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Abstract

The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases
and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are
generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly
with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple
phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear
combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden
to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in
many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one
phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over
these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed,
such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-
control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of
MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data
MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach,
while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated
linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula,
suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable
phenotypes.
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Introduction

Genome-wide association studies aim to identify associations

between genotype and phenotype. While genotypes are well-

defined biological entities, phenotypes are defined more subjec-

tively and can relate to numerous biological processes. There has

been much effort to characterise well-defined phenotypes that may

correspond more to specific biological function for use in genome-

wide association studies, but the definition of some phenotypes

remains somewhat ad-hoc. Type 2 diabetes, the subject of the first

major genome-wide association study [1], is diagnosed using a

debated blood glucose threshold [2], the Metabolic Syndrome is

commonly based on observing three of five criteria [3], while

neuropsychiatric disorders rely on a complex range of overlapping

clinical characteristics for diagnosis.

While most quantitative traits are less ambiguously defined,

many are defined as mathematical functions of several measure-

ments in an attempt to better capture the underlying biology than

individual quantities. There have been many more genetic

determinants of Body-mass-index (BMI), defined as the ratio of

weight to height squared, discovered than those of weight [4], and

the significance of rs8050136 in FTO was reported to be 11 orders

of magnitude more significant for BMI than weight [5]. Illig et al.

[6] investigated genetic association with metabolites and all

metabolite ratios, using metabolite ratios as proxies for enzymatic

reaction rates.
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A primary aim of this study is to fully assess the performance of

a multivariate approach to genome-wide association studies in

comparison to that of the usual single-phenotype strategy. Rather

than exploiting an available multivariate method, we introduce a

new fast and interpretable approach, which addresses some of the

limitations of previously suggested methods. In particular, we

propose that linear combinations (equivalent to ratios on pre log-

transformed phenotypes) of directly measured phenotypes may

often capture unmeasured aspects of complex biological networks,

such as reaction rates, protein mediators or other uncharacterised

or clinically-inferred phenotypes. Modelling the association

between linear combinations of phenotypes and the genotypes at

each SNP may uncover genetic association hidden to both single

phenotype GWAS and those based on a priori defining a phenotype

as a fixed function of traits. Such an approach circumvents the

problems of phenotype definition by enabling association of

genotype with flexible linear combinations of robust measure-

ments, and could potentially be exploited by biologists and

clinicians to define phenotypes that better reflect underlying

biological processes.

We introduce a new method, MultiPhen, that rapidly performs

GWAS on multiple phenotypes by identifying the linear combi-

nation of the phenotypes most associated with genotype at each

SNP. This is achieved by reversing the regression, such that

genotype is regressed on phenotype, rather than phenotype-on-

genotype as in the standard GWAS approach. By applying ordinal

regression (proportional odds logistic regression), which models the

genotype data as ordinal, multiple phenotypes can then be jointly

modelled as predictors of the SNP genotypes to test for multi-

phenotype associations (see Methods). This model makes no

assumption on the phenotype distribution and so can accommo-

date both binary and continuous measurements. Our test for

association is a likelihood ratio test for model fit, which provides a

P value for evidence of association between the SNP and the

phenotypes. The usual genome-wide significance level is applied.

While several approaches to multivariate analysis of GWAS have

been introduced in recent years, the univariate approach is still

routinely favoured [7–9]. We believe that this is partly due to a

lack of thorough comparison between a multivariate and the

univariate approach, which we seek to address here, and also

potentially due to limitations in the multivariate methods, such as:

not allowing joint analysis of continuous and binary phenotypes

[10–11], having inflated type 1 error [11], reducing the effective

sample size by requiring cross-validation [12], and not explicitly

modelling the correlation structure between traits [13–14].

MultiPhen does not suffer from these problems, but the benefit

of using MultiPhen over ‘canonical correlation analysis’ (CCA)

[15], when testing one-SNP-at-a-time, is less clear due to their

similarity. MultiPhen and CCA (as implemented by Ferreira and

Purcell [15]) both test the linear combination of the phenotypes

most associated with the genotypes of a SNP against a null

hypothesis of no association, but while CCA treats the genotypes

as normally distributed MultiPhen appropriately models the

genotypes as ordinal. Based on this, we specifically investigate

whether MultiPhen offers better performance than CCA (which is

equivalent to ‘reversed’ linear regression, with SNP as outcome,

and MANOVA).

We show via simulation that MultiPhen has markedly higher

power than the standard single-phenotype approach to detect

SNP-phenotype associations in many scenarios, even for identify-

ing variants that affect only one of the phenotypes, as a result of

jointly modelling the phenotypes. In addition, there are several

convenient aspects of adopting our approach. As the phenotypes

are treated as predictors rather than outcomes, there is no need to

ensure their normality via transformation. Our MultiPhen

software (available as a CRAN package for R) appropriately

handles imputed SNP data and CNVs, can optionally perform a

score test, and can perform univariate linear (standard) and

ordinal (reversed) regressions for comparison with multivariate

results (see Methods). A further advantage of our approach is its

computational speed; applying MultiPhen to 10 traits is around

1.3 times faster than the corresponding set of standard single-

phenotype analyses. With a natural test for combining results

across studies as the (weighted) sum of the likelihood ratios (or z

scores) from each study, MultiPhen can be easily applied to

perform meta-analysis of measured or imputed SNP data across a

large number of phenotypes and studies. The similarity of the

approach to that of the usual linear and logistic regressions

performed in GWAS, and the presentation of P values for

association in the usual way, make the approach highly

interpretable and a natural extension of current methods for

GWAS.

Results

Type 1 Error Rate Assessed by Simulation
We first assess whether MultiPhen, CCA [15] and the standard

univariate approach have appropriate type 1 error by simulating

sets of 100000 SNPs under the null hypothesis of no association,

for 2 continuous phenotypes with correlations between the

phenotypes of up to r = 0.9 (where r is Pearson’s correlation

coefficient). Here and subsequently, the univariate P value is

calculated as the minimum univariate P value across the tested

phenotypes corrected for the effective number of tests by applying

a ‘‘Nyholt-Šidák correction’’ [16] (see Methods). For normally

distributed phenotypes tested at common and rare SNPs

(MAF = 30% and 0.5%, N = 5000), MultiPhen, CCA and the

Nyholt-Šidák corrected univariate approach generate uniform P

values, and thus successfully control the false-positive rate (Figures

S1 and S2). This is also the case when one of the phenotypes is

simulated to have a distribution with outliers, such that the error

term is simulated from a t-distribution with 3 degrees of freedom

rather than a Normal distribution, when tested at common SNPs

(Figure S3). However, there is substantial inflation of the statistics

for both CCA and the univariate approach for low frequency

variants when the phenotype distribution includes outliers (Figure

S4). We also show that there is inflated type 1 error for CCA and

the univariate approach in this scenario for common SNPs, with

MAF = 5%, when the sample size is small, N = 200 (Figure S5).

Finally, we investigate the type 1 error rates of the three methods

when applied to binary phenotypes, and find that while all three

methods have appropriate type 1 error rates when tested at SNPs

with MAF = 30% (Figure S6) there is inflation of the statistics for

CCA and the univariate approach when MAF = 0.5% and

N = 5000 and when MAF = 5% and N = 200 (Figures S7 and

S8). Tables S1, S2 and S3 provide the number of results with P

values smaller than several thresholds in each of these scenarios,

while Table 1 shows the number of results with P,1e–5, for which

the expectation under the null is one, for each of the methods

when the phenotypes have a correlation coefficient of 0.5. These

results suggest that the assumption of normality of the genotypes

made by the CCA method can critically compromise the approach

in certain scenarios.

We note that when CCA is applied one-SNP-at-a-time, as in

Ferreira and Purcell [15], its test statistic is equivalent to an F-test

in a linear regression model with SNP genotypes as outcome and

to a MANOVA test, and therefore these approaches have the

Joint Model of Multiple Phenotypes in GWAS
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same inflation of the type 1 error rate in the scenarios considered

here.

Statistical Power Assessed by Simulation
To formally compare the statistical power of MultiPhen, CCA

and separately performed single phenotype analyses, we conduct-

ed a simulation study. We first investigate the potential power

gains of using a multivariate approach over the standard

univariate approach, then subsequently assess differences in power

between the multivariate methods. We simulated replicates of a

causal variant under several scenarios of its effect on two

(simulated) continuous phenotypes. We simulated 10000 replicates

of a causal SNP in a sample of 5000 individuals, where the risk

allele explains 0.5% of the variance in the first phenotype and, in

turn, 0.5%, 0.1% and 0% of the variance in the second phenotype.

We simulate the variant as having different effects on the two

‘measured’ phenotypes in order to model association of the SNP

with different linear combinations of the phenotypes. These

scenarios were simulated across the range of between-phenotype

correlations, from r = –0.9 to r = 0.9 in increments of 0.1. We first

tested for SNP-phenotype associations by performing single

phenotype analyses, calculating the Nyholt-Šidák corrected

minimum P value from the two analyses for each SNP. Next we

applied MultiPhen to the same data and performed the likelihood

ratio test for overall model fit, obtaining a P value for association

with the phenotypes (see Methods for details of simulation study).

Figure 1 compares the power of the methods to identify

associations at the genome-wide significance level (P = 5x10–8)

under these scenarios. MultiPhen outperforms the single-pheno-

type approach in detecting direct effects for the majority of the

scenarios considered, and in many cases the boost in power is

dramatic. MultiPhen performs particularly well when the genetic

effects are not in the same direction as the correlation between the

two phenotypes. For instance, when a variant only affects one of

two highly correlated phenotypes, or a variant affects negatively

correlated phenotypes in the same direction or positively

correlated phenotypes in opposite directions (Figure S9). Exem-

plars of the last scenario are HDL variants, which may have

opposite effects on total cholesterol and LDL (see Figure 2). If the

genetic effects are consistent with the correlation between the two

phenotypes, then the single phenotype approach is slightly more

powerful, for example, if the variant has the same effect on two

highly correlated phenotypes, or only affects one of two

uncorrelated phenotypes.

We note that, from a theoretical perspective, the power of

MultiPhen using two phenotypes P1 and P2, is worst when the

association of P2 with genotype G is entirely explained by P1, that

is when P2 is conditionally independent of G given P1. We show

that this corresponds to the situation in which the ratio of the effect

sizes b2/b1 = r (the correlation between the phenotypes), assuming

P1 and P2 both have a variance of 1 (see Methods). This could

occur if P2 is immediately downstream of P1 in a biological

pathway with no other P2-regulators associated with G. Con-

versely MultiPhen is expected to perform better when b2/b1 is not

equal to r, that is, when the genetic effects are not in the same

direction as the correlation. While we would expect effects of

variants that explain a large proportion of phenotypic variation to

be consistent with the correlation of the phenotypes, this may not

be the case for variants that explain only a small portion of

phenotypic variation, such as those discovered in GWAS. Given

the complexity of biological pathways, we suggest that in many

cases genetic effects will not have the same correlation structure as

the phenotypes themselves. In these circumstances, we would

expect that MultiPhen has an advantage over traditional single-

phenotype approaches.

To investigate the generalisability of the results of Figure 1 to

more than two phenotypes we extended the simulations to three,

five and ten phenotypes. In general MultiPhen performs even

better with additional phenotypes in the scenarios where it

outperforms the univariate approach, but even worse with more

phenotypes when it has low power compared to the univariate

approach (Figure S10). With a large number of correlated

phenotypes the most likely scenario of effects may be that where

the variant has different sized effects on several phenotypes, which

is best captured by the middle panel of Figure S10 in which

MultiPhen has improved overall performance with increasing

phenotypes.

Next, we investigate the performance of MultiPhen when

applied to case-control data. Figures S11 and S12 show that

MultiPhen outperforms the univariate approach in the majority of

the model space when applied to two case-control phenotypes, and

when applied to a case-control phenotype and quantitative

phenotype together.

Finally, we compared the statistical power of CCA (equivalently

‘reversed’ linear regression and MANOVA) and MultiPhen. Since

the type 1 error rate of CCA is inflated for non-normal phenotypes

in the scenarios we considered (see above), it is difficult to make a

meaningful assessment of power in these scenarios. Therefore we

restricted our analysis to normally distributed phenotypes. Figure

S13 shows that while the power of CCA is in general marginally

higher than MultiPhen, the difference is negligible. As a result, in

the empirical example that follows we only compare MultiPhen

with the standard univariate approach.

Table 1. Behaviour of the different methods under the null.

Phenotypes MultiPhen CCA Univariate

30% 0.5% 5%, (N = 200) 30% 0.5% 5%, (N = 200) 30% 0.5% 5%, (N = 200)

Continuous, no outliers 2 1 1 2 1 1 2 4 0

Continuous with outliers 3 1 0 1 74 16 1 57 9

Binary 2 2 1 1 6 17 0 8 22

This table relates to the simulation study to test the type 1 error rates of MultiPhen, CCA, and the univariate approach, described in the text. The elements of the table
show the number of results with P,1e–5 in the scenario described by the corresponding row and column (which give the minor allele frequencies) headers. Since
100000 replicates of SNP-phenotype associations were simulated under the null hypothesis of no association, the expectation for all elements of the table is 1; those
with .1 indicating inflation of the type 1 error rate. Simulations with MAF = 30%, 0.5% were performed on a sample size of N = 5000. For the full results see Figures S1–
S8 and Table S1–S3.
doi:10.1371/journal.pone.0034861.t001
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Empirical Data Example: Lipid Traits in the NFBC1966
Next we describe the application of MultiPhen to lipid traits

(total cholesterol, high and low density lipoprotein, and triglycer-

ides: CHOL, HDL, LDL and TRIG) in the Northern Finland

Birth Cohort 1966 (NFBC1966). Figures 2a and 2b illustrate the 2-

dimensional correlation structure between CHOL and LDL, and

LDL and HDL, respectively. We note from the Friedewald

Formula [17] (in units of mmol/L),

LDL&CHOL{HDL{0:45|TRIG ð1Þ

that variants with an effect on CHOL will correspond to an effect

in the direction of the X-axis in Figure 2a, as well is in the Y = X

direction in Figure 2b; whereas variants with an effect on HDL

correspond to an effect in the direction of the Y = –X direction in

Figure 2a and in the direction of the Y-axis in Figure 2b. Thus,

depending on which variables have been measured, the direction

of the effect may not be along either one of the X or Y axes and

may not be directly along any specific axis of interest. In fact we

suggest that each casual variant may have an effect in a different

direction. MultiPhen tests for variant effects on groups of

correlated phenotypes without making a prior assumption about

the direction of effect. While GWAS to date can be viewed as

having tested for effects in a single direction in the n-dimensional

space of n correlated phenotypes, we propose the use of MultiPhen

to test for effects in any direction when data on multiple correlated

phenotypes are available.

Examining the Power of MultiPhen to Detect Lipid
Associations

A study in 2010 [7] performed separate GWAS analyses on

these four lipid traits (CHOL, LDL, HDL, TRIG) in over 100,000

individuals and discovered 95 independent SNPs associated with

one or more of the traits. Here we exploit this extensive list of

established associations to assess the performance of MultiPhen,

using data from 4476 individuals in the Northern Finland Birth

Cohort 1966 (NFBC1966). We performed single phenotype

analyses and a MultiPhen analysis across the 95 SNPs (genotyped

and imputed) to test for SNP-phenotype associations with the four

lipids (see Methods). For the single phenotype analyses we selected

the minimum P value from the analyses of each of the phenotypes

for each SNP and adjusted it for multiple testing using a ‘‘Nyholt-

Šidák correction’’ [16]. Table S4 shows the phenotype correlation-

matrix for the 4 lipids.

Of the 95 known associated SNPs, 8 showed genome-wide

significance using single phenotype analyses, while a total of 11

SNPs were genome-wide significant under either MultiPhen or the

single phenotype analyses (Table 2). Furthermore, after excluding

the most associated phenotype, MultiPhen still identified 7 SNPs

as genome-wide significant, compared to only 2 significant single

phenotype associations. The difference in P values in this case was

almost uniformly in favour of MultiPhen, and for one SNP the P

value was almost 15 orders of magnitude smaller, and approxi-

mately 5 orders of magnitude smaller for another 3 SNPs. Table 3

provides the regression coefficients underlying the MultiPhen

models in the final column of Table 2. On average these linear

combinations are similar to what we would expect from the
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Figure 1. The power of MultiPhen in different scenarios of effect and correlation between phenotypes. Power results based on
simulations described in the text for MultiPhen (red lines) and the standard single-phenotype approach (black lines). Left panel: causal variant
explains 0.5% of phenotypic variance of both phenotypes. Middle panel: causal variant explains 0.5% on the phenotypic variance of the first
phenotype and 0.1% of the variance in the second phenotype. Right panel: causal variant explains 0.5% of phenotypic variance of the first phenotype
and 0% of the second phenotype.
doi:10.1371/journal.pone.0034861.g001

Figure 2. The correlation structure between pairs of lipids. The
left panel shows the correlation structure between total cholesterol
(CHOL) and low-density lipoprotein (LDL) in 5655 individuals from the
Northern Finland Birth Cohort 1966. Each circle depicts the value of
CHOL (X-axis) and LDL (Y-axis) in mmol/L for each individual. The right
panel shows the correlation structure between low-density lipoprotein
(LDL) and high-density lipoprotein (HDL), in mmol/L, in the same
individuals. The arrows in each plot show the direction of effect of a
variant affecting only CHOL or only HDL, such that the genotypes of
individuals underlying each plotted point are more likely to contain risk
alleles for the labelled lipid moving through the points in the direction
of the arrow. The diagonal arrows are based on the Friedewald Formula
(Friedewald.72). The arrows indicate that effects of variants can be in
very different directions in the 2-dimensional spaces shown; the aim of
modelling and testing linear combinations of phenotypes is to capture
effects in any direction.
doi:10.1371/journal.pone.0034861.g002
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Friedewald Formula (Equation 1). This suggests that MultiPhen is

correctly identifying the linear combination of phenotypes that

best approximates the most associated (unmeasured) phenotype.

This highlights the potential utility in explicitly modelling

combinations of phenotypes. MultiPhen also improves on the

level of significance of the best univariate result when applied to all

four lipids for 4 SNPs, indicating that these 4 SNPs may be

associated with other lipid traits or phenotypes not considered

here.

We also assessed the performance of MultiPhen relative to the

univariate approach over different subsets of our measured lipid

phenotypes, each reflecting hypothetical studies with measure-

ments available only on certain traits, in order to gain further

insight into the relative performance of the two approaches. We

analysed all 3-phenotype combinations of the lipids (4 analyses)

and all 2-phenotype combinations (6 analyses) and compared the

number of genome-wide significant SNPs between MultiPhen

and the univariate analyses (Figure 3 and Tables S5, S6, S7, S8,

Table 2. Results under standard GWAS and MultiPhen approaches for genome-wide significant SNPs.

SNP All 4 phenotypes 3 phenotypes after removing most associated

Best univariate MultiPhen Best univariate MultiPhen

Trait -log10 P" -log10 P Diff. Trait -log10 P1 -log10 P Diff.

rs3764261 HDL 25.6 22.2 –3.3 TRIG 1.3 16 14.7

rs4420638 LDL 12.7 8.9 –3.7 CHOL 8.7 8.2 –0.5

rs629301 LDL 12.2 10.8 –1.4 CHOL 8.2 10.7 2.5

rs964184 TRIG 10.7 8.1 –2.7 HDL 2.6 7.4 4.8

rs1367117 LDL 9.2 7.3 –1.9 CHOL 6.8 7.8 1

rs1532085 HDL 8.8 9.3 0.5 CHOL 1.6 4.4 2.8

rs6511720 LDL 8.4 5.6 –2.7 CHOL 6.2 5.4 –0.9

rs1260326 TRIG 7.8 5.4 –2.3 CHOL 1 2.5 1.5

rs1042034 LDL 6.7 9.6 2.9 TRIG 5.1 10 4.9

rs12678919 TRIG 6.2 7.8 1.5 HDL 3.9 5 1.2

rs174546 LDL 4.9 8.5 3.7 CHOL 3.3 8.9 5.6

" Nyholt-Šidák corrected for 4 comparisons. 1 Nyholt-Šidák corrected for 3 comparisons. Results compare univariate and MultiPhen P values, presented on the -log10
scale for ease of comparison, for all SNPs with genome-wide significant P values (.7.301 on the -log10 scale) from either approach. Genome-wide significant results
shown in bold. The difference in terms of orders of magnitude of the MultiPhen P value on all phenotypes is relative to the most associated univariate phenotype; and
the order of magnitude difference for MultiPhen where the most associated phenotype is excluded is relative to the univariate result also excluding the most associated
phenotype.
doi:10.1371/journal.pone.0034861.t002

Table 3. Most associated linear combinations of phenotypes at genome-wide significant SNPs.

SNP Most associated trait Maximally associated linear combination after removing most associated trait

CHOL LDL HDL TRIG

rs3764261 HDL 1 20.97 – 20.37

rs4420638 LDL 1 – 21.59 20.75

rs629301 LDL 1 – 21.07 20.74

rs964184 TRIG 1 20.87 21.18 –

rs1367117 LDL 1 – 21.38 20.71

rs1532085 HDL 1 20.91 – 20.11

rs6511720 LDL 1 – 20.78 20.31

rs1260326 TRIG 1 20.94 21.14 –

rs1042034 LDL 1 – 23.3 0.47

rs12678919 TRIG 1 21.19 21.93 –

rs174546 LDL 1 – 20.51 21.45

Average (Median) 1 20.94 21.18 20.54

Friedewald expected 1 21 21 20.45

*indicates that the SNP did not have a univariate genome-wide significant P value. Each row indicates the linear combination of phenotypes (given by the
corresponding regression coefficients) which is most associated with the given SNP under the MultiPhen regression, after removing the most associated phenotype.
The regression coefficients have been scaled so that the CHOL coefficient is always equal to one. The last row contains the expected coefficients according to the
Friedewald Formula (Equation 1).
doi:10.1371/journal.pone.0034861.t003

Joint Model of Multiple Phenotypes in GWAS
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S9, S10, S11, S12, S13, S14, S15). Of the 11 analyses performed

in total, MultiPhen produced a larger number of genome-wide

significant SNPs than the univariate approach in 8 analyses and

the same number in 3. While in some examples, the single

phenotype analysis generates P values 2–3 orders of magnitude

smaller than MultiPhen, no univariate SNP-phenotype associa-

tion P values are 4 orders of magnitude or more smaller than the

corresponding MultiPhen result. In contrast, there are 10

MultiPhen P values smaller than the univariate P values by at

least 4 orders. MultiPhen identifies 21% more SNP-phenotype

associations than the univariate approach, with 75 compared to

62 significant associations, relating to 12 SNPs. By combining all

significant univariate and MultiPhen SNPs there are a total of 85

SNP-phenotype associations with P,2.5x10–8 (conservative

Bonferonni correction applied), compared to 62 using the

univariate strategy only. Therefore, based on these empirical

findings, MultiPhen provides a 21% increase in detection of

susceptibility loci if used instead of the single phenotype

approach, and a 37% increase in detection if used in addition

to univariate analyses.

In order to test for false-positive results and assess any

inflation of the test statistic, we applied MultiPhen to the four

lipids genome-wide. The only genome-wide significant findings

were from loci harbouring one of the established 95 lipid SNPs,

confirming no false-positive results in these analyses. The

inflation factor of the test statistic calculated from the

genome-wide MultiPhen results was 1.06, indicating no unusual

inflation of the test statistic. While we did not detect novel

susceptibility loci using MultiPhen in the NFBC1966, this was

not unexpected given that the sample size of Teslovich et al. [7]

that reported the 95 SNPs was ,21 times greater than the

present study.

Discussion

Since the emergence of GWAS in 2007 with two seminal

publications [1], [18], the approach of testing the association

between a genetic variant and phenotype, each one-at-time, has

remained the method of choice. However, despite the develop-

ment of multivariate methods, so far there has been limited

application to GWAS datasets. In this report, we have shown

with both real and extensively simulated data the extent of the

power gains that can be achieved through the multivariate

approach.

We have introduced a new multivariate method, MultiPhen,

which addresses limitations of alternative multivariate methods.

Key advantages of our approach are its computational speed, the

modelling and subsequent availability of the linear combination of

phenotypes most associated with each genotype, and its applica-

tion to both quantitative – regardless of phenotype distribution –

and case-control data.

We demonstrated that the MultiPhen model provides appro-

priate type 1 error rate when applied to both common and rare

variants, non-normal continuous phenotypes and binary pheno-

types. In contrast, CCA [15] and the univariate approach used

here have inflated type 1 error rates when applied to non-normal

continuous phenotypes or binary phenotypes at low frequency

variants. We also demonstrated via application to simulated and

real data that MultiPhen can achieve substantial increases in

statistical power to detect true associations. Simulations show that

Figure 3. Genome-wide significant results from standard GWAS approach and MultiPhen tested on combinations of the lipids
using NFBC1966 data. Each bar shows the number of SNPs reaching genome-wide significance for a given phenotype-combination analysis
(specified by the first letters of each trait, such that CHL refers to an analysis on the CHOL, HDL and LDL), with the SNPs discovered by both the
univariate approach and MultiPhen shown by the white segment of the bar, the SNPs discovered by the univariate approach only shown by the grey
segment, and the SNPs discovered by MultiPhen only illustrated by the black segment. The bars labelled ALL2 and ALL3 combine results across
analyses on all combinations of two and three lipid traits, respectively, while ALL combines the results across the analyses of all 2, 3 and 4
combinations of the traits. A complete breakdown of these results is presented in Tables S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15.
doi:10.1371/journal.pone.0034861.g003
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while power is dependent on the correlation structure of the

phenotypes and the genetic effects on them, and can be marginally

greater for the univariate approach, most of the model space

corresponds to significantly higher power for MultiPhen. We find

that CCA and MultiPhen have almost the same statistical power

when applied to normally distributed phenotypes. The dramatic

gains in power for MultiPhen over the univariate approach when

the genetic effects and phenotypic correlations are discordant,

suggest that MultiPhen may discover causal variants not amenable

to discovery by the univariate approach even with large increases

in sample size. The application of MultiPhen to lipid traits in the

NFBC1966 provides supportive evidence for the performance of

MultiPhen using real data.

By considering all 2, 3, and 4 phenotype combinations of the 4

lipid traits we were able to test empirically the performance of

MultiPhen applied to phenotypes with different correlation

structures, in comparison with the univariate approach. These

results indicate a 21% greater yield of SNP-phenotype associations

when MultiPhen is applied instead of the univariate approach, and

a 37% increased yield over the univariate analysis when significant

univariate and MultiPhen results are combined. However, given

that these analyses relate to a limited number of phenotypes and

significant SNPs, these figures should not be considered accurate

estimates of the general performance of MultiPhen over the

univariate approach, which can only be obtained from extensive

future use on a variety of phenotypes. Our findings on the lipid

data are, however, supportive of the results from our simulation

study in indicating that MultiPhen may lead to greater discovery

when used instead of the univariate approach, and suggest that

applying both approaches and combining results could lead to

even greater discovery.

We consider it likely that causal variants commonly influence

many separately defined phenotypes [19], with protein products

acting as intermediaries in complex causal networks. We suggest

that this most likely applies to correlated phenotypes since these

must share risk factors and most likely have common biological

pathways. We propose that the association between genotype

and an unmeasured protein product, or other unmeasured

mediator or uncharacterised phenotype, may be captured by a

linear combination of measured phenotypes that are affected.

Moreover, we have shown that we can recapitulate the

Friedewald Formula (Equation 1) for the 4 lipid traits studied

here using the average regression coefficient over multiple SNPs.

This strategy may help to refine the definition of existing

phenotypes and also suggest novel phenotypes for further

investigation, thus providing insights into underlying biological

processes and diseases.

An overlap in loci identified by GWAS on different phenotypes

[20], as well as greater availability of data on multiple phenotypes

in GWAS consortia, has led to increased interest in studying

multiple phenotypes together in GWAS [21]. Here we have

introduced a simple and computationally fast method and software

for performing GWAS on multiple phenotypes jointly, suitable for

application to directly genotyped or imputed SNP or CNV data

for association testing with quantitative or case-control pheno-

types. MultiPhen should be considered a discovery tool for

application to multiple correlated phenotypes that makes no prior

assumptions about the nature of the genetic effects on the

phenotypes. Over a wide range of plausible scenarios, MultiPhen

can achieve marked increases in power, both when the genetic

variant affects more than one phenotype and when it affects only a

single phenotype (Figure 1). We propose the use of MultiPhen in

future GWAS on multiple correlated phenotypes as a rapid, user-

friendly and effective means to reveal novel susceptibility loci that

would have been missed by the standard single-phenotype

approach.

Materials and Methods

Ethics Statement
This study was approved by the Ethical Committee of the

Northern Ostrobothnia Hospital District; written, informed

consent was obtained from all participants.

MultiPhen Approach
In the standard GWAS approach, when considering a

quantitative phenotype, a linear regression is usually performed

of phenotype, Y, on genotype, X. We let Yi = {Yi1, …, YiK} denote

the phenotype data corresponding to K phenotypes for an

individual i and Xi = {Xi1, …, XiG} denote their genotype data at

G SNPs, where Xig e {0,1,2}. The regression performed at a SNP,

g, and a phenotype, k, to test for association between the SNP

genotypes and the phenotype is thus:

Yik~akzbgkXigzeigk

where eigk is the residual error assumed to be normally distributed.

The null hypothesis of no association between SNP and genotype

can be tested by performing a t-test on the null hypothesis bgk~0.

In our MultiPhen approach we invert the regression so that the

SNP genotypes, X, become the dependent variable, and the K

phenotypes under study become the predictor variables. The

genotype data is an allele count and is therefore modelled using

ordinal regression; we use proportional odds logistic regression.

This model defines the class probabilities as follows.

P(Xigƒm)~
1

1ze
({agm{

PK

k~1

bgkYik )

At each SNP g = 1,…,G we use a likelihood ratio test to test the

null hypothesis bg1 = … = bgK = 0. This test does not assume

Hardy-Weinberg Equilibrium.

Application to Lipid Trait Data in the NFBC1966
Complete genotype and lipid trait data were available on 4476

individuals (5655 individuals with complete lipid data, used in

Figure 2) from the Northern Finland Birth Cohort 1966

(NFBC1966) across the 95 lipid SNPs established in Teshlovich

et al. [7]. In the NFBC1966, mothers living in the two northern-

most provinces of Finland were invited to participate if they had

expected delivery dates during 1966. At age 31, 5,923 individuals

from the cohort still living in the Helsinki area or Northern

Finland were asked to participate in a detailed biological and

medical examination, from which the genotype and lipid data

derive. Genotypes that were not directly measured were imputed

using IMPUTE [22]. Single phenotype analyses were performed

using linear regression in the MultiPhen package (see below), and

the P values obtained from each analysis at each SNP were

subsequently corrected for multiple testing using a ‘‘Nyholt- Šidák

correction’’ [16] based on the correlation matrix of the lipids

(Table S4); where the number of effective tests is calculated using

the approach taken in Nyholt 2004 [16] and then used to compute

a Šidák corrected P value [23].
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Simulation Study
We tested the MultiPhen model using simulated genotype

and phenotype data. Genotype data was simulated for 5000

individuals assuming a minor allele frequency of 20% and

Hardy-Weinberg Equilibrium. For each individual two contin-

uous phenotypes were simulated given the genotype data,

controlling the heritability of each phenotype and the correla-

tion between phenotypes. The two phenotypes were simulated

from the following models:

Yi1~bG1XizbE1Ei

Yi2~bG2XizbE2Eize

where Xi is the simulated genotype data taking values 0, 1 and

2, Ei , N(0,1) represents a common environmental effect

affecting both phenotypes, and e is a random effect distributed

N(0,s2). Heritability is defined as the proportion of the variance

of the trait due to genetic heterogeneity. According to the above

models the variances of the two traits are given by:

V (Y1)~2p(1{p)b2
G1zb2

E1

V (Y2)~2p(1{p)b2
G2zb2

E2zs2

where p is the allele frequency. Therefore, if we choose parameters

such thatV (Y1)~V (Y2)~1, then the heritability of trait k is

hk~2p(1{p)b2
Gk.

If the traits are centered to both have mean 0, then the

correlation between the traits is:

cor(Y1,Y2)~2p(1{p)bG1bG2zbE1bE2 ð2Þ

To simulate all scenarios in the simulation study we solve for

bE1,bE2 and s2 conditional on V (Y1)~V (Y2)~1 and the desired

correlation (2).

MultiPhen has its worst power when the association of Y2 with X

is explained by Y1 (or vice versa). That is to say, when the residuals

of Y2, regressing out the effect of Y1, are independent of X. If Y
0

i2

are the residuals of Y2 regressed on Y1 for individuals i = 1, …, N,

then:

Y
0
i2~Yi2{Yi1

PN

j~1

Yj1Yj2

PN

j~1

Y 2
j1

ð3Þ

Regressing Y1 and Y2 on X gives:

Yi1~a1zb1Xi ð4Þ

Yi2~a2zb2Xi ð5Þ

Substituting (4) and (5) into (3) gives:

Y
0
i2~a2{a1

PN

j~1

Yj1Yj2

PN

j~1

Y 2
j1

zXi(b2{b1

PN

j~1

Yj1Yj2

PN

j~1

Y 2
j1

):

Therefore Y
0
i2 is independent of Xi when b2~b1

PN

j~1

Yj1Yj2

PN

j~1

Y2
j1

:

For standardised phenotype data, Y
0

i2is independent of Xi when
b2

b1
~cor(Y1,Y2), that is, when the ratio of the genetic effects is

equal to the correlation between the phenotypes.

Binary traits were simulated assuming a classical liability

threshold model. We used the same simulation as for continuous

traits assuming the continuous traits were liability phenotypes. In

this model all individuals with liability phenotypes greater than a

threshold t were assumed to be a case for that trait. Heritability on

the observed scale is given by:

h2
o~

h2
l z2

q(1{q)

Where q is the disease prevalence and z is the height of the

normal pdf at the threshold value t. All correlations on Figures

relating to simulations involving binary traits (Figures S11 and

S12) are with respect to liabilities. Case-control data was simulated

by randomly sampling cases and controls from a large simulated

population.

MultiPhen Software
The MultiPhen software was written in the R statistical

language. R users can download and install MultiPhen from

CRAN (http://cran.r-project.org/) or any CRAN mirror, with

documentation available here:

http://cran.r-project.org/web/packages/MultiPhen/

MultiPhen.pdf. Alternatively, a Java executable can be download-

ed from http://www1.imperial.ac.uk/medicine/people/l.coin/.

Supporting Information

Figure S1 Behaviour under the null: without outliers,
MAF = 30%. QQ-plots, corresponding to MultiPhen, CCA and

the univariate approach (Nyolt-Šidák corrected) applied to data

simulated under the null hypothesis of no SNP-phenotype effects

(100000 replicates for each), sample size N = 5000, with MAF of

simulated SNPs of 30% and 2 normally distributed phenotypes

(without outliers) and correlations between the phenotypes of 0,

0.5 and 0.9. The plots show that all three methods have an

appropriate null distribution, even when the correlation between

the phenotypes is high.

(TIFF)

Figure S2 Behaviour under the null: without outliers,
MAF = 0.5%. QQ-plots, corresponding to MultiPhen, CCA and

the univariate approach (Nyolt-Šidák corrected) applied to data

simulated under the null hypothesis of no SNP-phenotype effects

(100000 replicates for each), sample size N = 5000, with MAF of

simulated SNPs of 0.5% and 2 normally distributed phenotypes

(without outliers) and correlations between the phenotypes of 0,

0.5 and 0.9. The plots show that all three methods have an

Joint Model of Multiple Phenotypes in GWAS
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appropriate null distribution, even when the correlation between

the phenotypes is high.

(TIFF)

Figure S3 Behaviour under the null: with outliers,
MAF = 30%. QQ-plots, corresponding to MultiPhen, CCA and

the univariate approach (Nyolt-Šidák corrected) applied to data

simulated under the null hypothesis of no SNP-phenotype effects

(100000 replicates for each), sample size N = 5000, with MAF of

simulated SNPs of 30% and 2 phenotypes where one has an

outlier distribution and correlations between the phenotypes of 0,

0.5 and 0.9. The plots show that all three methods have an

appropriate null distribution, even when the correlation between

the phenotypes is high.

(TIFF)

Figure S4 Behaviour under the null: with outliers,
MAF = 0.5%. QQ-plots, corresponding to MultiPhen, CCA

and the univariate approach (Nyolt-Šidák corrected) applied to

data simulated under the null hypothesis of no SNP-phenotype

effects (100000 replicates for each), sample size N = 5000, with

MAF of simulated SNPs of 0.5% and 2 phenotypes where one has

an outlier distribution and correlations between the phenotypes of

0, 0.5 and 0.9. The plots show that while MultiPhen has an

appropriate null distribution, even when the correlation between

the phenotypes is high, the other two approaches have a highly

inflated null distribution, which would produce an extremely high

type 1 error rate, irrespective of the correlation between the

phenotypes.

(TIFF)

Figure S5 Behaviour under the null: with outliers,
MAF = 5% (N = 200). QQ-plots, corresponding to MultiPhen,

CCA and the univariate approach (Nyolt-Šidák corrected) applied

to data simulated under the null hypothesis of no SNP-phenotype

effects (100000 replicates for each), sample size N = 200, with

MAF of simulated SNPs of 5% and 2 phenotypes where one has

an outlier distribution and correlations between the phenotypes of

0, 0.5 and 0.9. The plots show that while MultiPhen has an

appropriate null distribution, even when the correlation between

the phenotypes is high, the other two approaches have an inflated

null distribution. Thus CCA and the univariate approach can have

a high type 1 error rate for common, as well as rare, variants.

(TIFF)

Figure S6 Behaviour under the null: binary phenotypes,
MAF = 30%. QQ-plots, corresponding to MultiPhen, CCA and

the univariate approach (Nyolt-Šidák corrected) applied to case-

control study data simulated under the null hypothesis of no SNP-

phenotype effects (100000 replicates for each), with sample size

N = 5000 such that the first phenotype has 50% cases and controls

whereas the second phenotype has 10% cases and 90% controls

(case-control status defined according to the simulated values of

underlying normally distributed continuous phenotypes). The

MAF of the simulated SNPs is 30% and the correlations between

the phenotypes (on a liability scale) are 0, 0.5 and 0.9. The plots

show that all three methods have an appropriate null distribution

when there are no SNP-phenotype effects, even when correlation

between the phenotypes is high.

(TIFF)

Figure S7 Behaviour under the null: binary phenotypes,
MAF = 0.5%. QQ-plots, corresponding to MultiPhen, CCA and

the univariate approach (Nyolt-Šidák corrected) applied to case-

control study data simulated under the null hypothesis of no SNP-

phenotype effects (100000 replicates for each), with sample size

N = 5000 such that the first phenotype has 50% cases and controls

whereas the second phenotype has 10% cases and 90% controls

(case-control status defined according to the simulated values of

underlying normally distributed continuous phenotypes). The

MAF of the simulated SNPs is 0.5% and the correlations between

the phenotypes (on a liability scale) are 0, 0.5 and 0.9. The plots

show that while MultiPhen has an appropriate null distribution,

even when the correlation between the phenotypes is high, the

other two approaches have an inflated null distribution.

(TIFF)

Figure S8 Behaviour under the null: binary phenotypes,
MAF = 5% (N = 200). QQ-plots, corresponding to MultiPhen,

CCA and the univariate approach (Nyolt-Šidák corrected) applied

to case-control study data simulated under the null hypothesis of

no SNP-phenotype effects (100000 replicates for each), with

sample size N = 200 such that the first phenotype has 50% cases

and controls whereas the second phenotype has 10% cases and

90% controls (case-control status defined according to the

simulated values of underlying normally distributed continuous

phenotypes). The MAF of the simulated SNPs is 5% and the

correlations between the phenotypes (on a liability scale) are 0, 0.5

and 0.9. The plots show that while MultiPhen has an appropriate

null distribution, even when the correlation between the

phenotypes is high, the other two approaches have an inflated

null distribution.

(TIFF)

Figure S9 The power of MultiPhen in scenarios where
the effect on the phenotypes is in the opposite direction.
Power results based on simulations described in the text for

MultiPhen (red lines) and the standard single-phenotype approach

(black lines). Left panel: causal variant explains 0.5% of

phenotypic variance of both phenotypes but in opposite directions.

Right panel: causal variant explains 0.5% of the phenotypic

variance of the first phenotype and 0.1% of the variance in the

second phenotype in the opposite direction of the effect on the

first. The X-axis corresponds to the correlation (Pearson’s

correlation coefficient, r) between the phenotypes.

(TIFF)

Figure S10 The power of MultiPhen applied to two,
three, five and ten phenotypes. Power results based on

simulations described in the text for MultiPhen (red lines) and the

standard single-phenotype approach (black lines), for 2 (bold), 3

(dashed), 5 (dotted), and 10 (dashed/dotted) phenotypes. Left

panel: causal variant explains 0.5% of phenotypic variance of each

phenotype. Middle panel: causal variant explains 0.5% of the

phenotypic variance of the first phenotype and 0.1% of the

variance in each of the other phenotypes. Right panel: causal

variant explains 0.5% of phenotypic variance of the first

phenotype and 0% of each of the other phenotypes. The X-axis

corresponds to the correlation (Pearson’s correlation coefficient, r)

between all pairs of phenotypes (that is, the correlation between

each pair of phenotypes is the same at each point of the X-axis).

The results are truncated when the pairwise correlations are low

for multiple phenotypes because the corresponding correlation

matrices of the phenotypes are not positive definite and so the

multivariate gaussian distributions cannot be sampled via the

Cholesky decomposition that we perform.

(TIFF)

Figure S11 The power of MultiPhen applied to two case-
control phenotypes. Power results based on simulations

described in the text for MultiPhen (red lines) and the standard

single-phenotype approach (black lines) applied to two indepen-

dent case-control studies, each with 1000 cases and 1000 controls

Joint Model of Multiple Phenotypes in GWAS
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where case-control status is used as the predictor variables.

Heritability on the liability scale is 0.1% for one phenotype and

0.1% (left panel), 0.05% (middle panel) and 0% (right panel) for

the other phenotype. Solid and dashed are for disease prevalences

of 1% and 0.5%, respectively, for both studies. Correlation on the

X-axis is with respect to the liability scale.

(TIFF)

Figure S12 The power of MultiPhen applied to one case-
control and one quantitative phenotype. The power of

MultiPhen applied to a case-control study with 1000 cases and 1000

controls using case-control status and a single measured quantitative

phenotype as predictor variables. Heritability of the continuous

phenotype is 0.2%; heritability of the binary trait on the liability

scale is: 0.5% (a), 0.1% (b) and 0% (c). Solid and dashed lines are for

disease prevalence of 1% and 0.5% respectively. Correlation on the

X-axis is with respect to the liability scale.

(TIFF)

Figure S13 The power of CCA, compared to MultiPhen
and the univariate approach. Power results based on

simulations described in the text for CCA (blue), MultiPhen (red)

and the single-phenotype approach (black), when applied to two

continuous normally distributed phenotypes where the causal

variant explains 0.5% of the phenotypic variance of the first

phenotype and 0.1% of the variance of the other phenotype, with

the simulated SNPs having MAF = 30%. The X-axis corresponds to

the correlation (Pearson’s correlation coefficient, r) between the

phenotypes. The difference in statistical power between CCA and

MultiPhen in this scenario is reflective of the difference in power

when the effect of the causal variants on the phenotypes differs and

for different allele frequencies of the causal variant (data not shown).

(TIFF)

Table S1 Behaviour under the null: r = 0. The table relates

to the simulation study to test the behaviour of the different methods

under the null hypothesis of no association, described in the text and

presented in Figures S1–S8. The elements of the table correspond to

the number of results with P values smaller than that of the

corresponding column header (expected number given in the

second row of the column header), with the simulation scenario

given in the left-hand column. This table gives the results for all

simulations where the two phenotypes have a correlation of r = 0.

(PDF)

Table S2 Behaviour under the null: r = 0.5. The table

relates to the simulation study to test the behaviour of the different

methods under the null hypothesis of no association, described in

the text and presented in Figures S1–S8. The elements of the table

correspond to the number of results with P values smaller than that

of the corresponding column header (expected number given in the

second row of the column header), with the simulation scenario

given in the left-hand column. This table gives the results for all

simulations where the two phenotypes have a correlation of r = 0.5.

(PDF)

Table S3 Behaviour under the null: r = 0.9. The table

relates to the simulation study to test the behaviour of the different

methods under the null hypothesis of no association, described in

the text and presented in Figures S1–S8. The elements of the table

correspond to the number of results with P values smaller than that

of the corresponding column header (expected number given in

the second row of the column header), with the simulation

scenario given in the left-hand column. This table gives the results

for all simulations where the two phenotypes have a correlation of

r = 0.9.

(PDF)

Table S4 Correlation matrix for the 4 lipids (CHOL,
TRIG, HDL, LDL) based on the NFBC1966 data. The

upper triangular elements of the correlation matrix show the

pairwise Pearson’s correlation coefficient (r) between each pair of

the traits: total cholesterol (CHOL), triglycerides (TRIG), high-

density lipoprotein (HDL) and low-density lipoprotein (LDL).

(PDF)

Table S5 Results under standard GWAS and MultiPhen
approaches for genome-wide significant SNPs: CHOL-
TRIG-HDL-LDL combination. Results compare univariate

and MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S6 Results under standard GWAS and MultiPhen
approaches for genome-wide significant SNPs: TRIG-
HDL-LDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S7 Results under standard GWAS and MultiPhen
approaches for genome-wide significant SNPs: CHOL-
HDL-LDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S8 Results under standard GWAS and MultiPhen
approaches for genome-wide significant SNPs: CHOL-
TRIG-LDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S9 Results under standard GWAS and MultiPhen
approaches for genome-wide significant SNPs: CHOL-
TRIG-HDL combination. Results compare univariate and
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MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S10 Results under standard GWAS and Multi-
Phen approaches for genome-wide significant SNPs:
CHOL-TRIG combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S11 Results under standard GWAS and Multi-
Phen approaches for genome-wide significant SNPs:
CHOL-HDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S12 Results under standard GWAS and Multi-
Phen approaches for genome-wide significant SNPs:
CHOL-LDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S13 Results under standard GWAS and Multi-
Phen approaches for genome-wide significant SNPs:
TRIG-HDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S14 Results under standard GWAS and Multi-
Phen approaches for genome-wide significant SNPs:
TRIG-LDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)

Table S15 Results under standard GWAS and Multi-
Phen approaches for genome-wide significant SNPs:
HDL-LDL combination. Results compare univariate and

MultiPhen P values, presented on the -log10 scale for ease of

comparison, for all SNPs with genome-wide significant P values

(.7.301 on the -log10 scale) from either approach. Genome-wide

significant results shown in bold (only the smallest univariate result

highlighted since this corresponds to the P value for the group of

single phenotype analyses. Note, all univariate results are Nyholt-

Šidák corrected). The difference in terms of orders of magnitude of

the MultiPhen P value and the smallest univariate P value for each

SNP is given in the final column.

(PDF)
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