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Abstract

Genetic studies often collect multiple correlated traits, which could be analyzed jointly to increase 

power by aggregating multiple weak effects and provide additional insights into the etiology of 

complex human diseases. Existing methods for multiple trait association tests have primarily 

focused on common variants. There is a surprising dearth of published methods for testing the 

association of rare variants with multiple correlated traits. In this paper, we extend the commonly 

used sequence kernel association test (SKAT) for single trait analysis to test for the joint 

association of rare variant sets with multiple traits. We investigate the performance of the 

proposed method through extensive simulation studies. We further illustrate its usefulness with 

application to the analysis of diabetes-related traits in the Atherosclerosis Risk in Communities 

(ARIC) Study. We identified an exome-wide significant rare variant set in the gene YAP1 worthy 

of further investigations.
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1 Introduction

More and more large cohort studies have conducted or are conducting genome-wide 

association studies (GWAS) to reveal the genetic components of many complex human 

diseases. These large cohort studies often collected a broad array of correlated phenotypes 

that reflect common physiological processes. By jointly analyzing these correlated traits, we 

can gain more power by aggregating multiple weak effects and shed light on the 

mechanisms underlying complex human diseases (Solovieff et al., 2013). We propose to 

study multivariate test statistics to detect the joint association of a rare variant set with 

multiple correlated continuous traits.
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Many methods have been developed for testing the association of common variants with 

multiple traits (see Ferreira and Purcell, 2009; Liu et al., 2009b; Yang et al., 2010; 

Rasmussen-Torvik et al., 2010; Avery et al., 2011; OReilly et al., 2012; Maity et al., 2012; 

van der Sluis et al., 2013; He et al., 2013; Schifano et al., 2013; Wu and Pankow, 2015; Hua 

and Ghosh, 2015, e.g.). In GWAS, identified common variants only explained a small 

proportion of the phenotypic variance for most complex traits studied to date. Manolio et al. 

(2009) have suggested that rare variants could contribute substantially to missing 

heritability. Individual rare variant based tests typically lack power due to low minor allele 

frequencies. A commonly used rare variant analysis approach is the gene-level association 

test that tests the joint effects of rare variants within a gene to enrich the association signal. 

Two commonly used rare variant set analyses are the burden test (see Morgenthaler and 

Thilly, 2007; Madsen and Browning, 2009; Morris and Zeggini, 2010; Price et al., 2010; Lin 

and Tang, 2011, e.g.) and variance component score test (see Wu et al., 2010; Neale et al., 

2011; Wu et al., 2011; Lee et al., 2012, e.g.). The burden test works well for variants with 

similar effects and could lose substantial power with both protective and deleterious 

variants. The sequence kernel association test (SKAT, Wu et al., 2011) is based on the 

variance component score test and works well under various combinations of protective and 

deleterious variants, and is the most widely used approach for rare variant set association 

tests.

Existing methods for multi-trait association test have primarily focused on the common 

variants. There is a surprising dearth of published methods for analyzing rare variant set 

association with multiple traits. In this paper, we extend the commonly used SKAT for 

single trait analysis to test for the joint association of rare variant set with multiple 

continuous traits. We investigate the performance of the proposed method through extensive 

simulation studies. We further illustrate its usefulness with application to the analysis of 

diabetes-related traits in the Atherosclerosis Risk in Communities (ARIC) Study.

2 Methods

Consider n unrelated individuals sequenced in a region with m rare variants and K measured 

continuous traits. For individual i = 1, …, n, let Yi = (yi1, …, yiK)T denote the K continuous 

traits, Xi = (xi1, …, xip) the p covariates (including the intercept) to be adjusted, and Gi = 

(gi1, …, gim) the genotypes (number of minor alleles or imputed dosage) for the m variants. 

Here for simplicity we have assumed a common set of covariates for all traits. The following 

methods can be readily adapted to the case of differing covariates.

We analyze yik marginally with a normal distribution with mean μik = Xiαk + Giβk and 

variance , where αk = (α1k, …, αpk)T and βk = (β1k, …, βmk)T are coefficient vectors of 

length p and m respectively. Denote the correlation matrix of Yi as Σ = (ρkl), where ρkl = 

Cor(yik, yil). The joint association of rare variant set is testing H0 : β1 = … = βK = 0 versus 

Ha : βjk ≠ 0 for some j, k.
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2.1 Multi-trait sequence kernel association test

For the j-th variant, we first show that its score statistics for testing βjk across different traits 

have a correlation structure determined by the trait covariance matrix. Denote 

 as the n × p design matrix, and the associated hat matrix as H = 

X(XTX)−1 XT.

Consider testing the association of the j-th variant and k-th trait, j = 1, …, m, k = 1, …, K. 

We regress the j-th variant and k-th trait on the covariate X, and define the corresponding 

predicted value as , and 

. Denote , j = 1, …, m, and the 

correlation of genotype residuals for the j-th and l-th variant as

which can be interpreted as the (adjusted) linkage disequilibrium (LD, genotype correlation 

after adjusting for covariates). For rare variants, the LD is typically small. Define a m × m 

(adjusted) LD matrix R = (τjτlrjl), j = 1, …, m, l = 1, …, m.

We can check that the score statistic for testing βjk is proportional to 

 (up to a scale parameter, the estimated variance ). We can 

further show that (see Appendix for details)

Therefore for the same trait, score statistics of different variants are dependent with 

correlations reflecting their adjusted LD. For the same variant, their score statistics across 

different traits reflect the trait correlations. As for different variants and different traits, the 

correlation of their score statistics is the product of the trait correlation and adjusted variant 

LD. Therefore for rare variant set with small LD, the correlation of score statistics involving 

any two different variants is typically small.

In the same spirit as the SKAT for association test of single trait, we propose the following 

multi-trait sequence kernel association test for the joint effects of variant set (denoted as 

MSKAT)

(1)

where wj is a pre-specified weight (typically determined by the variant MAF; see the 

simulation section), and Sj = (sj1, …, sjK)T with , k = 1, …, K. Here we have 
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standardized the score statistics based on the trait variation, and  and  are all 

estimated under the null model

Define a K × m matrix S = (S1, …, Sm). The MSKAT statistic can be written as 

, where W = diag(w1, …, wm), ⊗ means the matrix 

Kronecker product, and vec() is the vector operator, which stacks the columns of a matrix 

into a vector.

Alternatively we can consider summing over the SKAT statistics for individual trait

where IK denotes the K × K identity matrix.

A closely related approach is the multivariate kernel machine regression (MKMR) proposed 

by Maity et al. (2012) and further studied at Hua and Ghosh (2015). MKMR has been 

mainly studied for testing common variant set association. By incorporating variant weight, 

MKMR can be readily generalized to test rare variant set association. Both MKMR and the 

proposed Q/Q′ are quadratic functions of the multivariate outcomes, and hence their 

significance values can all be analytically and quickly computed based on the mixture of 

chi-square distributions. For Q/Q′, we have standardized the outcomes and worked on the 

individual trait-variant score statistics (hence implicitly using the linear kernel). While the 

MKMR has chosen to model the unscaled outcomes directly, construct the quadratic test 

statistic assuming a different working covariance matrix, and can use general kernel matrix 

for association test.

2.2 Significance p-value calculation

In the Appendix we show that the asymptotic null covariance of vec(S) is , and both 

Q and Q′ can be derived as a variance component score test under some working linear 

mixed effects model. Both Q and Q′ are constructed as quadratic functions of vec(S), and 

under null both Q and Q′ asymptotically follow a weighted sum of independent 1 degree of 

freedom (1-DF) chi-square distributions. For Q, the weights equal to λkj, where λkj = λj, k = 

1, …, K, j = 1, …, m, and (λ1, …, λm) are the eigen values of matrix W RW. For Q′, the 

weights equal to λjγk, j = 1, …, m, k = 1, …, K, where (γ1, …, γK) are the eigen values of .

We can quickly compute the significance p-values of Q and Q′ without the need of intensive 

permutations using a mix of Davies' method (Davies, 1980), and a modified scaled chi-

square distribution approximation method of Liu et al. (2009a) following Wu et al. (2011); 

Lee et al. (2012), or the saddlepoint approximation method (Kuonen, 1999) following Chen 

et al. (2014); Wu et al. (2015).
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3 Results

3.1 Simulation studies

We conduct simulation studies to investigate the performance of the proposed MSKAT 

statistics. For comparison, we included the Bonferroni corrected minimum p-value based on 

the individual trait SKAT significance p-values (denoted as Pmin), and the MKMR using 

the variant weighted linear kernel.

We simulated 1000 individuals and considered two covariates: a standard normal covariate 

X1, and a binary ancestry indicator X2 with Pr(X2 = 1) = 0.5. We consider testing K = 4 

related traits with a compound-symmetry correlation matrix: Y1 = 1 + 0.5X1 + 0.5X2 + η1 + 

ε1, Y2 = 1 + X1 + X2 + η2 + ε2, Y3 = 1 + 0.5X1 + 0.5X2 + η3 + ε3, and Y4 = 1 + X1 + X2 + η4 + 

ε4, where (ε1, ε2, ε3, ε4) are zero-mean normal with variances ( , , , ) 

and correlation ρ, and (η1, η2, η3, η4) are contributions from the set of rare variants, which 

are simulated as follows.

Using a calibrated coalescent model (Schaffner et al., 2005), we first generated 10,000 

European-like haplotypes of length 1000 kb. Each time we randomly pair the haplotypes to 

simulate 1000 individuals. We study those rare variants with MAF ≤ 0.01 in a randomly 

selected gene region of length 10 kb, denoted as (G1, …, Gm). We model the rare variant 

contribution to disease risk as , k = 1, …, K. For all methods, we assign the 

variant weights following Wu et al. (2011), which are the computed beta distribution density 

function with parameters 1 and 25 at the rare variant MAF.

We used 10 million experiments under the null to evaluate the type I error, and 10,000 

experiments under various combinations of βkj to evaluate the power. We conducted 

simulations for ρ = (0.2, 0.5, 0.8). We evaluated the type I error at the nominal significance 

level α = 10−5, 10−4, and 10−3, by setting all βkj = 0. We evaluated the power under various 

combinations of βkj. For each trait, we separately set their βkj as follows. Each time we 

randomly selected θ proportion of rare variants and set their |βkj| = −d log10(pj), where pj is 

the rare variant MAF. The other null rare variants have zero coefficients. We have assumed 

that rarer variants have larger effect sizes. We conducted simulations for (1) θ = 0.25, d = 

0.25, (2) θ = 0.5, d = 0.2, (3) θ = 0.75, d = 0.15. They correspond to regression coefficients 

of 0.5, 0.4 and 0.3 for MAF=0.01 respectively. The signs of βkj were randomly set as 1 or 

−1. We also conducted simulations when all βkj's have the same signs (see supplementary 

materials for complete details). We conducted simulations for four scenarios: each time only 

the first L traits were associated with the rare variant set, L = 1, 2, 3, 4. Intuitively in the first 

scenario (L = 1), where only the first trait is associated with the rare variant set, we expect 

that the minimum p-value based approach or testing the first trait alone will have good 

performance. But we will show that by simultaneously testing correlated null traits, the 

proposed MSKAT could actually improve the detection power compared to testing the first 

trait alone. When there are multiple correlated traits that are associated with the rare variant 

set, the proposed MSKAT could offer much improved detection power than the minimum p-

value based approach.
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Figure 1 to 3 show the QQ plots of null significance p-values for all methods under different 

trait correlation ρ. Table 1 summarizes the estimated type I errors under different 

significance levels. Overall we can see that the Type I errors are well controlled under all 

considered scenarios for all methods. The Pmin is based on the Bonferroni corrected 

significance level and tends to be very conservative under strong trait dependence (ρ = 0.8), 

while the MKMR, Q and Q′ have generally more consistent performance with different trait 

correlations.

Table 2, 3, 4, and 5 summarize the power under significance level θ = 10−4 for L = 1, 2, 3, 4 

respectively. When only the first trait is associated with the rare variant set (Table 2), Pmin 

performs better than MKMR, Q and Q′ under weak trait correlation (ρ = 0.2). The MKMR 

and MSKAT statistic Q could benefit from increased trait correlations, and offer much 

improved power by incorporating strongly correlated null traits.

The statistic Q′ ignored the trait dependence by directly summing over individual trait 

SKAT statistics. Overall we can see that it suffered power loss with increasing trait 

correlations. The minimum p-value based approach Pmin had nearly constant power across 

different trait correlations.

When there are multiple correlated traits that are associated with the rare variant set (Table 

3, 4, and 5), the MSKAT statistic Q had the overall best performance. Overall we can see 

that Q′ had reduced power with increasing trait correlations, and the Pmin had nearly 

constant power across different trait correlations. Both MKMR and the MSKAT statistic Q 

accounted for the trait dependence, and had improved power with increasing trait 

correlations.

Overall we can see that the proposed MSKAT statistic Q is an attractive approach with good 

power across a wide range of alternatives.

An interesting scenario is one in which only the first trait Y1 is associated with the rare 

variant set and all the others are null traits (L = 1). Stephens (2013) and Wu and Pankow 

(2015) have reported that joint testing by incorporating a correlated null trait could improve 

the power for testing association of common variant. Table 6 compared the SKAT based 

rare variant set testing of Y1 alone versus the joint multivariate testing under previous 

simulation settings. We can see that jointly testing highly correlated traits could have greater 

power over testing Y1 alone. In general both MKMR and the proposed MSKAT statistic Q 

could benefit from the trait correlations to largely improve the detection power. The 

minimum p-value based approach is largely unaffected by the trait correlations.

3.2 ARIC GWAS study

The Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators, 1989) is a 

multi-center prospective investigation of atherosclerotic disease. Men and women aged 45–

64 years at baseline were recruited from four U.S. communities: Forsyth County, North 

Carolina; Jackson, Mississippi; suburban areas of Minneapolis, Minnesota; and Washington 

County, Maryland. A total of 15,792 individuals participated in the baseline examination in 

1987–1989. The vast majority of ARIC participants are of European (73%) or African 
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ancestry (26%). We applied the proposed MSKAT and other competing methods in ARIC to 

test for association between diabetes-related traits and rare variants in each gene. Genotypes 

were obtained from the Illumina HumanExome BeadChip (Grove et al., 2013), which has 

information on 247,870 variants. We jointly analyzed fasting (≥ 8 hr) glucose levels 

measured at four visits each approximately three years apart in 5866 non-diabetic white 

participants. The ARIC Study design and methods for measurement of plasma glucose and 

other covariates have been described previously (Rasmussen-Torvik et al., 2010). The 

glucose levels had an average correlation of 0.55 between visits. We applied an additive 

genetic model and adjusted for age, gender and study center (population indicators).

We included rare variants with the minor allele counts larger than 1 and the MAF less than 

0.01. In total we analyzed 12,439 rare variant sets in the exome-wide scan for glucose levels. 

We set the exome-wide significance level as 4.0 × 10−6, which is the Bonferonni corrected 

significance level for the total number of tested rare variant sets. When analyzing glucose at 

each visit separately, we did not identify any significant rare variant set at an exome-wide 

significance level. When the 4 visits were analyzed jointly, the MSKAT Q identified a 

significant set with two rare variants in the gene YAP1 (p-value = 2.4 × 10−6) that passed 

exome-wide significance. By contrast, the Q′, Pmin and MKMR tests did not identify any 

significant rare variant set. For the gene YAP1, Q′ reported a p-value of 8.8 × 10−3, MKMR 

reported a p-value of 1.5 × 10−4, and the SKAT p-values for the four measures were 0.007, 

0.006, 0.216, and 0.102 respectively. The two rare YAP1 variants (rs61746398 and 

rs112417656) have 6 and 28 alleles detected in the samples respectively, and their estimated 

regression coefficients (expressed in mg/dL per copy of the minor allele) and associated p-

values (listed in parentheses) at four visits are −5.0 (0.123), −11.0 (0.001), −2.7 (0.473), 

−11.6 (0.001) for rs61746398, and 4.0 (0.008), −3.8 (0.020), −2.3 (0.190), −1.2 (0.487) for 

rs112417656. Overall the rare variant effects exhibit some heterogeneity across four visits.

YAP1 is a potent oncogene and known to play a role in the development and progression of 

multiple cancers (Wu et al., 2010; Chen et al., 2013; Dixit et al., 2014). Common variants in 

YAP1 are associated with polycystic ovary syndrome (PCOS) (Louwers et al., 2013), an 

obesity-related endocrine disorder sharing similar epidemiological and patho-physiological 

features with type 2 diabetes. Among Han Chinese PCOS patients, the risk genotype for one 

of these common YAP1 variants (rs11225161) was also associated with higher blood glucose 

30 min and 60 min after an oral glucose tolerance test (Li et al., 2012). Further research is 

needed on the possible role of identified rare variants in YAP1 in glucose metabolism.

4 Discussion

In the application, we have analyzed the multiple measures of fasting glucose levels over 

time as an illustration example. As suggested in our extensive simulation studies, the 

proposed methods could be useful for different correlated traits (for example, BMI and waist 

circumference). In our simulations, we have assumed positive correlations for traits. Since 

the sequence kernel association test and the proposed methods are all quadratic forms of the 

score statistics, they are invariant to any location and scale transformations of the outcomes. 

Therefore we expect that the same conclusions will hold for traits with negative correlations 

(for example, HDL and LDL).
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In this paper we have focused on the joint analysis of multiple continuous traits. Our results 

have shown that joint association test can improve the variant detection power even when 

jointly testing additional strongly correlated null traits. It will be interesting to generalize the 

methods to study the joint test of mixed outcomes, which analytically and computationally 

are more challenging.

We have implemented the proposed methods in R programs posted at http://www.umn.edu/

~baolin/research/mskat_Rcode.html. The proposed methods are very easy to program, and 

the implementations are extremely efficient: the significance p-values are analytically and 

quickly computed without the need of intensive permutation or random sampling. Figure 4 

compares the MKMR and the proposed methods for their average CPU sec used to compute 

significance p-values for rare variant sets on a single Linux workstation with 2.5 GHz CPU 

and 24 GB memory. We follow the previous simulation setup with two covariates and four 

correlated traits (ρ = 0.5). We consider two sample sizes: n = 1000 and n = 5000 samples; 

and three variant set sizes: 25, 50 and 100 variants in each variant set. The MKMR does not 

scale well with the sample size and is using significantly more time than the proposed 

methods. Here we report the average time for one variant set using MKMR, and the average 

time for 1000 variant sets using the proposed methods. Overall we can see that both methods 

roughly scale linearly with the variant set size, and the proposed methods are very efficient 

and many orders of magnitude faster than MKMR.

In summary, we recommend the proposed MSKAT statistic Q as a complementary approach 

to enhancing the detection power of rare variant set by jointly testing multiple correlated 

traits, which were often collected in most genetic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Covariance of score statistics

Consider the score statistic . Denote P = In − H, where In is a n × n 

identify matrix. Let , . Using matrix notation, the 
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score statistics can be written as . Therefore , 

and

and hence

We estimate , and 

.

Variance component score test for multi-trait association

Denote the response matrix Y = (Y1, …, Yn) of dimension K × n. We model Yi = (Xiα)T + 

(Giβ)T + ϵi, where α = (α1, …, αK) and β = (β1, …, βK) are coefficient matrix of dimension p 

× K and m × K respectively. For simplicity of notation, we assume that responses have been 

standardized, i.e., ϵi ~ N(0, Σ).

Denote the vector operator as vec(), which stacks the columns of a matrix into a vector. 

Assume that , where B is a pre-defined matrix of dimension (mK)×

(mK). Then testing the joint effects of rare variant reduces to testing .

Denote  and E = (ϵ1, …, ϵn). We have Cov(vec(E)) = In ⊗ Σ, and Y = 

(Xα)T + βTG + E. Note that we can write vec(βTG) = (GT ⊗ IK)vec(βT), hence 

. Denote A = Cov[vec(Y)]. We can check 

that

and E[vec(Y)] = vec((Xα)T). Therefore the log likelihood is proportional to
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Note that . Therefore the score statistic 

for testing  is proportional to

where , and  and  are obtained under the null model by solving

which can be solved by performing K separate linear regression models and then estimating 

Σ by the residual covariance matrix. Denote the projection matrix P = In − X(XTX)−1XT. We 

can check that .

Note that , and . Therefore

Denote S = Y PGT. Note that 

. And hence

We can choose , where W = diag(w1, …, wm) is a diagonal matrix of pre-

defined weights assigned to each variant. Here we assume a priori that the regression 

coefficients for a given variant have the same dependence structure as the covariance of the 

traits, and regression coefficients across different variants are independent. Then we can 

derive the proposed MSKAT statistic

If we choose , we have
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Asymptotic p-value computation

Note that

Therefore vec(S) follows a multivariate normal distribution with zero null mean and 

asymptotical null variance

We can further check that , and 

. Therefore for Q and Q′, their null 

distributions are weighted averages of 1-DF chi-square distributions, with weights being the 

eigen values of (W RW) ⊗ IK and  respectively. For Kronecker product 

matrix, their eigen values can be computed from the crossproduct of individual matrix eigen 

values.
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Figure 1. 
QQ plots of null significance p-values for all methods: ρ = 0.2

Wu and Pankow Page 14

Genet Epidemiol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
QQ plots of null significance p-values for all methods: ρ = 0.5
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Figure 3. 
QQ plots of null significance p-values for all methods: ρ = 0.8
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Figure 4. 
Average CPU sec used to analyze variant sets: the x-axis shows the variant set size, the y-

axis shows the average CPU sec used (over 10 simulations); the first plot is for computing 

both p-values of Q and Q′ for 1000 variant sets, the other two plots are for computing p-

values of MKMR for one variant set. To save computation time and make comparison fair, 

we have used the same analytical approach as the proposed methods to compute significance 

p-values for MKMR instead of the empirical random sampling approach as in Maity et al. 

(2012).
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Table 1

Type I errors (divided by the nominal significance level α) of multivariate tests for four continuous traits with 

pairwise correlation ρ: Q is the proposed MSKAT statistic incorporating the trait correlation, Q′ is the sum of 

individual trait SKAT statistics, Pmin is the Bonfferoni corrected minimum p-value based on the individual 

trait SKAT significance p-values, and MKMR is the multivariate kernel machine regression approach.

ρ 0.2 0.5 0.8

α 10−5 10−4 10−3 10−5 10−4 10−3 10−5 10−4 10−3

Q 0.80 0.82 0.89 0.80 0.82 0.89 0.80 0.82 0.89

Q ′ 0.86 0.84 0.90 0.94 0.86 0.91 0.94 0.87 0.91

Pmin 0.70 0.81 0.89 0.77 0.82 0.88 0.77 0.70 0.73

MKMR 0.88 0.89 0.93 0.91 0.89 0.93 0.88 0.90 0.93
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Table 2

Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is the proposed MSKAT 

statistic incorporating the trait correlation, Q′ is the sum of individual trait SKAT statistics, Pmin is the 

Bonferroni corrected minimum p-value based on the individual trait SKAT significance p-values, and MKMR 

is the multivariate kernel machine regression approach. Only the first trait is associated with the rare variant 

set (L = 1). The causal rare variant proportion is θ and their regression coefficient is set as −d log10(MAF). 

The highest powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.016 0.038 0.204 0.024 0.054 0.280 0.017 0.036 0.205

Q ′ 0.008 0.003 0.001 0.012 0.004 0.002 0.008 0.002 0.001

Pmin 0.024 0.024 0.024 0.035 0.035 0.035 0.022 0.022 0.023

MKMR 0.003 0.011 0.091 0.004 0.016 0.128 0.002 0.010 0.089
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Table 3

Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is the proposed MSKAT 

statistic incorporating the trait correlation, Q′ is the sum of individual trait SKAT statistics, Pmin is the 

Bonferroni corrected minimum p-value based on the individual trait SKAT significance p-values, and MKMR 

is the multivariate kernel machine regression approach. Only the first L = 2 traits are associated with the rare 

variant set. The causal rare variant proportion is θ and their regression coefficient is set as −d log10(MAF). 

The highest powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.147 0.294 0.749 0.223 0.427 0.896 0.156 0.326 0.854

Q ′ 0.085 0.029 0.012 0.136 0.048 0.019 0.088 0.030 0.012

Pmin 0.123 0.123 0.123 0.175 0.175 0.174 0.119 0.118 0.118

MKMR 0.117 0.262 0.721 0.177 0.381 0.879 0.120 0.285 0.837
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Table 4

Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is the proposed MSKAT 

statistic incorporating the trait correlation, Q′ is the sum of individual trait SKAT statistics, Pmin is the 

Bonferroni corrected minimum p-value based on the individual trait SKAT significance p-values, and MKMR 

is the multivariate kernel machine regression approach. Only the first L = 3 traits are associated with the rare 

variant set. The causal rare variant proportion is θ and their regression coefficient is set as −d log10(MAF). 

The highest powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.372 0.604 0.945 0.534 0.774 0.989 0.421 0.686 0.982

Q ′ 0.250 0.100 0.041 0.385 0.171 0.073 0.278 0.108 0.043

Pmin 0.206 0.206 0.204 0.283 0.281 0.276 0.199 0.196 0.193

MKMR 0.348 0.596 0.944 0.503 0.765 0.988 0.394 0.680 0.981
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Table 5

Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is the proposed MSKAT 

statistic incorporating the trait correlation, Q′ is the sum of individual trait SKAT statistics, Pmin is the 

Bonferroni corrected minimum p-value based on the individual trait SKAT significance p-values, and MKMR 

is the multivariate kernel machine regression approach. All L = 4 traits are associated with the rare variant set. 

The causal rare variant proportion is θ and their regression coefficient is set as −d log10(MAF). The highest 

powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.597 0.807 0.988 0.779 0.928 0.999 0.681 0.882 0.997

Q ′ 0.453 0.225 0.099 0.646 0.376 0.183 0.523 0.257 0.110

Pmin 0.277 0.275 0.271 0.376 0.372 0.366 0.266 0.262 0.257

MKMR 0.586 0.801 0.987 0.767 0.926 0.998 0.672 0.880 0.996
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Table 6

Detection power incorporating correlated null traits: only the first trait Y1 is associated with the rare variant 

set. The causal rare variant proportion is θ and their regression coefficient is set as −d log10(MAF). We 

compared the multivariate trait based test approach, Q, Q′, Pmin and MKMR to the SKAT applied to testing 

Y1 only, denoted as SKAT(Y1). The highest powered tests in each row are bold-faced.

α = 10−4, d = −0.25, θ = 0.25

ρ SKAT(Y1) Q Q ′ Pmin MKMR

0.2 0.038 0.016 0.008 0.024 0.003

0.5 0.038 0.038 0.003 0.024 0.011

0.8 0.038 0.204 0.001 0.024 0.091

α = 10−4, d = −0.2, θ = 0.25

ρ SKAT(Y1) Q Q ′ Pmin MKMR

0.2 0.054 0.024 0.012 0.035 0.004

0.5 0.054 0.054 0.004 0.035 0.016

0.8 0.054 0.280 0.002 0.035 0.128

α = 10−4, d = −0.15, θ = 0.75

ρ SKAT(Y1) Q Q ′ Pmin MKMR

0.2 0.036 0.017 0.008 0.022 0.002

0.5 0.036 0.036 0.002 0.022 0.010

0.8 0.036 0.205 0.001 0.023 0.089
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