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Abstract

The chromosome copy number variation (CNV) is the deviation of genomic regions from their 

normal copy number states, which may associate with many human diseases. Current genetic 

studies usually collect hundreds to thousands of samples to study the association between CNV 

and diseases. CNVs can be called by detecting the change-points in mean for sequences of array-

based intensity measurements. Although multiple samples are of interest, the majority of the 

available CNV calling methods are single sample based. Only a few multiple sample methods have 

been proposed using scan statistics that are computationally intensive and designed toward either 

common or rare change-points detection. In this paper, we propose a novel multiple sample 

method by adaptively combining the scan statistic of the screening and ranking algorithm (SaRa), 

which is computationally efficient and is able to detect both common and rare change-points. We 

prove that asymptotically this method can find the true change-points with almost certainty and 

show in theory that multiple sample methods are superior to single sample methods when shared 

change-points are of interest. Additionally, we report extensive simulation studies to examine the 

performance of our proposed method. Finally, using our proposed method as well as two 

competing approaches, we attempt to detect CNVs in the data from the Primary Open-Angle 

Glaucoma Genes and Environment study, and conclude that our method is faster and requires less 

information while our ability to detect the CNVs is comparable or better.
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1. Introduction

The chromosome copy number refers to the number of copies of a genomic 

deoxyribonucleic acid (DNA) region in a DNA mixture, relative to a control sample or a 

population control. In a human genome, except for the sex chromosomes, the DNA copy 
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numbers are normally two, with one copy from mother and the other copy from father. Copy 

number variation (CNV) can therefore be defined as the deviation from the “normal” copy 

number for a region of genomic DNA, which includes both duplication and deletion. In 

general, CNVs can be either generated from de novo mutations or inherited from ascendants. 

De novo CNVs can possibly be long in length and unique for different individuals. For 

example, cancer CNVs as a type of de novo CNVs can span as long as a whole chromosome 

(Lengauer, Kinzler and Vogelstein, 1998), and can be very heterogeneous across different 

patients (Mermel et al., 2011). Inherited CNVs, on the contrary, are generally short in 

length, shared by many people, and aligned well across samples (Zhang et al., 2010). Recent 

studies have shown that CNVs can play important roles in human diseases. For example, de 
novo CNVs are found to be strongly associated with diseases such as autism (Sebat et al., 

2007) and cancer (Pollack et al., 2002); while inherited CNVs are shown to be associated 

with Crohn’s disease (McCarroll et al., 2008) and resistance to HIV (Gonzalez et al., 2005). 

To study the association of CNV and human diseases, it is critical to identify CNV regions 

in each sample. Over the last decade, high-throughput technologies such as array-

comparative genomic hybridization (aCGH), single-nucleotide polymorphism (SNP) array, 

and next-generation sequencing (NGS) have been used to detect CNVs (Carter, 2007; Alkan, 

Coe and Eichler, 2011). Because the data produced by these technologies inevitably contain 

noise, various statistical methods have been proposed and applied to call CNV regions from 

noisy data. We mainly focus on detecting CNV from array-based data in this paper and 

briefly discuss the extension to NGS data in the Discussion section.

1.1. Statistical model

Regardless of the technology or platform, CNV detection can be formulated in the following 

way. Given N samples and T markers, raw copy number intensities are measured for each 

sample on all the markers. Denote the intensities measured for sample i by Yi = (Yi,1, Yi,2, 

…, Yi,T)T for 1 ≤ i ≤ N. We assume

(1.1)

where μi = (μi,1, μi,2, …, μi,T)T is a piecewise constant mean vector for the intensities of 

sample i, and the errors . We call τ a change-point for sample i if μi,τ ≠ 

μi,τ+1. For sample i, we denote its Ji change-points by 0 < τi,1 < τi,2 < ··· < τi,Ji < T. By 

estimating all of the change-points θi = {τi,1, τi,2, …, τi,Ji} for each sample i, CNV regions 

can be called between these change-points.

We denote the collection of change-points in all samples as θ = {τ1 < ··· < τJ} and let δi,j = 

μi,τj+1 − μi,τj be the mean change at point τj for sample i. For each change-point τj, we say 

that sample i is a “carrier” when δi,j ≠ 0. Note that estimating change-points for individual 

samples is equivalent to estimating θ and identifying individual carriers of each change-

point. Our proposed method is based on this strategy.
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1.2. Current methods

Currently, various methods have been proposed for the CNV calling problem. These 

methods can be categorized into single sample methods and multiple sample methods 

according to their strategies. Single sample methods, on the one hand, simply apply a CNV 

calling algorithm to each individual sample repeatedly. Multiple sample methods, on the 

other hand, assume that certain change-points may be shared by a proportion of the samples, 

and call these shared change-points using information from multiple samples.

Because of the complexity of analyzing multiple samples together, most current methods 

focus on a single sample. Yao (1988) and Yao and Au (1989) proposed to search for the 

combination of change-points that minimizes a BIC score, and they showed the consistency 

of their estimates. Another approach uses ℓ1 penalization methods in order to introduce 

sparsity to the segment means or the differences in these means (Huang et al., 2005; 

Tibshirani and Wang, 2008). Circular binary segmentation (CBS) algorithm (Olshen et al., 

2004; Venkatraman and Olshen, 2007) uses a strategy of recursively finding segments with 

changed means in a sequence. It is based on the following scan statistic: for a region (s, t),

(1.2)

where Si,t is the partial sum of sequence Yi (i.e. ), Ȳi = Si,T/T, and 

. The region with the highest Ui(s, t) is further scrutinized. Note that 

CBS uses global information to detect change-points. Niu and Zhang (2012) demonstrated 

that local information is more efficient than global information for high-throughput data for 

change-points detection. They proposed a screening and ranking algorithm (SaRa) using the 

following scan statistic

(1.3)

for 1 ≤ t ≤ T, where h is a bandwidth parameter. Because Di(t, h) is calculated from local 

information within a 2h window, the complexity of this algorithm is linear in T. This 

algorithm was refined by Xiao, Min and Zhang (2015) and further studied theoretically by 

Hao, Niu and Zhang (2013). In addition to change-point models, other models such as 

Hidden Markov Model (HMM) are also applied to CNV detection. For example, PennCNV 

(Wang et al., 2007) and Birdsuite (Korn et al., 2008) are the two most popular HMM 

methods. Due to space limitation, we do not discuss these models in detail. In Section 5, we 

examine the performance of PennCNV in a real data analysis.

Zhang et al. (2010) noted that different people can share CNV regions. In the framework of 

change-point model, this means some of the change-points are shared by multiple samples. 
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Based on this idea, several multiple sample methods have been developed to find shared 

change-points. Zhang et al. (2010) proposed taking the sum of squared scan statistics from 

individual samples to find common change-points. Siegmund, Yakir and Zhang (2011) 

further extended this method by using a weighted sum of squares statistic, which increases 

the power for rare change-point detection when prior information on carrier proportions is 

available. Instead of using these sum-based statistics, Jeng, Cai and Li (2013) summarized 

the scan statistics based on higher criticism method which can detect both common and rare 

CNVs (Cai, Jeng and Jin, 2011). It is noteworthy that the major difference among these 

multiple sample methods is the way that multiple scan statistics are combined. The scan 

statistics used by these methods for individual samples, however, are virtually the same as 

the CBS scan statistic. Alternatively, Vert and Bleakley (2010) considered a group LASSO 

approach for detecting shared change-points in multiple samples. Fan et al. (2015) also used 

a penalized likelihood approach but assumed Laplace distribution for the observed 

sequences to detect change-points in either mean or variance.

1.3. Motivations

Despite the success of the aforementioned methods, several aspects of them need to be 

addressed or could be improved. First, the multiple sample methods that we reviewed all use 

the CBS scan statistic which is based on global information. In real data, it is most likely 

that there exists more than one region of change, and a global statistic may contain data 

points that are irrelevant and increase heterogeneity, and hence lose power. In addition, these 

methods tend to suffer from higher computational complexities, especially when applied to 

high-throughput genomic data. To overcome this computational burden and potentially 

enhance the power, we propose a generalization of SaRa to accommodate multiple samples. 

The proposed method enjoys similar computational efficiency and statistical properties as 

the single sample SaRa.

Second, we note that most available methods for combining multiple scan statistics are 

either suitable for finding common change-points but not powerful in finding rare ones (in 

terms of the proportion of carriers), or vice versa, or rely on prior knowledge or assumption 

of the carrier proportion. Thus, it is desirable to develop a unified method that is robust to 

carrier proportion and does not require any prior knowledge or assumption. To this end, 

Jeng, Cai and Li (2013) proposed to use higher criticism method, which enjoys good 

theoretical properties and could detect any “detectable” shared variants with any carrier 

proportion. However, we found that the power of this method in CNV detection is low. We 

propose an adaptive Fisher’s method which adaptively combines the scan statistics 

according to their likeliness of being from a change-point carrier. We report that, regardless 

of the carrier proportion, this method has a good power of finding change-points.

Finally, an important issue with regard to multiple sample methods is whether they provide 

any improvement over single sample methods in detecting shared CNVs. To address this 

question, Zhang et al. (2010) and Siegmund, Yakir and Zhang (2011) concluded through 

simulations and real data analyses that cross-sample scans perform better than single sample 

scans. In this paper, we provide both theoretical and numerical comparisons between our 
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proposed method and single sample methods, which further confirm that the power of 

multiple sample methods is higher than that of a single sample method.

Section 2 presents our method in detail, and Section 3 provides its theoretical properties. We 

demonstrate its performance via simulation in Section 4, and we analyze a real dataset in 

Section 5.

2. Method

2.1. SaRa for a single sample

First, we review the SaRa method proposed by Niu and Zhang (2012). For a single sample i, 
given a band-width h, the scan statistic Di(t, h) can be calculated for every position t from 

(1.3). Define t as a local maximizer if |Di(t, h)| ≥ |Di(t′, h)| for all t′ ∈ (t − h, t + h). Let ℒℳi 

be the collection of all local maximizers found for sample i. Then the change-points for 

sample i can be estimated as θ̃i = {τ̃i,1 < τ̃i,2 < ··· < τĩ,J̃i} ⊆ ℒℳi by a thresholding rule

The threshold λi can be obtained asymptotically or from the simulated null distribution.

For any t, if no change-point exists in window (t − h + 1, t + h), . 

Therefore, we can define a standardized scan statistic as

(2.1)

where σ̂
i is an estimate of σi. By assuming that the number of change-points in sample i, Ji 

≪ T, the estimation of σ̂
i is trivial. For example, we can use the sample standard deviation of 

Yi as σ̂
i.

2.2. Combining test statistics from multiple samples

In order to combine information across samples to identify shared change-points, we need to 

combine single sample statistics for all samples. A natural choice is to take the sum of 

squares of D̃
i(t, h) across samples as in Zhang et al. (2010) and define a multiple sample 

scan statistic

(2.2)

Taking weighted sum of squares (Siegmund, Yakir and Zhang, 2011) is an alternative 

method, for which we define
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(2.3)

where wπ0 (x) = exp(x/2)/[(1 − π0)/π0 + exp(x/2)], and π0 is the carrier proportion assumed 

to be known.

The two methods above combine the scan statistics D̃
i(t, h) directly. We can also combine 

the p-values pi(t, h) = 2{1 − Φ[|D̃
i(t, h)|]} or their order statistics p(i)(t, h) in ascending order. 

Traditional methods include Fisher’s method (Fisher, 1925) defined as

(2.4)

and Stouffer’s method (Stouffer et al., 1949)

(2.5)

The higher criticism statistic (Donoho and Jin, 2004; Cai, Jeng and Jin, 2011) can be defined 

as

(2.6)

where

Because both common and rare CNVs have been found to be associated with many human 

diseases (McCarroll and Altshuler, 2007), a desirable CNV detection method should be 

powerful for both types of CNVs. Therefore, we need a combining method which is 

sensitive to change-points with different carrier proportions. While the sum of squares 

statistic is easy to implement, it is good in capturing only change-points that are shared by 

many samples. Conversely, the higher criticism statistic can detect rare change-points; 

however, because it is based on an adaptively chosen single order statistic, its power for 

detecting common change-points with a limited sample size is low in practical applications. 

Although the weighted sum of squares statistic can detect both common and rare change-
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points, it depends on a tuning parameter π0 whose choice relies on prior assumptions of the 

change-points. Fisher’s method is well-known for being powerful and asymptotically 

Bahadur optimal (Littell and Folks, 1971, 1973). However, when the change-points are rare, 

the statistical power of Fisher’s method will be compromised by the non-carriers. The same 

problem also exists for Stouffer’s method. Therefore, we propose a new summary statistic, 

which can detect both common and rare change-points and does not require prior knowledge 

or assumption.

The idea of our approach is to adaptively combine the ordered p-values so that only those 

that most likely come from the carriers are combined. In the same spirit, Li and Tseng 

(2011) proposed an adaptively weighted Fisher’s statistic to down-weigh the non-carriers, 

but it is time consuming and involves exhaustive search for the weights. Yu et al. (2009) and 

Zhang, Chen and Pfeiffer (2013) considered a similar adaptive rank truncated product 

statistic of the p-values, but they rely on either permutations or numerical integration to 

decide the significance level. We propose a more concise adaptive Fisher’s statistic as 

follow. For given t and h, let

and

We first define

Under the null hypothesis, , and X(1)(t, h) ≥ ··· ≥ X(N)(t, h) are the 

decreasing ordered statistics. Let X(N+1)(t, h) = 0 and ξi(t, h) = i[X(i)(t, h) − X(i+1)(t, h)] for 1 

≤ i ≤ N. It can be shown that  under the null. Thus,

where w(k, i) = min(1, i/k). We standardize Vi(t, h) as
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Our proposed adaptive Fisher’s statistic for multiple samples is defined as

In CNV detection, we are mainly interested in detecting signals arising from shifted means. 

Therefore, we can consider only the smaller p-values and the one-sided tests that the p-

values are less than their expected values. Moreover, genetic data for CNV detection, 

especially SNP array data, are prone to artifacts including guanine-cytosine (GC) content, 

batch effects, and bad probes on the chips. Outliers caused by these artifacts could lead to 

false discoveries. Considering these issues, the adaptive Fisher’s statistic can also be defined 

as

(2.7)

where a tuning parameter n0 specifies that at least n0 observations are combined so that the 

statistic is more robust to outliers. Similarly, we could modify (2.6) into

(2.8)

We apply (2.7) and (2.8) for CNV detection.

2.3. SaRa for multiple samples

In the previous section, we defined six scan statistics including WSum(t, h), WWSum(t, h), 

WFisher(t, h), WStouffer(t, h), WHC (t, h), and WAF (t, h). We now extend the SaRa method for 

multiple samples using these methods. Let {W(t, h) : t = 1, …, T} be the sequence of 

combined statistics using any of the six combining methods with a bandwidth h. Then we 

can find the local maximizers of this sequence, and select a subset of the local maximizers 

by thresholding, as done in SaRa for single samples. The detailed algorithm is described as 

below.

Algorithm: SaRa for multiple samples:

1. Given a bandwidth h, calculate individual scan statistics 
D̃

i(t, h) using (2.1), for 1 ≤ t ≤ T and 1 ≤ i ≤ N.
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2. Calculate the summary scan statistic W(t, h) using (2.2), 

(2.3), (2.4), (2.5), (2.8), or (2.7).

3. Find the collection of local maximizers ℒℳ = {t : W(t, h) 

> W(t′, h), ∀t′ ∈ (t − h, t + h)}.

4. Given a threshold λ, estimate the shared change-points as a 
subset of ℒℳ, θ̂ = {τ̂1 < τ̂2 < ··· < τ̂Ĵ} ⊆ ℒℳ, that satisfies 
W(τĵ, h) > λ for 1 ≤ j ≤ Ĵ, where Ĵ is the number of 
estimated shared change-points.

Remark 1: In the calculation of D̃
i(t, h), for Yi,k with k < 1 or k > T, use Ȳi instead. This 

happens only when t is near either end of a sequence.

Remark 2: To determine the threshold λ, we can simply simulate the null distribution of 

W(t, h) by assuming that  for 1 ≤ i ≤ N. Because W(t, h) is calculated 

locally and T ≫ h, we can simulate the null distribution of W(t, h) using any length T′ that 

satisfies T′ ≫ h. Let F̂(·) be the simulated empirical distribution function of W(t, h), where t 
is a local maximizer. Given a significance level α, the threshold can be calculated as λ = 

F ̂−1(1 − α). Alternatively, we can also find λ as the (1 − α′) quantile of the observed W(t, 
h)’s on the local maximizers for different values of α′.

2.3.1. Multiple-bandwidth SaRa—Genomic CNVs are different in size, ranging from 

one SNP site to the entire chromosome. Because we do not know the sizes of the CNVs to 

detect, there is no one bandwidth that fits all CNVs. The selection of bandwidth h may affect 

the result depending on the distance between adjacent change-points. As described by Niu 

and Zhang (2012), a large h may increase the statistical power. However, if h is too large 

such that more than one change-points are included in the window, the algorithm will yield 

unreliable results. In practice, we use multiple bandwidths to ease this difficulty. Consider a 

set of B bandwidths h = {h1 < h2 < ··· < hB}. With bandwidth hb, we can estimate a set of 

change-points θ̂(b). Then the candidates for shared change-points are estimated by 

. Because different bandwidths may yield change-points with slightly different 

positions, some change-points in θ̂ may be redundant. To resolve this issue, we keep the 

corresponding change-point and drop the other change-point when two change-points 

detected by two different bandwidths are close to each other (e.g., the distance between them 

is less than the shorter bandwidth), as we “trust” the longer bandwidth. Moreover, some 

change-points with small mean shifts may not be reliable. Such points will be excluded as 

described in Section 2.3.2.

2.3.2. Change-point carrier identification—Recall that the shared change-points are 

detected through summary scan statistics. Consequently, we do not know which individuals 

carry a particular change. Hence, it is necessary and useful to identify the carriers of a given 

change-point. A simple approach is to test the means on two sides of a candidate change-

point, but as discussed by Zhang et al. (2010), the existence of trends that are unrelated to 

the change-point could cause slight shifts in local means along the chromosome, making it 

difficult to differentiate a real change-point from a shift caused by trends. This can be 
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resolved by thresholding as follows for a given sample i and candidate change-points θ̂ = 

{τ̂1 < τ̂2 < ··· < τ̂Ĵ}.

Algorithm: Carrier identification:

1. Set Ĵi = Ĵ and τ̂i,j = τ̂j for j = 1, …, Ĵi. Denote θ̂i = {τ̂i,j, j 
= 1, …, Ĵi}.

2. Let τî,0 = 0 and τ̂i,Ĵi+1 = T. Calculate the segment means 

 for 0 ≤ j ≤ Ĵi.

3. Calculate the estimated jump size at each change-point di,j 

= mi,j − mi,(j−1) for 1 ≤ j ≤ Ĵi.

4. Find the change-point with the smallest absolute jump size

If |di,j*| is less than a pre-specified threshold γi, remove the 
j*-th change-point by replacing θ̂i with θ̂i\{τ̂i,j*} and 
replacing Ĵi with Ĵi−1, and then repeat the procedure from 
step 2; otherwise, estimate all the individual change-points 
for sample i by θ̂i.

Remark 3: The choice of γi should be based on the particular dataset and scientific 

application. When technical replicates are available, γi can be determined based on the 

proportion of detections that can be verified. We illustrate this approach in Section 5.

Remark 4: If no individual carrier is identified for a particular change-point, we will 

remove this change-point from the shared set θ̂, further improving the precision and 

reliability of θ̂.

3. Statistical properties

In this section, we consider two questions regarding the proposed method: 1. Can we rely on 

this method to detect shared CNVs in multiple samples? 2. Since most current methods are 

single-sample-based, are multiple sample methods really advantageous to single sample 

methods to justify their use? To address these questions, we discuss two theoretical 

properties of multi-sample SaRa. First, we prove a sure coverage property as sample size N 
increases. This property guarantees to the users that when sample size is large, our method 

can detect shared CNVs in multiple samples with a high probability. Second, in the 

framework of our method, we compare the use of multiple samples versus one sample at a 

time for CNV detection. We show that multiple sample methods have higher asymptotic 

power in detecting shared change-points or CNVs and should be used instead of single 

sample methods. Admittedly, these asymptotic analyses may not be applicable to quantify 
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precisely the actual gain in power. Therefore, we rely on simulation studies to compare 

different methods in Section 4.

Throughout this section, we assume that the sequence length T and the set of change-points 

θ = {τ1, …, τJ} are fixed. For convenience in notation, we denote τ0 = 0 and τJ+1 = T, and 

we let L = min1≤j≤J+1(τj − τj−1). Recall that δi,j is the mean change of sample i at τj. Here, 

we assume for simplicity that, for each 1 ≤ j ≤ J, δ1,j, …, δN,j are independent and

where πj > 0, Δj, and  are fixed and assumed known. This setting corresponds to a 

practical scenario that the platform for genotyping is fixed, and the locations of the 

underlying CNVs are also fixed. For each shared CNV, its carriers constitute a certain 

proportion of the population, and the mean intensity change in the CNV region may vary for 

each carrier.

We also assume that  are known, so without loss of generality, we set them all 

equal to 1. Moreover, following Niu and Zhang (2012), we call a point t h-flat if the interval 

(t − h, t + h) contains no change-point. Then we have

where .

Theorem 1: Using SaRa for multiple samples with any of the following combining 

methods: WSum, WWSum, WFisher, WStouffer, WHC, and WAF, there exist suitable h and λ 
such that the estimated change-points θ̂ satisfy

where .

The previous theorem states that a threshold λ exists to ensure the sure coverage property of 

SaRa for multiple samples. However, the choice of such a threshold depends on the 

underlying truth which is generally unknown. Therefore, in practice, the threshold is usually 

chosen so that at a flat-point or at a local maximizer, the scan statistic goes above the 

threshold with a certain probability, say α. We show in the next theorem that the “power” of 
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detecting a true change-point, in other words the probability that the scan statistic at a true 

change-point exceeds this threshold, tends to 1 pretty fast.

In comparison, we consider a naïve single sample procedure that calls change-points in 

single samples first and then combines the obtained change-points in all the samples. In 

other words, for some λ*, whenever |D̃
i(t, h)| > λ* for any i, we claim that t is a change-

point for sample i and thus a shared change-point. This is equivalent to using the maximum 

statistic of  and calling t a change-point when maxi |D̃
i(t, h)| > λ*. Note that 

due to multiplicity, controlling the false positive rate for individual samples is not enough. 

Instead, we need to choose λ* such that P (maxi |D̃
i(t, h)| > λ*) = α for an h-flat point t. We 

show in the following theorem that the power of this naïve single sample method detecting a 

true change-point tends to 1 at a rate slower than multiple sample methods.

Theorem 2

a. Use SaRa for multiple samples with any of the following 
combining methods: WSum, WWSum, WFisher, WStouffer, 
WHC, and WAF, and choose the threshold λ such that for an 
h-flat point t we have P(W(t, h) > λ) = α with a specific 
level α. Then for any j = 1, …, J, P(W(τj, h) > λ) tends to 1 
at least at an exponential rate in N.

b. Use the single sample procedure that calls a common 
change-point at t when maxi |D̃

i(t, h)| > λ* where λ* is 
chosen such that P(maxi |D̃

i(t, h)| > λ*) = α for an h-flat 
point t. Then for any j = 1, …, J, P(maxi |D̃

i(τj, h)| > λ*) → 
1 as N → ∞ but with a rate slower than the exponential 
rate in N.

Remark 5: We note that the convergence rate for the single sample method in Part (b) of the 

theorem depends on . The convergence is slower for smaller . At the extreme case when 

, i.e. when the mean changes for carriers of a change-point are fixed, the convergence 

gets much slower.

4. Numerical result

4.1. Power for detecting a single change-point

To study the power of SaRa for multiple samples, we simulated simple datasets with only 

one change-point shared by a certain proportion of samples. The datasets were simulated in 

the following procedure.

1. Let N be the number of samples, T be the length of the 

sequence, δ be the jump size, and π* be the proportion of 

samples that carry the change-point.
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2. For 1 ≤ i ≤ ⌈Nπ*⌉, sample  if 1 ≤ j ≤ T/2, and 

sample  if T/2 < j ≤ T. Here, ⌈ · ⌉ is the 
ceiling function.

3. For ⌈Nπ* ⌉ < j ≤ N, sample  for 1 ≤ j ≤ T.

Different combining statistics were considered (for W WSum, we set π0 = 0.01 and π0 = 0.1 

because in real applications, the carrier proportion cover a large range, and we do not know 

what π0 value is the best; for WHC and WAF, n0 = 4 was used). We correctly detect the 

change-point when at least one local maximizer of the scan statistics falls between 50−h and 

50+h, and exceeds the 99% quantile of the null distribution of the local maximizers. We also 

counted the number of local maximizers that fall out of 50 − h and 50 + h and exceeeds the 

threshold as the number of false discoveries. We checked the number of false discoveries of 

different methods to ensure that they are at the same level so that our comparison of power is 

fair (see details in Supplement Figure 2). The simulation results are a summary of 1000 

replications.

To demonstrate how the power changes according to N when detecting both rare and 

common change-points, we simulated two scenarios with N ∈ {100, 200, …, 1000}. For the 

rare change-point scenario, we set π* = 0.01, δ = 1, and h = 20; for the common change-

point scenario, we set π* = 0.2, δ = 0.5, and h = 10. The parameters were selected to 

enhance the differences among methods.

Figure 1(a) compares the power of different methods for detecting a rare change-point with 

carrier proportion π* = 0.01. As expected, the sum of squares statistic, Fisher’s statistic, and 

Stouffer’s statistic have the lowest statistical power, because they combine all of the scan 

statistics where a majority (99%) come from non-carriers. On the contrary, using the 

maximum test statistic as an example of single sample methods as described in Section 3 

enjoys a reasonable statistical power. However, its power increases very little as N increases, 

because only the single strongest test statistic is used, which is a waste of information. This 

result is consistent with the theoretical conclusion of Theorem 2. Similar to the observation 

in Jeng, Cai and Li (2013), the higher criticism statistic has a relatively good statistical 

power in detecting rare signals, and the power increases as N increases. Our proposed 

adaptive Fisher’s statistic performs the best among the methods under comparison. For 

weighted sum of squares statistic with π0 = 0.01, even though the prior information is 

correctly specified, its power is slightly lower than that of the adaptive Fisher’s method. As 

expected, the performance of weighted sum statistic with π0 = 0.1 lies between the sum of 

squares and weighted sum with π0 = 0.01.

Figure 1(b) compares those methods in terms of the power for detecting a common change-

point with carrier proportion π* = 0.2. As expected, the sum of squares statistic, Fisher’s 

statistic, and weighted sum with π0 = 0.1 have the best statistical power. Adaptive Fisher’s 

statistic and Stouffer’s statistic perform similarly with slightly lower power. Weighted sum 

statistic with π0 = 0.01, higher criticism statistic, and maximum statistic have the lowest 

power. Similar to the rare change-point case, the maximum statistic does not benefit much 

from the increase in the sample size.
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To display the power of different methods as π* changes, we also simulated data using π* ∈ 
{0, 0.01, 0.02, …, 0.25}, N = 100, and δ = 1. Moreover, to illustrate how the adaptive 

Fisher’s statistic and higher criticism statistic adapt to different carrier proportions, we 

calculated the peak positions of these two statistics as π* changes, which are the maximizer 

indices of equations (2.7) and (2.8) divided by N.

Figure 2(a) shows the power of different methods with bandwidth h = 10. To see the 

comparison more clearly, we calculate the relative power of different methods as their 

original power divided by the power of adaptive Fisher’s method, such that the relative 

power of adaptive Fisher is always 1. A relative power greater than 1 means the method is 

more powerful than adaptive Fisher, and vise versa. The relative power is shown in Figure 

2(b). Similar to our previous observation, maximum statistic, higher criticism, and weighted 

sum of squares statistic with π0 = 0.01 only perform well for small π*, whereas the sum of 

squares and Fisher’s statistics only perform well for large π*. Stouffer’s statistic performs 

good only when π* gets close to 0.25, which is due to its well-known property of robustness 

against a few outliers. Adaptive Fisher’s statistic enjoys competitive statistical power no 

matter π* is small or large. Weighted sum of squares with π0 = 0.1 is the closest competitor. 

It has the highest statistical power when the real carrier proportion is between 0.07 and 0.18, 

but is suboptimal in detecting rare change-points. In real applications, because rare change-

points are more difficult to detect and we do not know the true carrier proportion for each 

change-point, we decided to use adaptive Fisher’s statistic rather than the weighted sum of 

squares for our algorithm. To illustrate how the adaptive Fisher’s statistic works, we show in 

Figure 3 its average peak positions and those of the higher criticism statistic, which can be 

interpreted as the proportions of scan statistics that contribute to the combined statistics. We 

can see that the proportion of scan statistics that contributes to the adaptive Fisher’s statistic 

tends to increase as π* increases. This trend is even stronger when h = 20 is used. On the 

contrary, the higher criticism method tends to select a much smaller proportion of p-values 

to combine, which can partly explain why it does not perform well when π* gets large.

4.2. Simulation with multiple changes

4.2.1. Data without trend—We further simulated data from a more realistic model to 

compare our method and some existing ones. In each of the 1000 replications, we simulated 

a dataset of 500 SNPs and 1000 samples. The detailed simulation procedure is described 

below.

1. First, simulate the mean signal μi without noise. For 1 ≤ i ≤ 

1000 and 1 ≤ t ≤ 500, and set μi,t to 0 except for the 
following change-regions in their carriers.

a. Region 1: 28 ≤ t ≤ 54 (length 
is 27), set μi,t = δ1 = 2.58 if 
sample i is a carrier, the 
carrier proportion π1 = 0.02.

b. Region 2: 116 ≤ t ≤ 130 

(length is 15), set μi,t = δ2 = 

−1.92 if sample i is a carrier, 
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the carrier proportion π2 = 

0.05.

c. Region 3: 222 ≤ t ≤ 306 

(length is 85), set μi,t = δ3 = 

1.74 if sample i is a carrier, 
the carrier proportion π3 = 

0.1.

2. Add random noise to the mean signal. Simulate Yi = μi + εi 

for 1 ≤ i ≤ 1000, where εi ~ MVN(0, I).

Figure 4 displays five representative examples of individual sequences, with a total of 3 pairs 

of change-points: one shared by sequences 2 and 4 (positions 27 and 54), one shared by 

sequences 3, 4, and 5 (positions 115 and 130), and one unique to sequence 5 (positions 221 

and 306). We compared five methods: a fast implementation of CBS (fast-CBS) from 

Venkatraman and Olshen (2007), CBS with post hoc subset selection for the change-points 

using BIC (CBS-SS), multiple-bandwidth SaRa for single samples (m-SaRa), multiple-

sample CBS (Zhang et al., 2010), and our proposed method (multiple-sample m-SaRa, α = 

0.001 was used when determining λ, and  was used for each bandwidth h).

Table 1 presents the number of shared change-points detected by each of the five methods. 

Multiple-sample CBS and our method correctly detected exactly 6 change-points in all 

replications. Because single sample methods may not detect the same change-point at the 

same location for different samples, we grouped close-by change-points if they are within 3 

markers. Tables 2 provides the details of the performance for each method (by row) in 

detecting each change-point (by column). Tables 2(a) and 2(b) offer the average numbers of 

true and false positives for each of the six change-points, respectively. Because the single 

sample methods do not detect the change-point positions as accurately as the multiple 

sample methods, for the single sample methods, we treat a change-point as a true positive 

provided that it falls within 5 markers of the true position. From these tables, we can see that 

our proposed method performed slightly better than multiple-sample CBS in terms of 

sensitivity and specificity among the five methods.

4.2.2. Data with trend related to GC content—Signal intensities measured by SNP 

arrays are often prone to genomic waves. Diskin et al. (2008) found that these waves are 

related to genomic GC content. The correlation between the intensities and local genomic 

GC content can be either positive or negative, and the magnitude of the genomic wave is 

related to the DNA quantity loaded in the SNP array experiment. In other words, different 

samples may share the same wavy pattern, but the magnitude of these waves are different 

and often related to the batch of the experiments. Although these waves can be partially 

adjusted by regressing the observed intensities on the local GC content, it is not guaranteed 

that they can be completely removed. For example, selecting the bandwidth to calculate the 

local GC content is not trivial - a large bandwidth may result in insufficient adjustment, 

whereas a small bandwidth may fail to capture the local GC content and overfit the 
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adjustment model. Therefore, we believe that it is still beneficial for the CNV calling 

algorithm to be robust to local trend related to GC contend and batch effect.

To examine our method, we simulated data with a same wavy pattern in all the samples, but 

the magnitudes of the waves are different and randomly given. The rest of the simulation 

was the same as in Section 4.2.1. Specifically, we simulated Yi by adding local trend and 

random noise as follows:

where ψ ~ U(0, 2π), ϕ ~ U(0, 2π), ai ~ U (−0.15, 0.15), and εi,t ~ N (0, 1). In this model, the 

wavy pattern was composed of two sine signals with different periods and amplitudes, which 

mimics the GC content. The overall magnitude of the wave ai is uniformly distributed 

between −0.15 and 0.15 for each sample. Table 3 shows the number of shared change-points 

detected. We can see that the single sample methods were all greatly impacted by the trend 

introduced. Multiple-sample CBS was less affected, but still yielded a fair amount of false 

change-points. Our multiple-sample m-SaRa method, however, still performed robustly and 

detected all 6 true change-points in 998 out of 1000 replicates. An intuitive explanation is 

that the CBS scan statistic uses global information and thus cannot distinguish between a 

large scale trend and a real changed region, whereas the SaRa scan statistic look for sharp 

mean change using local information, which makes it immune to the influence of a large 

scale trend. In addition to this setting, we simulated two more scenarios to test our 

robustness towards trends with different patterns among individuals as well as dependent 

measurement error (see Supplement Sections 1 and 2 for details).

4.2.3. Data with imperfectly aligned change-points—In real data, even though the 

CNV can be shared across a proportion of samples, the change-points can be slightly 

different in each carrier. To evaluate our method under this situation, we simulated data with 

imperfectly aligned change-points. The simulation procedure we adopted is the same as in 

Section 4.2.1, except that we added a random shift up to 3 SNPs to each change-point in 

each sample. The probabilities that a change-point shift by 1, 2, and 3 SNPs from the 

original location is 30%, 20% and 10% respectively, which leaves the probability of having 

no shift in the change-point at 40%. We set the maximal shift to be 3 because if the change-

points differ by more than 3 SNPs, it is more appropriate to consider them as different 

change-points. Table 4 presents the number of shared change-points detected. We can see 

that the single sample methods often detected more than 6 change-points in the 1000 

replications; whereas multiple sample methods including multiple-sample CBS and 

multiple-sample m-SaRa always detected 6 change-points.

5. Real data analysis

We examined the performance of our method by applying it to the genetic data from the 

Primary Open-Angle Glaucoma Genes and Environment (GLAUGEN) study (http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000308.v1.p1). This 

dataset contains 1363 samples from 1343 individuals, including 20 pairs of technical 
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replicates. A total of 657, 366 markers were genotyped using Illumina Human660W-Quad 

v1 A chips. The detail steps on data pre-processing and implementation of our method are as 

follows:

1. The observed Log R Ratio sequences were adjusted by the 
local GC content as suggested by Diskin et al. (2008) using 
the program “genomic wave.pl” in the PennCNV package.

2. The adjusted sequences were each centered at 0.

3. Multiple-sample m-SaRa were run using bandwidths 5, 10, 
and 15. The cutoff λ was determined following the 
approaches in Remark 2, first as the 99.99-th percentile of 
the simulated null distribution of W (t, h) at local 
maximizers (α = 0.0001), and then as the 50-th percentile 
from the observed values of W (t, h) at the local 
maximizers (α′ = 0.5).

4. Different values for the cutoff on the mean differences were 
tested: γi = kσ̂

i where k = 0.1, 0.2, …, 3.

Note that even after adjusting for the GC content, microarray data could still be affected by 

artifacts. For example, outliers may arise as a result of bad probes. Furthermore, the 

normality assumption on the errors are generally violated. For these issues, one may 

consider applying further adjustments on the data, and the approaches include median 

polishing and quantile normalization (Xiao, Min and Zhang, 2015).

We used the same approach as Zhang et al. (2010) and Siegmund, Yakir and Zhang (2011) to 

assess detection accuracy. Specifically, we first applied the proposed method to all 1363 

samples without the information on replications. Then we compared the detected copy 

number variants, or more precisely the detected change-points, for each pair of technical 

replicates. We defined inconsistent detections in a pair of samples as the variants detected in 

one but not the other sample of this pair. The remaining detected variants were called 

consistent detections. The proportion of consistent detections was calculated for each pair of 

technical replicates, and these proportions were then used to measure the performance of our 

method and other CNV detection methods. Note that high values in these proportions do not 

necessarily imply high accuracy. For example, they all equal 1 if all the samples are 

identified as carriers of every change-point by letting γi be 0 in our method. Therefore, we 

contrasted them with baseline proportions of consistent detections in 1000 randomly 

selected pairs of samples. Although it is not clear what the true baseline proportion should 

be for a random pair of samples, we expect that a good detection method should give higher 

proportions of consistent detections in replicate pairs than in random pairs.

We display the results for the 11, 244 markers on chromosome 22 in Figure 5 and Table 5. In 

Figure 5(a), we plot the total number of detections out of the 20 replicate pairs under 

different values of γi, and we also plot the median proportion of consistent detections in 

Figure 5(b). When γi’s were low, the total number of detections was very high. Meanwhile, 

the proportions of consistent detections were high both for replicate pairs and for random 
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pairs, most likely because most samples were kept as carriers for each change-point due to 

low γi’s, which rendered the detections unreliable. As γi’s increased, more detections were 

filtered out, and the proportions of consistent detections dropped. The median proportion of 

consistent detections in random pairs became quite stable after γi/σ̂
i got greater than 1, 

which is a suitable range to choose γi’s. For replicate pairs, the median proportion began 

increasing when γi/σ̂
i got greater than 0.8, and eventually climbed to 1 for γi/σ̂

i greater than 

2.

A subsequent question is: what values should we use for γi’s? In general, this depends on 

how noisy the data are, the true mean shifts for different copy number changes, and the 

researcher’s preference in the trade-off between true positive and false negative detections. 

For this dataset, γi = 1.2σ̂i is a plausible threshold because the proportion of consistent 

detections was briefly stable as γi/σî is between 1.2 and 1.4, which suggested that the true 

positives were being removed along with the false negatives for increasing γi’s in this 

region. The proportion of consistent detections in random pairs was very stable until γi/σ̂
i = 

1.7, so this is another potential cutoff. One could also use γi = 2σ̂
i if only the most reliable 

detections are wanted, but this tends to retain only a small number of change-points with the 

largest mean shifts, which in practice are the changes of two or more copies.

We applied two competing methods: multiple-sample CBS and PennCNV to the same data 

after pre-processing and compare their detection accuracies with our method in Table 5. The 

median proportion of consistent detections in the 20 pairs of replicates and in 1000 

randomly selected pairs are summarized. We present only the results for γi’s that led to a 

similar number of total detections to the competing methods so the results are comparable. 

When γi/σî = 1.2, our method detected a similar number of variants to PennCNV. The 

median proportion of consistent detections in replicate pairs by our method was higher than 

PennCNV, and the proportion in random pairs by our method was also slightly higher. Note 

that our method only used the LRR values, whereas PennCNV also used the B-allele 

frequencies, yet our method gave similar or slightly better performance comparing to 

PennCNV. When k = 0.5, our method had a similar number of detected variants to multiple-

sample CBS, the proportion of consistent detections in replicate pairs was slightly higher 

than multiple-sample CBS, but the proportion in random pairs was also higher than multiple-

sample CBS. These results, however, seem to be worse than the results from our method 

with k = 1.2 and PennCNV.

We also performed our method with an additional bandwidth h = 2 in light of the fact that 

many CNV regions might be short and cannot be captured when the smallest bandwidth is 5. 

As displayed in Table 5, the accuracy was improved when the total number of detection was 

smaller, but it was compromised when the total number of detection was larger. 

Nevertheless, we detected more shorter CNV regions as illustrated in Figure 6. Figures 6(a) 

and 6(b) present the distribution of the lengths of regions (in numbers of markers) between 

consecutive change-points detected by our method (with k = 1.2) using 3 bandwidths (h = 5, 

10, 15) and 4 bandwidths (h = 2, 5, 10, 15), respectively. Since most of these regions are 

short, we only plot those with no more than 60 markers. Here, we considered chromosomes 

1–22 in all 1363 samples. These two figures indicate that with the extra bandwidth 2, the 
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number of detected regions with more than 10 markers did not change much, but many more 

shorter regions were detected, especially those with 5 or fewer markers.

In Table 6, we compare the running time that each method used to identify CNVs/change-

points from the 11, 244 markers on chromosome 22 for 1, 363 samples. The computation 

was performed on a Windows workstation equipped with 2 Inter(R) Xeon(R) E5645 

processors (12 cores in total) and 48GB RAM though we did not apply parallelization for 

any method. Our proposed method was much faster than the competing methods, which 

confirmed its advantage of having lower computational complexity. In fact, our method took 

about 87 minutes to finish scanning the 640, 663 markers on chromosomes 1–22 for the 1, 

363 samples, which is the size of a typical GWAS study. Note that for our method, obtaining 

the threshold λ from the simulated null distribution takes additional time and is 

computationally intensive. We could use the quantile in the observed values instead, which 

does not cost extra time. As can be seen in Figure 5 and Table 5, this threshold gave very 

similar results to the simulated threshold.

6. Discussion

Although CNV has been studied for more than a decade, multiple sample based calling 

methods had not been proposed until recent years. In practice, single sample methods are 

still dominating. This is partly due to the lack of systematic evaluation of multiple sample 

methods and single sample methods. In this study, we have demonstrated that in terms of 

shared change-point detection, single sample methods are equivalent to taking the most 

significant statistic across samples, which is under-powered and sometimes does not work. 

Therefore, to achieve biologically meaningful detection power, specificity has to be 

sacrificed in single sample method, which inevitably increases the number of false positives. 

This approach does not utilize information across samples, especially with the growth of 

studies with large sample sizes. Conversely, multiple sample methods combine evidences 

from multiple samples to detect shared change-points, which boosts the statistical power and 

hence reduces the false positives. Theoretically, we have proven that the power of multiple 

sample methods always converges to 1 at an exponential rate in the number of samples, 

which is faster than single sample methods. This is validated by our simulation.

Instead of using the CBS scan statistic, we employed the SaRa scan statistic in our method. 

The SaRa statistic utilizes local information, which can significantly speed up the 

computation. Because SaRa scan statistic uses a moving window, the computation 

complexity is linear in the number of markers T. Sorting is also needed in combining 

multiple samples using adaptive Fisher’s method, thus the overall complexity of our 

proposed method is O(T N log N). In practice T ≫ N, our method is much more 

computationally efficient than other competing methods whose computation complexities 

are at least O(NT2) or O(NT log T).

We should note that despite the simplicity and speed of SaRa, the selection of bandwidth h is 

nontrivial: too small an h may reduce the statistical power, whereas too large an h may miss 

the short CNVs. A similar problem also haunts other single sample methods. Specifically, 

short CNV regions are hard to detect since the statistical evidence is relatively weak. Thus, 
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the false positive rate usually has to be sacrificed to detect these short regions. Some ad hoc 
methods have been proposed to solve this problem. For example, in Birdsuite, a program 

called Canary can detect common short CNVs by using prior knowledge. This solution is, 

however, platform-specific and cannot work when the prior knowledge is lacking. This 

problem is greatly alleviated in multiple-sample SaRa. Because we have shown in theory 

that the statistical power of multi-sample SaRa converges to 1 as the number of samples 

increases, a large h is no longer crucial to get decent statistical power given enough samples. 

In multi-sample SaRa, we recommend h be selected as large as possible provided that the 

biological interests are accommodated. For example, the median distance between adjacent 

markers is below 700 bases in Affymetrix Genome-Wide Human SNP Array 6.0. Using this 

platform, h should be set ≤ 15 to study CNVs longer than 10k bases.

Furthermore, we proposed a novel adaptive Fisher’s method which combines p-values while 

adapting to the proportions of true signals. We have demonstrated by simulation that this 

statistic is powerful regardless of the proportion of true signals among the combined p-

values. Another advantage is that the sums of the transformed order p-values are 

standardized using their theoretical means and variances, which saves computation time by 

avoiding a double permutation procedure. In the real data analysis, we noticed that the 

proposed statistic might be over-sensitive by picking too many candidates for common 

change-points when we used the threshold λ from the simulated null distribution. This 

might be due to the noise in the data as well as the departure from the normal assumption in 

our model. In this regard, we can decide the threshold empirically as suggested in the paper, 

or other distribution assumptions can be used for the LRR sequences. Alternatively, we can 

consider using mean, median, or other quantiles in (2.7) as one of the referees suggested. 

This would make WAF more robust to outliers caused by artifacts in the data, but the 

sensitivity might be compromised. Further study is needed to address the pros and cons of 

these alternatives.

Recent developments in NGS methods have allowed us to analyze DNA sequences at a 

much finer level. CNVs can also be detected by scanning for change-points in sequences of 

read depths (Alkan, Coe and Eichler, 2011). For this type of data, our proposed method 

could be extended naturally and has the advantage of being computationally efficient, but it 

faces several challenges. First, read depth sequences are count data and correlated, so new 

distributional assumptions are needed, and the properties of the SaRa statistic need to be re-

evaluated. Second, the p-values that we combine in the adaptive Fisher’s method might also 

be discrete as the SaRa statistics are discrete, which makes evaluation of the significance 

level more difficult. These are important issues for future research.

In conclusion, we proposed a new change-point calling method which utilizes information 

from multiple samples. The SaRa scan statistic is used to make this method computationally 

efficient and robust against long range trends in the data. The novel adaptive Fisher’s 

statistic enables the method to accommodate both rare and common change-points. It should 

also be noted that this work is the first that has compared the single sample methods and 

multiple sample methods theoretically and numerically.
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Fig 1. 
Power of different methods for detecting a single rare or common change-point as N 
changes from 100 to 1000. In (a), a single rare (π* = 0.01) change-point was simulated and 

detected using δ = 1 and h = 20; in (b), a single common (π* = 0.2) change-point was 

simulated and detected using δ = 0.5 and h = 10.
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Fig 2. 
Simulation result for single change-point detection as π* changes from 0 to 0.25. N = 100 

and δ = 1 were used for the simulation. The powers of the seven combining methods (with h 
= 10) are compared in (a). To make the differences clear enough to see, the relative power of 

different methods comparing to adaptive Fisher’s method is plotted in (b), where the relative 

power is calculated as the original power divided by the power of adaptive Fisher’s method.
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Fig 3. 
Average adaptive peak position of adaptive Fisher’s statistics and higher criticism statistic, 

where the dotted line shows the true proportion of sample carriers.
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Fig 4. 
The simulated data with no trend. Five samples are shown. The mean signals without noise 

are shown by bold black lines.
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Fig 5. 
Results of the real data analysis by the proposed method as γi/σ̂

i changes from 0.1 to 3. λ 
was determined using two approaches: first as the 99.99-th percentile of the simulated null 

distribution of W (t, h) on local maximizers (denoted as “Simulated”), and then as the 50-th 

percentile from the corresponding observed distribution (denoted as “Empirical”). The total 

number of detections in the 20 replicate pairs is given in (a). The median proportions of 

consistent detections in the 20 replicate pairs and in 1000 randomly selected pairs of 

samples are given in (b).
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Fig 6. 
The histograms of the number of markers between change-points detected in the GLAUGEN 

data. Regions with no more than 60 markers were shown. The results based on three 

bandwidths (h = 5, 10, 15) are shown in (a). The results based on four bandwidths (h = 2, 5, 

10, 15) are shown in (b).
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Table 5

The median proportions of consistent detections in 20 pairs of technical replicates and in 1000 random pairs. S 

= Simulated; E = Empirical.

Median Proportion

Method Settings Replicate Pairs Random Pairs Total Detections

Multiple-sample m-SaRa (h = 5, 10, 15) S, k = 1.2 0.648 0.242 820

E, k = 1.2 0.646 0.240 824

S, k = 0.5 0.616 0.369 4521

E, k = 0.5 0.636 0.377 4483

Multiple-sample m-SaRa (h = 2, 5, 10, 15) S, k = 1.6 0.667 0.222 858

E, k = 1.6 0.636 0.205 922

S, k = 0.7 0.507 0.290 4962

E, k = 0.7 0.457 0.275 5940

Multiple-sample CBS p0 = 1 0.616 0.311 4912

p0 = 0.1 0.618 0.311 4918

p0 = 0.01 0.594 0.305 4865

PennCNV 0.558 0.2 903
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Table 6

Running time for CNV detection on chromosome 22 in 1, 363 samples.

Method

Multiple-sample m-SaRa Multiple-sample CBS PennCNV

Time 66 sec. ~ 200, 000 sec. ~ 5, 000 sec.
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