likelihood functions for t pseudo traits, the

genetic model for each pseudo trait can be solved iteratively, although the

pseudo traits may not be independent of each other. Based on this equivalent

form of solution, the procedure could efficiently solve for genetic effects in the

presence of multiple traits and a huge number of genetic markers. Never-

theless, when a fairly large number of traits are of interest, this procedure could

focus on the first few leading pseudo traits, allowing reduction of computation

costs in a lower-dimensional space.

In particular, we implement penalized likelihood-based shrinkage estimation

for each pseudo trait defined in Equation (7). With thousands and thousands

of SNPs, the number of unknown parameters estimated in m
0

il is far greater

than sample size, but the number of non-zero genetic effects is very small.

Therefore, the LASSO regression with a coordinate descent step (Yuan and Lin,

2005; Friedman et al., 2010) can efficiently shrink most of genetic effects in m
0

il

to zeros in estimating the genetic effects associated with each pseudo trait.

Denote the genetic effect of the jth SNP on the lth pseudo trait by a
0

lj, then the

genetic effect a
0

lj is estimated by

a
0

lj ¼ arg min
Xn

i¼1
ðy0il�m

0

ilÞ
2þ l1

Xm

j¼1
ja0ljj

h i
ð8Þ

for j¼ 1,2, � � � , m and l¼ 1,2, � � � , t0.
where, l1 is a tuning parameter, which can be optimized with cross

validation, and t0 is the total number of pseudo traits considered in the lower-

dimensional space.

So far, we have outlined the statistical algorithms based on R̂e, where the

expectation li of yi is still assumed to be unknown. As univariate analysis for

model (1) gives identical point estimates of genetic effects to those from

multivariate analysis, we solve the mean equation for each original trait

separately to attain an estimate of Re. Specifically, the LASSO regression (Yuan

and Lin, 2005; Friedman et al., 2010) can be used to estimate the oversaturated

model (1) and efficiently estimate systemic environmental effects as well as
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non-zero genetic effects by solving

min
Xn

i¼1
ðyil�

Xs

j¼1
xijblj�

Xm

j¼1
zijaljÞ2þ l2

Xm

j¼1
jaljj

h i
; ð9Þ

where l2 is a tuning parameter to be determined by cross validation. The

estimated model leads to the estimated expectation li of yi and then R̂e.

To identify the genetic risk factors associated with multiple correlated traits,

this framework transforms the phenotypic traits to a group of new traits using

the eigenvectors of residuals covariance matrix. Approaching the problem in

this way breaks down the complex problem into a sequence of analyzing

individual pseudo trait separately. More importantly, it ensures the equivalency

of parameter estimates between the two analysis frameworks. In sum, the

parameter estimation can be implemented in the following steps:

(1) Estimate the expectation for each trait by solving the objective

function (9).

(2) Calculate residual covariance matrix R̂e using (5).

(3) Decompose R̂e into VTKV.

(4) Determine the number of pseudo principal components being considered

according to the cumulative proportion contributed by eigenvalues in

matrix K.

(5) Generate the pseudo principal components by multiplying multiple

phenotypes by a matrix of corresponding eigenvectors.

(6) Estimate non-zero genetic effects for each pseudo principal component by

solving Equation (8).

Statistical inference for genetic effects
After the shrinkage estimation of genetic effects for each pseudo trait, the

number of non-zero genetic effects is generally less than sample size. By

directly applying ordinary least squares estimation, the systemic environmental

effects and the non-zero genetic effects can be unbiasedly estimated for each

pseudo trait as follows

b̂0lj
â0lj

" #
¼

Pn
i¼1 xijxij

Pn
i¼1 xijzijPn

i¼1 zijxij

Pn
i¼1 zijzij

� �� 1 Pn
i¼1 xijy

0
ilPn

i¼1 zijy
0
il

� �
ð10Þ

for l¼ 1,2, � � � ,t0 and j¼ 1,2, � � � ,q, where q is the number of selected non-

zero genetic effects.

Also, residual variance for each pseudo trait is estimated by

ŝ2
l ¼

1

n� q� s

Xn

i¼1
ðy0il� xijb̂0lj� zijâ0ljÞ

2: ð11Þ

The variance-covariance matrix of the estimated parameters is then

calculated by

V
b̂0lj
â0lj

" #
¼

Pn
i¼1 xijxij

Pn
i¼1 xijzijPn

i¼1 zijxij

Pn
i¼1 zijzij

� �� 1

ŝ2
l ð12Þ

Finally, the significance of non-zero genetic effects can be statistically tested

based on Equations (10), (11) and (12), and SNPs corresponding to significant

non-zero genetic effects are identified as the QTLs for the pseudo quantitative

trait. In order to interpret the genetic effect on the quantitative trait measured

in the original scale, the genetic effect associated with each detected QTL is

transformed by

âlj ¼
Xt

l¼1
vT

l â0 lj ð13Þ

where nl is the eigenvector corresponding to the lth principal component in

matrix V, and â0 lj is the jth estimated genetic effect for the lth pseudo trait.

RESULTS

Simulated data
A total of 6000 SNPs with equal allele frequencies are simulated and
evenly distributed across 6 chromosomes, with 1000 SNPs on each
chromosome. Given constant correlations of 0.1 between two adjacent
SNPs on the same chromosome, 6000 normally distributed random
variables are first generated from a multivariate normal distribution
with an expectation of 0 and given constant correlations. Then,
indicator variable xij are generated as þ 1 if the random variable is
40.675, as �1 if it is o�0.675 and 0 otherwise. On each simulated
chromosome, one or two SNPs (QTLs) are assumed to govern two
normally distributed quantitative traits. The positions and genetic
effects of 10 QTLs across 6 chromosomes are presented in Table 1.
Residual variances for two traits are set to 1, so that residual
covariance is equal to correlation between the two traits. With this
setup, the heritabilities of 10 simulated QTLs range from 0 to 0.041
for the first trait and from 0 to 0.033 for the second trait. Phenotypic
values are drawn from a bivariate normal distribution with the
expectation li and residual covariance matrix Re, where the expecta-
tion li can be calculated by the sum of the products of the simulated
QTLs’ indicator variables and corresponding genetic effects. To
evaluate influences of sample size and correlation between the two
traits on mapping results, sample size is tested under two levels:
1000 and 2000, and correlation is set to one of four levels: 0, 0.2,
0.5 and 0.8.

The simulated data sets are analyzed by our proposed method
(Residual PCA for short), joint analysis based on phenotypic PCA
(Phenotypic PCA for short) and the conventional multivariate
analysis scheme (Multivariate for short), respectively. To facilitate
the comparison of the three analysis methods, all test statistics are
transformed to –log(p) from the associated P-values. The simulations
are repeated 500 times for estimating QTL parameters and accessing
the statistical power of QTL detection. At 5% significance level,
statistical power of QTL detection for each locus is calculated as the
proportion of simulations where test statistic exceeds the critical value
of 1.313. Also, false positive rate is evaluated with the 500 simulations
under the null model without genetic effects on the two traits.

Table 2 shows the statistical power and false positive rate for QTL
detections using the three analysis methods, and Table 3 reports the
estimated QTL genetic effects when the correlation between two
quantitative traits is 0.5. The results at other correlation levels are
provided in Supplementary Tables S1–S4 of the Supplementary
Material. In accordance with our expectations, each analysis method

Table 1 Positions and genetic effects of the QTLs simulated

QTL no. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Chr. no. C1 C2 C3 C4 C5 C6

Position 310 322 296 686 134 64 516 778 344 648

Effect_1 0.00 0.22 0.21 0.12 �0.17 0.07 0.31 0.26 0.14 �0.15

Heritability_1 0.000 0.021 0.019 0.006 0.012 0.002 0.041 0.029 0.008 0.010

Effect_2 �0.25 0.00 0.19 0.20 0.08 �0.26 �0.28 0.19 0.00 0.12

Heritability_2 0.027 0.000 0.015 0.017 0.003 0.029 0.033 0.015 0.000 0.006

Abbreviation: QTL, quantitative trait loci. Effect_k and Heritability_k (for k¼1,2) are genetic effect and heritability, respectively, for the kth trait.
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gives similar statistical patterns: (1) statistical power of QTL detection
and the precision of parameter estimation increase as the QTL
heritability increases, (2) statistical power of QTL detection is higher
and false positive rate is lower as the QTL heritability increases and
(3) large sample size is beneficial to identify QTL. All analysis
methods are able to accurately find the simulated QTLs, with
negligible deviations for positions. For various correlations between
these two traits, Residual PCA method is basically identical to the
joint analysis in terms of statistical power and QTL parameter
estimation, but both methods distinctly outperform Phenotypic
PCA method. In general, false positive rates are o10% for all
scenarios. But Residual PCA method and Multivariate method deliver
very similar false positive rates, which are clearly lower than those
from the Phenotypic PCA method. Moreover, the relative statistical
performance of these three analysis methods does not appear to
depend on the correlation between the two traits. Although theore-
tically the estimates for QTL genetic effects should be the same
between Multivariate method and Residual PCA method, minor
discrepancies exist due to slightly different statistical powers of the
two approaches.

We also record the computational time when implementing each
analysis method for each simulated data set (results not shown).
It can be seen that our proposed method takes almost the
same computing time as that of Phenotypic PCA method, while
Multivariate method takes about five times more computing time
compared with our proposed method for sample size of 1000.
As the sample size increases to 2000, the difference in computing
time is further enlarged between our proposed method and the

Multivariate method, suggesting the superior computational
efficiency in additional to the statistical performance of the proposed
approach.

Real data
Experimental population consists of 1058 young Simmental bulls
born between 2008 and 2011, which are originated from Ulgai,
Xilingol league, Inner Mongolia of China. After weaning, the cattle
were moved to Beijing Jinweifuren cattle farm and were fattened
under the same feeding and management environment. Growth and
development traits for each individual were observed in a timely
manner between 16 and 18 months old before slaughter. During the
period of slaughter, carcass traits and meat quality traits were
measured according to Institutional Meat Purchase Specifications
for fresh beef guidelines. The blood samples were collected along with
the regular quarantine inspection of the farms without the need of
ethical approval. The DNAs were extracted from these blood samples
using the routine procedures. The Illumina BovineHD BeadChip was
adopted for quantifying and genotyping DNAs.

Before statistical analysis, SNPs were removed from the study if
(1) their call rates are o90%, (2) minor allele frequency are o3% or
(3) genotype appearance are o5 individuals or if they are departing
from Hardy–Weinberg equilibrium with P-values o10�6. In addi-
tion, individuals with 410% missing genotypes or with 42%
Mendelian error rates in genotyping are excluded. Finally, a total of
986 individuals and 631 396 SNPs were collected for the multiple-trait
GWAS analysis.

Table 2 Statistical powers of QTL detection and false positive rates (FPR) obtained with three mapping methods for the simulated data sets

with correlation 0.5

Sample size Method Statistical power FPR

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1000 Residual PCA 78.8 78.0 83.5 70.2 72.2 83.2 99.0 98.0 29.5 85.2 5.5

Phenotype PCA 55.0 49.0 58.0 56.5 45.0 66.0 94.0 88.8 16.8 49.5 8.5

Multivariate 78.2 80.8 81.2 67.0 74.2 86.5 96.5 95.5 30.0 85.0 5.0

2000 Residual PCA 88.2 88.0 94.2 78.8 83.2 92.0 99.8 100.0 40.2 91.0 3.8

Phenotype PCA 67.8 62.5 67.8 65.2 49.0 86.0 93.8 88.8 32.8 63.8 6.8

Multivariate 88.0 88.5 90.5 79.2 83.8 92.5 100.0 99.5 42.2 91.2 3.3

Abbreviations: PCA, principal component analysis; QTL, quantitative trait loci.

Table 3 Mean estimates and s.ds. (in parentheses) of QTL effects obtained with three mapping methods for the simulated data sets with

correlation 0.5

Sample

size

Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1000 Residual PCA 0.04 (0.01) 0.21 (0.00) 0.21 (0.00) 0.10 (0.01) �0.21 (0.00) 0.11 (0.01) 0.33 (0.02) 0.25 (0.00) 0.10 (0.00) �0.14 (0.00)
�0.23 (0.02) �0.03 (0.00) 0.21 (0.00) 0.21 (0.01) 0.11 (0.00) �0.26 (0.01) �0.31 (0.01) 0.20 (0.00) �0.02 (0.00) 0.11 (0.01)

Phenotype
PCA

0.12 (0.02) 0.14 (0.00) 0.25 (0.00) 0.15 (NA) �0.13 (0.01) 0.08 (0.00) 0.28 (0.01) 0.21 (0.01) 0.07 (0.00) �0.14 (0.00)

�0.17 (0.01) �0.10 (0.00) 0.25 (0.00) 0.17 (NA) 0.10 (0.01) �0.18 (0.00) �0.27 (0.01) 0.18 (0.01) �0.07 (0.00) 0.13 (0.00)
Multivariate 0.03 (0.01) 0.20 (0.01) 0.21 (0.01) 0.09 (0.01) �0.19 (0.01) 0.09 (0.00) 0.32 (0.01) 0.28 (0.01) 0.14 (0.01) �0.10 (0.00)

�0.25 (0.01) �0.03 (0.01) 0.19 (0.00) 0.21 (0.01) 0.09 (0.00) �0.29 (0.01) �0.27 (0.00) 0.17 (0.01) �0.02 (0.00) 0.09 (0.01)
2000 Residual PCA 0.07 (0.01) 0.22 (0.00) 0.21 (0.00) 0.10 (0.01) �0.21 (0.00) 0.11 (0.01) 0.31 (0.01) 0.24 (0.00) 0.14 (0.00) �0.13 (0.00)

�0.24 (0.01) �0.03 (0.00) 0.21 (0.00) 0.22 (0.01) 0.12 (0.00) �0.24 (0.01) �0.30 (0.01) 0.21 (0.00) �0.02 (0.00) 0.11 (0.00)
Phenotype
PCA

0.13 (0.02) 0.15 (0.01) 0.22 (0.00) 0.17 (0.00) �0.13 (0.01) 0.14 (0.01) 0.3 (0.01) 0.23 (0.02) 0.08 (0.01) �0.18 (0.01)

�0.18 (0.01) �0.10 (0.01) 0.22 (0.00) 0.18 (0.00) 0.13 (0.01) �0.13 (0.01) �0.29 (0.01) 0.15 (0.02) �0.08 (0.01) 0.18 (0.01)
Multivariate 0.02 (0.00) 0.21 (0.01) 0.20 (0.01) 0.13 (0.01) �0.18 (0.01) 0.10 (0.00) 0.32 (0.01) 0.28 (0.01) 0.12 (0.01) �0.16 (0.01)

�0.25 (0.01) �0.02 (0.01) 0.19 (0.00) 0.20 (0.02) 0.11 (0.01) �0.26 (0.01) �0.28 (0.00) 0.19 (0.01) 0.01 (0.00) 0.12 (0.00)

Abbreviations: NA, not available; PCA, principal component analysis; QTL, quantitative trait loci.
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Among a total of 40 carcass traits and meat quality traits, 20 are
chosen to demonstrate the proposed method. These analyzed traits
include live weight, carcass weight, net weight of beef (boneless), net
weight of beef, head weight, forehoof weight, cowhide weight, oxtail
weight, flank weight, ribeye weight, high rib weight, tenderloin
weight, shin weight, shoulder weight, topside weight, silverside
weight, top round weight, rump weight, shank weight and hoof
weight. Phenotypic correlations among these traits, listed in
Supplementary Table S5, are 40.40.

Environmental factors, such as measuring year and slaughtering age
(in months), are included in the genetic model, and population
stratification is taken into account as well. In the shrinkage estimation
of genetic model for each trait, fold numbers for cross-validations are
set from 3 to 10 to make sure each trait has non-zero genetic effect

after shrinkage. Then pseudo traits in a lower-dimensional space are
obtained by performing PCA on the residual covariance matrix as
discussed in ‘Method’ section. The first two pseudo traits are
analyzed, which together explain 485% of the residual covariance
matrix variation.

At significance level of 0.05, 27 significant SNPs are identified as the
QTLs for the first two pseudo traits. But for the clarity of tabulating
mapping results, we report 14 SNPs out of these 27 detected SNPs in
Table 4 by having a significance level of 0.001. As can be seen from
Table 4, the heritabilities of these detected QTLs are overall very low
for two pseudo traits, ranging from 0.00 to 0.13. The genetic effects of
these detected QTLs are transformed to those for 20 original traits by
eigenvectors corresponding to each pseudo principal components.
The results provided in Supplementary Table S6 of Supplementary

Table 4 The detected SNPs for the first two pseudo principal components (SPC) of 20 carcass traits and meat quality traits in beef cattle

SPC QTL no. SNP Chr. Position �Log(p) Effect Heritability

First 1 BovineHD0700006504 7 23736205 6.11 0.03 0.01

2 BovineHD1000023693 10 83167500 4.84 0.03 0.01

3 BovineHD1500018258 15 63694848 3.69 �0.03 0.01

4 BovineHD0700005046 7 17994045 3.02 0.10 0.06

5 BovineHD0900003540 9 13538093 4.40 0.03 0.01

6 BovineHD2200010203 22 35643205 3.78 0.02 0.00

7 BovineHD2500007552 25 26940925 4.89 0.12 0.09

8 BovineHD2700000367 27 1169118 3.67 0.06 0.02

Second 9 BovineHD0500004156 5 13861704 6.47 0.12 0.09

10 BovineHD0600033075 6 116460483 3.62 �0.04 0.01

11 BovineHD0700008057 7 28564386 4.33 �0.04 0.01

12 BovineHD0900016838 9 61346136 4.90 �0.07 0.03

13 BovineHD1300001192 13 4584757 3.68 0.15 0.13

14 BovineHD1700021389 17 73171831 3.31 0.11 0.07

Abbreviations: QTL, quantitative trait loci; SNP, single-nucleotide polymorphism.

Table 5 Estimated heritabilities of the detected QTLs for 20 carcass traits and meat quality traits in beef cattle

Trait no. QTL no.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.0027 0.0039 0.0039 0.0354 0.0027 0.0017 0.0437 0.0132 0.1262 0.0157 0.0157 0.0394 0.1925 0.1118

2 0.0100 0.0106 0.0112 0.1110 0.0100 0.0062 0.1397 0.0435 0.0662 0.0085 0.0085 0.0214 0.1039 0.0581

3 0.0110 0.0115 0.0124 0.1215 0.0115 0.0067 0.1558 0.0477 0.0573 0.0074 0.0071 0.0181 0.0902 0.0505

4 0.0091 0.0097 0.0103 0.1002 0.0091 0.0054 0.1271 0.0387 0.0748 0.0097 0.0091 0.0236 0.1164 0.0651

5 0.0014 0.0014 0.0015 0.0150 0.0014 0.0008 0.0192 0.0059 0.1406 0.0178 0.0174 0.0443 0.2196 0.1219

6 0.0008 0.0008 0.0009 0.0085 0.0008 0.0005 0.0108 0.0033 0.1457 0.0185 0.0180 0.0458 0.2276 0.1263

7 0.0004 0.0004 0.0004 0.0044 0.0004 0.0003 0.0054 0.0016 0.1492 0.0186 0.0186 0.0469 0.2332 0.1294

8 0.0003 0.0003 0.0003 0.0033 0.0003 0.0002 0.0042 0.0013 0.1498 0.0190 0.0185 0.0471 0.2338 0.1298

9 0.0001 0.0001 0.0001 0.0012 0.0001 0.0001 0.0016 0.0005 0.1513 0.0192 0.0186 0.0476 0.2367 0.1312

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1523 0.0193 0.0188 0.0479 0.2379 0.1320

11 0.0076 0.0079 0.0085 0.0830 0.0076 0.0046 0.1055 0.0322 0.0881 0.0112 0.0108 0.0277 0.1375 0.0763

12 0.0171 0.0178 0.0191 0.1872 0.0172 0.0103 0.2376 0.0727 0.0075 0.0009 0.0009 0.0023 0.0117 0.0065

13 0.0159 0.0166 0.0178 0.1743 0.0161 0.0096 0.2215 0.0677 0.0173 0.0022 0.0021 0.0055 0.0271 0.0150

14 0.0029 0.0030 0.0032 0.0316 0.0029 0.0017 0.0401 0.0123 0.1279 0.0162 0.0158 0.0402 0.1997 0.1108

15 0.0103 0.0107 0.0115 0.1125 0.0103 0.0062 0.1429 0.0437 0.0652 0.0083 0.0080 0.0205 0.1019 0.0566

16 0.0164 0.0171 0.0183 0.1793 0.0165 0.0099 0.2278 0.0696 0.0134 0.0017 0.0017 0.0042 0.0210 0.0116

17 0.0061 0.0064 0.0068 0.0669 0.0062 0.0037 0.0849 0.0260 0.1005 0.0128 0.0124 0.0316 0.1571 0.0872

18 0.0128 0.0133 0.0143 0.1400 0.0129 0.0077 0.1779 0.0544 0.0439 0.0056 0.0054 0.0138 0.0686 0.0381

19 0.0004 0.0004 0.0004 0.0043 0.0004 0.0002 0.0055 0.0017 0.1489 0.0189 0.0184 0.0468 0.2327 0.1291

20 0.0176 0.0176 0.0213 0.1914 0.0176 0.0112 0.2406 0.0775 0.0044 0.0007 0.0007 0.0016 0.0063 0.0028

Abbreviation: QTL, quantitative trait loci.
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Material show that many genetic effects are small and even negligible.
However, absolute values of genetic effects can not precisely reflect the
impact of detectable SNPs on any original trait, as heritability also
depends on each trait’s phenotypic variation. In fact, the heritabilities
of detected QTLs on 20 analyzed traits can be calculated from the
estimated genetic effects and the estimated residual variances, where
the latter one can be estimated by diag (VTKV) for original traits. It
can be seen from Table 5 that, in general, the thirteenth and
fourteenth QTLs have higher genetic influence on the analyzed traits
than other detectable QTLs. Further, the heritability of QTL can also
be used to indicate the extent to which the pleiotropy occurs.

DISCUSSION

In the conventional phenotypic PCA for analyzing multiple traits,
phenotypic covariance matrix Sp is firstly decomposed into Rp ¼
VT

p LpVp and then phenotypes of multiple traits are orthogonally
transformed to independent principal components through eigen-
vector matrix Vp. As Vp is an orthogonal matrix, the relationship
between phenotypes (yi) and principal components (CPi) can be
described as CPi¼Vpyi and yi ¼ VT

p CPi. Substituting yi ¼ VT
p CPi

into likelihood function (4) gives

L ¼ ð2pÞ� 0:5tn Rej j� 0:5nexp � 1

2

Xn

i¼1
ðCPi�VpliÞ

T VpR
� 1
e VT

p ðCPi�VpliÞ
� �

Obviously, this likelihood function cannot be solved sequentially for
principal components, because VpR� 1

e VT
p is a non-diagonal matrix.

But if Re¼Rp, then VpR� 1
e VT

p ¼ VpR� 1
p VT

p ¼ VpVT
p L
� 1
p VpVT

p ¼
L� 1

p with Kp being a diagonal matrix consisting of eigenvalues. This
assumption, however, holds only in the case of no pleiotropic or
closely linked QTLs for multiple traits. In contrast, our proposed
method based on the PCA for residual covariance matrix is more
general, which factorizes the likelihood function for multiple traits
into multiple independent likelihoods for all pseudo principal
components or pseudo traits. As a result, univariate analyses for
pseudo traits give equivalent parameter estimates to the joint multi-
variate analysis under a linear transformation.

The key to implement the proposed method is the estimation of
unknown residual covariance matrix. According to the equivalency of
maximum likelihood estimate between univariate analyses and the
joint analysis for the model (1) with the same genetic model for each
trait, the residual covariance matrix in this study is estimated through
the maximum likelihood estimation of genetic model for each trait.
Note that the LASSO procedure (Yuan and Lin, 2005; Friedman et al.,
2010) for estimating the sparse oversaturated genetic model for each
trait leads to biased non-zero genetic effects due to forcing penalties,
and the biased estimates for genetic effects are associated with the
biased estimates of residual covariance matrix. However, by initializ-
ing with its biased estimate, residual covariance matrix could be
iteratively estimated along with all other genetic effects. This iterative
process can be carried out from step (2) to step (5) in the outlined
algorithm. We investigate the performance of this iteration scheme
using the simulated data set (results not shown) and find that
iteration runs less than five times to converge, and mapping results
are basically the same as those without iterations.

For detecting genetic variations associated with beef carcass traits
and meat quantity traits, GWAS have been conducted in Korean
Hanwoo cattle (Lee et al., 2010), Korean beef cattle (Kim et al., 2011)
and Australian taurine and indicine cattle (Bolormaa et al., 2011).
Many significant SNPs were identified using the simple linear
regression and stepwise regression procedures. Bolormaa et al.
(2010) carried out a multiple-trait GWAS for dairy traits using a

PCA and a series of bivariate analyses. In this article, it is shown that
multiple-trait GWAS has better statistical power to detect associations
than single-trait GWAS and to identify additional associations with-
out an increased false discovery rate. However, it did not increase the
precision for the mapped QTL. Until now, no GWAS based on PCA
has been reported for multiple beef carcass traits and meat quantity
traits, and o50 000 SNPs were used in the previous GWAS in cattle.
With a total of 630 000 SNPs in our study, it is expected that more
biologically important SNPs are identified. This will largely improve
our knowledge of the genetic architecture of beef traits and provide a
valuable research tool for analyzing multiple traits in other GWAS.
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