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Numerous approaches have been proposed for selecting an optimal tag single-nucleotide
polymorphism (SNP) set. Most of these approaches are based on linkage disequilibrium (LD).

Classical LD measures, such as D 0 and r2, are frequently used to quantify the relationship

between two marker (pairwise) linkage disequilibria. Despite of their successful use in many

applications, these measures cannot be used to measure the LD between multiple-marker. These
LD measures need information about the frequencies of alleles collected from haplotype dataset.

In this study, a cluster algorithm is proposed to cluster SNPs according to multilocus LD

measure which is based on information theory. After that, tag SNPs are selected in each cluster

optimized by the number of tag SNPs, prediction accuracy and so on. The experimental results
show that this new LD measure can be directly applied to genotype dataset collected from the

HapMap project, so that it saves the cost of haplotyping. More importantly, the proposed

method signi¯cantly improves the e±ciency and prediction accuracy of tag SNP selection.

Keywords: Tag SNP; linkage disequilibrium (LD); clustering algorithms; entropy.

1. Introduction

Single-nucleotide polymorphisms (SNPs) are important for genome-wide associa-

tions. In particular, recent developments in next-generation sequencing technology

raised post-genomic studies to another level by considering the consideration of the

contribution of rare SNP variants.1,2 The challenge is no longer related to the gen-

eration of more data but rather focuses on the way how these genetic data can be

e±ciently analyzed to obtain su±cient power to detect and explain association sig-

nals. Millions of SNPs are present in the human genome. The number of SNPs is a

challenge in studying complex diseases. Genotyping all SNP markers in the involved

genomes are preferred, but this process is expensive and unnecessary. Given the

existence of thousands of human SNPs with linkage disequilibrium (LD), researchers

can select a small number of characteristic (tag) SNPs to represent the remaining

Journal of Bioinformatics and Computational Biology
Vol. 15, No. 1 (2017) 1750001 (16 pages)

#.c World Scienti¯c Publishing Europe Ltd.

DOI: 10.1142/S0219720017500019

1750001-1

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

17
.1

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n 
11

/1
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0219720017500019


SNPs. The existence of correlation among SNPs may make a small fraction of the tag

SNPstobe su±cientlyuseful.This small fractionofSNPsenables the inferenceofall other

SNPs.The problemwith tag SNP selection is the need to identify the smallest possible set

of tagSNPs thatwould enable the precise inference of all other SNPs.A small tag SNPset

obviously entails low genotyping cost.3 Driven by such a signi¯cant potential bene¯t,

various algorithms have been developed to select tag SNPs e®ectively. Such selection is

essentially a feature selection problem from a machine-learning standpoint.

The available methods for tag SNP selection can be classi¯ed into two categories:

haplotype-block-based methods and genome-wide methods.4 The haplotype-block-

based methods focus on the haplotype patterns in a population. This method

assumes that the whole chromosome can be divided into blocks, which are separated

by recombination hotspots, such that each block comprises a few recombination

hotspots. Thus, tag SNP selection aims to identify the smallest possible tag SNPs for

each block. In this way, all possible haplotype patterns in the block can be fully

represented by the haplotype formed by the selected tag SNPs. However, no general

solution exists for dividing the chromosome into blocks. Moreover, the lack of inter-

block association degrades selection accuracy. By contrast, genome-wide methods do

not divide a chromosome into blocks. These methods instead consider the correlation

among the SNP markers across the entire genome to represent genome-wide asso-

ciations (measured by pairwise LD). However, these genome-wide methods may

cause the loss of some important information contained in the remaining SNPs and

may thus fail to distinguish all the haplotypes in a LD cluster.

Numerous studies have been conducted to characterize LD patterns and to apply

these patterns to tag SNP selection.5–8 The most commonly used methods are based

on pairwise LD measures, such as D′ and r2. Despite their popularity, these measures

assume that the individual haplotype phase has been previously resolved.9–13 Given

these technological limitations, most sequencing techniques provide genotype rather

than haplotype information.14,15 To satisfy the requirement of these LD measures for

tag SNP selection, the haplotype phase should be estimated to computed r2 for each

pair of SNPs in the region, so that the haplotype information can be inferred from the

genotype data. Although many algorithms can be used for haplotype inference16–18

such as HAPLOTYPER,19,20 PHASE21–23 and so on, computational cost is ex-

tremely high, and most of these algorithms use statistical approaches [e.g. expecta-

tion–maximization (EM) algorithm] or machine-learning methods.24–28 Although

e®ective, many of these methods cause error rate de¯ned in Refs. 19 and 21 of

haplotype phase inference.24 The accuracy of haplotype inference depends on several

factors, including sample size, allele frequency, number of SNPs, missing data, and

linkage between these SNPs. Thus, in order to avoid haplotype inference error and

reduce computational cost, we propose a novel LD measure that can directly

quantify the LD relationship between two SNP sets based on genotype data. Three

scenarios are used to consider the LD among SNP markers. (1) One-to-one: con-

sidering two markers A and B, we can calculate the common pairwise LD measure r2

between A and B to evaluate the linkage degree. When the value of r2 exceeds a
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given threshold (generally 0.8), the linkage betweenA andB is considered as a strong

LD. In order to save on genotyping cost, we can select either A or B for further study.

The selected marker is then considered as the tag SNP, whereas the other marker is

the tagged SNP. (2) Many-to-one: three markers A, B, and C, are considered. If

A and B are known to have a strong LD, then they are viewed as a whole. Thus, we

introduce a new marker M that combines A and B. Furthermore, we determine the

LD strength between C and M . r2 is thus unsuitable for this case. Hao et al.24

extended r2 statistics to describe the statistical correlation between a group of

markers (e.g. two or three) and another marker, which may solve this problem.

However, this method consumes a great deal of time and memory. (3) Many-to-many:

consider two SNP sets S1ðA1A2; . . . ;AnÞ and S2ðB1B2; . . . ;BmÞ, where n � 2;m � 2:

We determine whether the S1 SNPs have strong LDs relative to those in S2. We also

determine methods by which to measure the LD between the S1 and S2 directly.

2. Materials and Methods

In this section, we ¯rst propose a new LD measure called the average information

gain ratio (AIGR) on the basis of information theory. AIGR can measure the LD

relationship between two SNP sets. This measure is a multilocus LD measure, which

can also be directly applied to genotype data for tag SNP selection. Thus, we propose

a novel SNP selection method called AIGR-Tagger which is used for tag SNP se-

lection. Themain ideas of the proposed approach are as follows: (1) SNP clustering: the

SNPs are divided into di®erent clusters, such that SNPs within the same cluster have

strong LD (according to a given threshold). The clustering similarity measure is taken

as the new LD measure. (2) Tag SNP selection: after SNP clustering, we select a tag

SNP to represent each cluster. (3) Tag SNP evaluation: numerous approaches are used

for tag SNP selection. However, most of these methods only focus on the number,

rather than the quality of tag SNPs. The purpose of tag SNP selection is to choose

practically useful SNPs that can best retain the allele information of all the SNPs in the

candidate region. Thus, the tag SNP selection method is expected to select a small

number of SNPs with minimal information loss. The selected tag SNPs are used to

predict the unselected SNPs to develop e±cient algorithms for selecting a proper set of

SNPswith high prediction accuracy.We also introduce how the newLDmeasure value

can be calculated between SNPs for both haplotype and genotype data.

2.1. Information theory

The following considerations will be based on Shannon entropy, which is denoted as

HðXÞ, as a measure of genetic diversity and association. Considering a locus X with

k alleles of frequency pðxiÞði ¼ 1 � kÞ, the uncertainty of the random variable X is

measured by

HðXÞ ¼ �
Xk

i

pðxiÞlog2 pðxiÞ: ð1Þ
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The maximum HðXÞ is achieved if all states are equally probable. In our association

study, the joint entropy of loci X and Y can be de¯ned as the entropy of the

corresponding haplotype or genotype frequencies.

HðX;Y Þ ¼ �
X

i

X
j

pðxi; yjÞlog2 pðxi; yjÞ: ð2Þ

The property of HðX;Y Þ is that HðX;Y Þ � HðXÞ þHðY Þ. Given this property, we

determine how much information we can obtain from X if such loci is determined

before Y . The conditional entropy HðY jXÞ of Y , given X, is equal to the proportion

of the entropy of Y that remains after determining X, that is, HðY jXÞ ¼
HðX;Y Þ �HðXÞ. Therefore, the mutual information IðX;Y Þ is the proportion of

the entropy of Y that is removed after determining X.

IðX;Y Þ ¼ HðY Þ �HðY jXÞ ¼ HðXÞ þHðY Þ �HðX; Y Þ ð3Þ
Figure 1 clearly illustrates the mutual information IðX;Y Þ ¼ IðY ;XÞ. We

therefore unify the mutual information by using IðX;Y Þ to represent such data. The

correlation between two loci can be properly measured on the basis of their mutual

information IðX;Y Þ. A large value of IðX;Y Þ indicates high correlation. Notably,

0� IðX;Y Þ � 1. However, we use IðS1; SNPxÞ and IðS2; SNPxÞ to represent the

respective LD value of SNP sets S1 and S2 ðS1 and S2 for two SNP sets exhibit high

correlation among SNPs within each set) with another SNPx. If the numbers of SNPs

in S1 and S2 are unequal, IðS1; SNPxÞ and IðS2; SNPxÞ cannot be directly compared

because a larger number set will result in greater mutual information with other

SNPs. The key issue for this problem is the set scale because the mutual information

cannot be compared if the set scale varies.

HðS1;S2Þ ¼ �
Xn

i¼1

Xm
j¼1

pðs1i ; s2jÞlog2 pðs1i ; s2jÞ: ð4Þ

In Eq. (4), S1 and S2 contain one or more SNPs with n and m types. For example, S1

contains fA;Bg with four types fAB;Ab; aB; abg, with n ¼ 4. S2 contains fC;Dg
with four types fCD;Cd; cD; cdg, with m ¼ 4. In particular, S1 or S2 only have one

Fig. 1. Relationship between entropy and mutual information of X and Y .
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SNP, with n or m equal to 2. pðs1i s2jÞ is the frequency of S1S2, like ABCD. Thus,

HðS1; SNPxÞ is a special form of HðS1;S2Þ when S2 contains only one SNP.

To make the scenario clearer, let us consider the following simple example in

Table 1 which shows a dataset consisting nine SNPs. As follows, we provide a nu-

merical concrete example for computing these three quantities, i.e. HðXÞ, HðX;Y Þ
and IðX;Y Þ.

HðSNP1Þ ¼ �ð0:7 � log2 0:7þ 0:3 � log2 0:3Þ ¼ 0:8813;

HðSNP2Þ ¼ �ð0:6 � log2 0:6þ 0:4 � log2 0:4Þ ¼ 0:97095;

HðSNP1; SNP2Þ ¼ �ð0:6 � log2 0:6þ 0:3 � log2 0:3þ 0:1 log2 0:1Þ ¼ 1:2955;

IðSNP1; SNP2Þ ¼ HðSNP1Þ þHðSNP2Þ �HðSNP1; SNP2Þ ¼ 0:55675:

2.2. New LD measure AIGR

To address this problem, a new multilocus LD measure on the basis of AIGR is

proposed. Thismeasure is applied to calculate the LDbetween SNPs as shown in Fig. 2.

AIGRðS1;S2Þ ¼
1

2

IðS1;S2Þ
HðS1Þ

þ IðS1;S2Þ
HðS2Þ

� �
: ð5Þ

In Eq. (5), IðS1;S2Þ denotes themutual information between S1 and S2, whereasHðS1Þ
andHðS2Þ represent the entropy of S1 and S2, respectively. The property of Eq. (5), as

discussed earlier, is summarized as follows: 0� AIGR � 1, with the lower and upper

bounds attained when the SNPs are in complete linkage equilibrium (LE) and complete

LD, respectively. This property is in good agreement with the mutual information and

AIGR is a gain-ratio that can compare di®erent SNP set scales. Notably, the LD of

pairwise SNPs can also apply to this measure, which is a special case of AIGR. A large

AIGR value indicates a strong correlation among SNP sets. The proposed measure

overcomes the drawbacks of r2 statistics, which can only be applied to haplotype data.

Moreover, mutual information can only be used tomeasure the LD of pairwise SNP sets

Table 1. A simulated dataset.

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9

h1 0 0 0 0 0 1 1 0 0

h2 1 1 0 1 1 0 0 0 0
h3 0 0 1 0 0 0 0 0 1

h4 0 0 0 0 0 0 0 1 0

h5 1 1 1 1 1 1 1 0 0

h6 0 0 0 0 0 0 0 1 0
h7 1 1 0 1 1 0 0 0 1

h8 0 0 0 0 0 1 1 1 1

h9 0 1 1 0 1 1 1 0 0

h10 0 0 1 0 0 0 0 1 0

New multilocus LD measure for tag SNP selection
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with the same scale. In particular, themeasure is computationally e±cient and can thus

handle any number of SNPs.

2.3. Data coding

In SNP selection, raw SNP data are usually converted to a matrix form. Assume that

given n SNP sequences, each consisting of m SNPs. In this work, we are only in-

terested in bi-allelic SNPs (i.e. SNPs taking only two di®erent nucleotides among

fa; g; c; tg at the SNP position). Each haplotype can be represented by a binary

string. The n sequences can form a matrix M of size n �m, where rows are sequences

and columns are SNPs. Assume that no data are missing in the sequences. When

these sequences are phased haplotypes,M ½i; j� 2 f0; 1g represents the allele of the ith
sequence at the jth SNP locus, where 0 and 1 pertain to the major and minor alleles,

respectively. When these sequences are unphased genotypes, M ½i; j� 2 f0; 1; 2g,
where 0 and 2 are homozygous types, which represent the major and minor alleles,

respectively, and 1 indicates the heterozygous type.

2.4. SNP clustering

Hierarchical clustering algorithms are often used for their simplicity and e±ciency.

For tag SNP selection, the objects for clustering are SNPs. In this study, we apply

our new LD measure called AIGR as an indicator of cluster similarity. In clustering,

the two clusters with the largest AIGR that exceed the given threshold are merged

into one cluster. Within the context of SNP clustering, a cluster should contain at

least one SNP. At the beginning, for each SNP that belongs to an SNP cluster, a set

S of SNPs, S ¼ SNP1; SNP2; . . . ; SNPnf g and C of SNP clusters, Ci ¼ SNPif g,
C ¼ fC1;C2; . . . ;Cmg. We then perform the calculation for every cluster with all

other clusters AIGRðCiCjÞ, if AIGR meets the following condition:

maxi;jfAIGRðCi;CjÞg > �; ð6Þ
where � represents a threshold value of AIGR. Moreover, when AIGR exceeds the

given threshold � (generally � 2 f0:5; 1g; here, we set � ¼ 0:7Þ, then Ci and Cj will

Fig. 2. AIGR relationship ofX and Y . (a) General LD relationship ofX and Y . (b) Complete LD ofX and

Y . (c) Complete LE of X and Y .
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merge into C 0
i ¼ Ci [ Cj. The clustering algorithm stops once the maximum AIGR is

less than the given threshold � or when the clusters merge into a single cluster. After

clustering, we obtain k SNP clusters C 0 ¼ fC 0
1;C

0
2; . . . ;C

0
kg, 1 � k � m, where k is

the number of SNP clusters. Thus, within every SNP cluster, all SNPs have a strong

LD with one another, which enables the selection of one SNP that can best represent

the other SNPs as the tag SNP of the cluster.

2.5. Tag SNP selection

After SNP clustering, we identify k SNP clusters from which we select tag SNPs. The

main idea is that when an SNP cluster has r SNPs, the tag SNP should best represent

the SNP cluster, such that select the SNP that meets the following condition:

max
i

1

r

Xr

j¼1;j 6¼i

AIGRðSNPi; SNPjÞ: ð7Þ

In particular, if a cluster only has one SNP, we directly select this SNP as the

tag SNP, because no other SNP can strongly correlate to the selected tag SNP. Every

tag SNP can best represent the corresponding SNP cluster when this procedure is

employed.

2.6. SNP prediction

After selecting the tag SNPs, the tag SNP sets undergo evaluation. Several methods

can be used to assess a tag SNP selection method. Stram et al.25 proposed a quality

measure r2, which is based on a subset of tag SNPs to predict the unselected SNP.

This measure requires diploid data to infer haplotype from genotype data, and is thus

inappropriate for our purpose. Carlson et al.26 proposed a measure based on the

accuracy of haplotype diversity, which is de¯ned as the total number of bases among

di®erent haplotypes on the respective positions. The di®erence between couples of

haplotypes pertains to the total number of di®erences among all SNPs. This measure,

which was proposed by Carlson et al.,26 can e±ciently de¯ne the capability of tag

SNPs to identify di®erent haplotypes. However, this measure can only be used for

haplotype blocks with limited haplotype diversity and is unsuitable for large datasets

with multiple haplotype blocks and genotype data. Evaluating the capability of the

tag SNP selection algorithm requires the prediction accuracy of tag SNPs for unse-

lected SNPs. Cross-validation, such as leave-one-out cross-validation (LOOCV), is

typically used for prediction. We predict each unselected SNP using LOOCV sepa-

rately, to determine the average prediction accuracy. In addition, support vector

machine (SVM) is used as the model.27 Due to the good generalization ability and

fast convergence rate, we apply radial basis function as kernel function and pa-

rameter c is set 100, gamma is set 0.1. Two strategies are used to access the prediction

accuracy: (1) all tag SNPs collaboratively predict every unselected SNP, and (2) each

tag SNP predicts the other SNPs within the corresponding cluster, and then average

New multilocus LD measure for tag SNP selection
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all of the obtained SNPs. The second strategy is evidently better than the ¯rst for our

method. Given n samples with m SNPs, we obtain k SNP clusters after SNP clus-

tering. For every cluster, we select one SNP to represent all other SNPs within this

cluster. To evaluate methods for tag SNP selection, these tag SNPs are used to

predict every untagged SNP in the cluster, separately. LOOCV is applied to the

samples. We use one sample as the test set and the remaining samples as training set.

During training process, every SNP will be predicted by tag SNPs and then com-

pared to their original value.

2.7. Compression ratio

To evaluate various methods comprehensively, we should assess the proportion of

tag SNPs in the total SNP set. All tag SNP selection methods aim to select an

optimal tag SNP set, which contains the smallest possible number of SNPs but with

the least possible information loss. In this study, compression ratio is used to measure

this factor. Compression ratio is de¯ned as:

compression ratio ¼ Ntag

Ntotal

: ð8Þ

In Eq. (8), Ntag represents the number of selected tag SNPs, and Ntotal represents the

number of total SNPs. A smaller the compression ratio indicates a better tag SNP

selection method.

2.8. Results

In this section, we implemented the AIGR-Tagger in Cþþ and conducted experi-

ments on a Pentium 4 processor with a 2-GB RAM running on Windows 7. To

evaluate the properties and performances of AIGR-Tagger, our tag SNP selection

method is tested on both haplotype and genotype data. All datasets were obtained

from HapMap.28 The detailed information of 10 ENCODE region datasets used in

our study is shown in Table 2. The number of individuals with genotype (haplotype)

Table 2. Datasets of ENCODE region SNPs.

Genotype SNP

numbers

Haplotype SNP

numbers
Region

name

Chromosome

band Genomic interval (MAF > 1%) (MAF > 1%) Genotyping group

ENm010 7p15.2 Chr7:26924045..27424045 756 322 UCSF-WU, Perlegen

ENm013 7q21.13 Chr7:89621624..90121624 1053 483 Broad, Perlegen

ENm014 7q31.33 Chr7:126368183..126865324 1135 611 Broad, Perlegen

ENr112 2p16.3 Chr2:51512208..52012208 1273 751 McGill-GQIC, Perlegen

ENr113 4q26 Chr4:118466103..118966103 1401 772 Broad, Perlegen

ENr123 12q12 Chr12:38626477..39126476 1312 772 BCM, Perlegen

ENr131 2q37.1 Chr2:234156563..234656627 1335 835 McGill-GQIC, Perlegen

ENr213 18q12.1 Chr18:23719231..24219231 882 529 Illumina, Perlegen

ENr232 9q34.11 Chr9:130725122..131225122 742 390 Illumina, Perlegen

ENr321 8q24.11 Chr8:118882220..119382220 877 484 Illumina, Perlegen

B. Liao et al.
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data for each region is 90(120). The genotype SNP numbers is unequal to the hap-

lotype SNP number because some information is lost when the haplotype phase is

inferred from genotype data.

For comparison, two other existing methods in the literature are used to analyze

the same haplotype SNP datasets. These methods are: (1) Fast Tagger, which is

based on multi-marker LD.13 and (2) Feature Selection and Feature Similarity

(FSFS).29 However, the two methods only selected the SNPs but did not evaluate the

e®ectiveness of these selected tag SNPs. Thus, LOOCV is used to evaluate the

performance of the three methods. All methods aim to select a set of highly predictive

tag SNPs for unselected SNPs. Therefore, the selected number of tag SNPs, pre-

diction accuracy and compression ratio are used as performance criteria to evaluate

all three methods. The performances of these three methods on each ENCODE

region are summarized in Table 3 and Fig. 3.

We also compute the overlapping ratio of tag SNPs selected by AIGR-Tagger and

Fast Tagger. In this study, the overlapping ratio of the two tag SNP selection

methods can be computed using Eq. (9).

overlapping ratio ¼ 2 � ðNtag1 \Ntag2Þ
Ntag1 þNtag2

; ð9Þ

where Ntag1 and Ntag2 denote the number of selected tag SNPs using methods one

and two, respectively. Since can only get the number of selected tag SNPs by FSFS,

we cannot compute for the overlapping ratio of tag SNPs selected by FSFS and the

other two methods. The result of the overlapping ratio of tag SNPs selected by

AIGR-Tagger and Fast Tagger is shown in Table 4.

For comparison, the same 10 ENCODE regions on genotype datasets are used to

analyze the proposed method, AIGR-Tagger. The performance of AIGR-Tagger on

genotype datasets is shown in Table 5.

Table 3. Summary of the number of selected tag SNPs, prediction accuracy and compression ratio on the

haplotype datasets of AIGR-Tagger, Fast Tagger and FSFS.

Number of tag SNPs Prediction accuracy Compression ratio

Region

SNP
numbers

(MAF > 1%)

AIGR-

Tagger

Fast

Tagger FSFS

AIGR-

Tagger

Fast

Tagger FSFS

AIGR-

Tagger

Fast

Tagger FSFS

ENm010 322 79 95 110 0.9902 0.9574 0.9489 0.2453 0.2950 0.3416

ENm013 483 37 57 92 0.9689 0.9900 0.9887 0.0766 0.1180 0.1905

ENm014 611 72 101 172 0.9846 0.9755 0.9408 0.1178 0.1653 0.2815
ENr112 751 83 114 230 0.9820 0.9581 0.9429 0.1105 0.1518 0.3063

ENr113 772 70 96 175 0.9710 0.9698 0.9592 0.0907 0.1244 0.2267

ENr123 772 88 120 223 0.9784 0.9720 0.9599 0.1140 0.1554 0.2889

ENr131 835 124 153 310 0.9829 0.8983 0.8567 0.1485 0.1832 0.3713
ENr213 529 72 86 185 0.9915 0.9726 0.9607 0.1361 0.1626 0.3497

ENr232 390 69 86 133 0.9833 0.9491 0.9230 0.1769 0.2205 0.3410

ENr321 484 72 88 128 0.9806 0.9690 0.9591 0.1488 0.1818 0.2645

Overall 5949 766 996 1758 0.9813 0.9612 0.9440 0.1288 0.1674 0.2955
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Fig. 3. Comparison of selected tag SNPs numbers, prediction accuracy and compression ratio of

the di®erent methods on the haplotype datasets. (a) Number of selected Tag SNPs. (b) Prediction
accuracy. (c) Compression ratio.

Table 4. Summary of the overlapping ratio of tag SNPs selected by AIGR-Tagger and Fast

Tagger.

Number of tag SNPs

Region SNP number (MAF > 1%) AIGR-Tagger Fast Tagger Overlapping ratio

ENm010 322 79 95 0.7356

ENm013 483 37 57 0.5106

ENm014 611 72 101 0.7399
ENr112 751 83 114 0.5990

ENr113 772 70 96 0.6145

ENr123 772 88 120 0.6154

ENr131 835 124 153 0.7292
ENr213 529 72 86 0.7595

ENr232 390 69 86 0.7226

ENr321 484 72 88 0.7250

Overall 5949 766 996 0.6751
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We also compared the properties and performances of AIGR-Tagger and the

commonly used software Haploview.30 Haploview is the most commonly used soft-

ware for SNP analyses. Haploview is designed to simplify and expedite the process of

haplotype analysis by providing a common interface for several tasks relating to such

analyses. This software can also be used to select tag SNPs based on haplotype data.

The performance of Haploview selecting tag SNPs on the haplotype datasets is

summarized in Table 6. Notably, the threshold of r2 is set as 0.8. Table 6 shows that

the SNP Numbers of the ENCODE Region are unequal to the corresponding Hap-

lotype SNP Numbers in Table 2. Given that Haploview has a speci¯c dataset

download module to obtain SNP datasets; it excludes individuals in the process of

online download. Thus, Haploview cannot determine the prediction accuracy on the

basis of the selected tag SNPs. For comparison, we focus the compression ratio of

Haploview and of the other methods.

In addition to these results, we also compare our method with another entropy-

based method called ER and these results are listed in Table 7.

Table 5. Summary of the performance of AIGR-Tagger on the genotype datasets.

Region

SNP numbers

(MAF > 1%) Number of tag SNPs Prediction accuracy Compression ratio

ENm010 756 246 0.9829 0.3254

ENm013 1053 151 0.9682 0.1434
ENm014 1135 238 0.9891 0.2097

ENr112 1273 280 0.9781 0.2200

ENr113 1401 254 0.9824 0.1813

ENr123 1312 274 0.9886 0.2088
ENr131 1335 334 0.9852 0.2502

ENr213 882 218 0.9881 0.2472

ENr232 742 220 0.9847 0.2965

ENr321 877 219 0.9749 0.2497
Overall 10766 2434 0.9822 0.2332

Table 6. Summary of the performance of Haploview on the haplotype
datasets.

Region SNP numbers Number of tag SNPs Compression ratio

ENm010 231 108 0.4675

ENm013 257 84 0.3268

ENm014 298 114 0.3826

ENr112 278 122 0.4388
ENr113 287 120 0.4181

ENr123 307 117 0.3811

ENr131 547 215 0.3931

ENr213 221 100 0.4525
ENr232 230 105 0.4565

ENr321 265 112 0.4226

Overall 2921 1197 0.4098
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Table 7 shows that our method selects smaller subset of tag SNPs than ER.

It indicates that our method can select more representative tag SNPs, so that the

cost of genotyping is signi¯cantly saved.

3. Discussion and Conclusion

Classical LD measures, such asD 0 and r2, are often used to measure the degree of LD

between two loci. However, these measures fail to provide a direct measure of joint

LD among multiple loci. Meanwhile, most of these measures require haplotype data.

Owing to technological limitations, most sequencing techniques provide genotype,

rather than haplotype data. Notably, our \real" haplotype distributions are esti-

mated from the genotype data. Thus, the haplotype phase inferred from genotype

data is only an estimate, the accuracy of which is dependent on the amount of

available data. In this study, we propose an e®ect multilocus LD measure on the

basis of AIGR to overcome these problems. Our LD measure can quantify the extent

of LD between two SNP sets and can also be directly applied to genotype data for tag

SNP selection. This measure considers the interactions among SNPs and may be

bene¯cial for follow-up studies, such as epistasis analysis.

On the basis of AIGR, a tag SNP selection algorithm called AIGR-Tagger is

proposed for both haplotype and genotype data. We compared the properties and

performances of our proposed method with other two state-of-the-art tag SNP se-

lection methods, namely, Fast Tagger and FSFS, on haplotype datasets. In Table 2,

AIGR-Tagger selected less tag SNPs but achieved higher prediction accuracy than

the other two methods. Even with the same total number of SNPs used, fewer tag

SNPs the result in a smaller compression ratio. This result shows that AIGR-Tagger

can select less SNPs to represent the other unselected SNPs better. On ENm013,

AIGR-Tagger selected 37 tag SNPs to achieve 96.89% prediction accuracy, this

prediction accuracy, which is slightly lower than that of Fast Tagger. Thus, we

believe that AIGR-Tagger outperforms Fast Tagger on ENm013 because the former

lost only little minimal information while achieving a high degree data of compres-

sion. Table 3 shows that the tag SNP overlapping ratio of AIGR-Tagger and Fast

Table 7. The comparison between two entropy-based methods.

Region Number of tag SNPs by AIGR-Tagger Number of tag SNPs by ER

ENm010 246 287

ENm013 151 159

ENm014 238 238
ENr112 280 299

ENr113 254 231

ENr123 274 302

ENr131 334 354
ENr213 218 202

ENr232 220 228

ENr321 219 220
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Tagger is nearly 70%. This result indicates that the selected tag SNPs between these

two methods have a high degree overlapping. Given the complete LD among SNP

loci, we believe that the actual overlapping ratio is higher than the value in Table 3.

Obviously, our method is a block-free tag SNP selection method, which can address

two issues of block-based: the inconsistency of de¯nition of the block and compu-

tational cost of block partition.

The running time is a measure to evaluate the e±ciency of an algorithm. Usually,

the running time of an algorithm is stated as a function relating the input length to

the number of steps (time complexity) or storage locations (space complexity).

However, the running time measure is too speci¯c to compare di®erent algorithms

fairly for the following reasons: (1) the running time relies on the speci¯c machine. (2)

as the size of datasets changes, the running time may change dramatically. A simple

running time lasting only seconds is di±cult to use for describing the e±ciency under

di®erent situations. (3) given that algorithms are platform-independent (i.e. a given

algorithm can be implemented in an arbitrary programming language on an arbi-

trary computer running an arbitrary operating system), signi¯cant drawbacks exist

relative to using an empirical approach to gauge the comparative performance of a

given set of algorithms. Consequently, we use big O notation to denote the time

complexity of an algorithm. Suppose we have n samples with m SNPs. The whole

computational complexity of Fast Tagger isOðn �mkÞ. In this work, k represents the

number of SNPs in a tagging rule in Fast Tagger. k is set 2 or 3 because calculating

multi-marker r2 statistics is more expensive than computing for pairwise r2. The

overall computational complexity of FSFS isOðk �m � n2Þ, in which k is a parameter

of KNN in FSFS. The computational complexity of AIGR-Tagger is Oðn �m2Þ.
AIGR-Tagger is evidently faster than the other two methods.

As shown in Table 4, AIGR-Tagger can select tag SNPs on genotype data. For

comparison, an experiment is conducted on the same ENCODE region with haplo-

type datasets. Given the information losses that occur when the haplotype phase is

inferred from genotype data, the numbers of SNPs are unequal. Table 4 shows that

AIGR-Tagger can e®ectively select tag SNPs on genotype data. This property is very

useful. If only genotype data are acquired, tag SNPs can be selected without hap-

lotype phasing from the genotype data. Thus, AIGR-Tagger can reduce the cost of

haplotype phasing and avoid the information losing. At the same time, AIGR-

Tagger is compared with software Haploview based on haplotype data. Through the

comparison shown in Tables 2 and 5, we ¯nd that AIGR-Tagger selected only 12.88%

tag SNPs from the total SNPs with 98.13% prediction accuracy. This comparison

results shows that the data compression of AIGR-Tagger is better than that of

Haploview with minimal information loss.

Consequently, the performance of current tag SNP selection methods is limited by

certain restrictions such as the small bounded location or the ¯xed number of pre-

dictive tag SNPs. Moreover, most methods can only be applied to two markers

(pairwise) LD or require an additional haplotype inference as pre-processing. Our

goal is to address these limitations and improve the performance of currently
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available tag SNP selection methods. That is, our method is neither limited to bi-

allelic SNPs nor having an additional haplotype inference-procedure. Moreover, our

method is based on information theory. AIGR is a multilocus LD measure which

considers the LD between multiple loci that can further capture LD than bi-allelic

measure, like r2. This feature of AIGR-Tagger facilitates follow-up studies and

improves the con¯dence of medical or biological researchers in bioinformatics.
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