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Abstract
Recent studies showed that population substructure (PS) can have more complex

impact on rare variant tests and that similarity-based collapsing tests (e.g., SKAT)

may suffer more severely by PS than burden-based tests. In this work, we evaluate the

performance of SKAT coupling with principal components (PC) or variance com-

ponents (VC) based PS correction methods. We consider confounding effects caused

by PS including stratified populations, admixed populations, and spatially distributed

nongenetic risk; we investigate which types of variants (e.g., common, less frequent,

rare, or all variants) should be used to effectively control for confounding effects. We

found that (i) PC-based methods can account for confounding effects in most scenarios

except for admixture, although the number of sufficient PCs depends on the PS com-

plexity and the type of variants used. (ii) PCs based on all variants (i.e., common +
less frequent + rare) tend to require equal or fewer sufficient PCs and often achieve

higher power than PCs based on other variant types. (iii) VC-based methods can effec-

tively adjust for confounding in all scenarios (even for admixture), though the type of

variants should be used to construct VC may vary. (iv) VC based on all variants works

consistently in all scenarios, though its power may be sometimes lower than VC based

on other variant types. Given that the best-performed method and which variants to

use depend on the underlying unknown confounding mechanisms, a robust strategy is

to perform SKAT analyses using VC-based methods based on all variants.

K E Y W O R D S
population substructure, principal components analysis, rare variant association tests, variance components

276 © 2017 WILEY PERIODICALS, INC. Genet. Epidemiol. 2018;42:276–287.www.geneticepi.org

http://orcid.org/0000-0002-3467-2599
http://orcid.org/0000-0002-5505-1775


LUO ET AL. 277

1 INTRODUCTION

With the advance of next-generation sequencing, rare variants

association study has emerged as an important paradigm for

mapping human complex traits. Recent studies have revealed

that the impact of population substructure can be more com-

plex on rare variants (RVs) than on common variants (CVs)

(Mathieson & McVean, 2012; Moore et al., 2013; Nelson

et al., 2012; O'Connor et al., 2013; The 1000 Genomes Project

Consortium, 2012; Zawistowski et al., 2014) and dealing

with population substructure is indispensable for RV testing

(Cardon & Palmer, 2003; Kang et al., 2010). Compared to

CVs, RVs have relatively short evolutionary history and are

more geographically localized or even private to specific sub-

populations. For example, even in Europe, there is a gradient

in diversity from Southern to Northern Europe (Mathieson

& McVean, 2012; Nelson et al., 2012; The 1000 Genomes

Project Consortium, 2012). Many works have explicitly quan-

tified the degree of inflation under various simulated scenarios

(e.g., Mathieson & McVean, 2012; Wang et al., 2014) and in

real data (e.g., Hoffman, Krause, Lehmann, & Krüger, 2014;

Nelson et al., 2012; Wang et al., 2014), and showed that the

degree of inflation is more severe in RVs than in CVs. Further-

more, RV studies require large sample sizes, for which multi-

ethnic samples start to gain attractions in association studies

of RVs (Haiman et al., 2013).

Recent studies reach different conclusions about if the cor-

rection methods designed for CVs can effectively account

for population substructures in RV studies (e.g., Babron,

de Tayrac, Rutledge, Zeggini, & Génin, 2012; Baye et al.,

2011; Jiang, Epstein, & Conneely, 2013; L. Liu et al.,

2013; Liu, Nicolae, & Chen, 2013; Zhang, Guan, & Pan,

2013). By focusing on the principal component (PC)-based

methods (Price et al., 2006), it is noted that the correc-

tion performance depends on (i) the types of collapsing

methods (Q. Liu et al., 2013; Zawistowski et al., 2014)

e.g., burden-based methods (Asimit, Day-Williams, Mor-

ris, & Zeggini, 2012; Li & Leal, 2008; Madsen & Brown-

ing, 2009; Morgenthaler & Thilly, 2007; Morris & Zeg-

gini, 2010; Price et al., 2010) or similarity-based methods

such as the Sequencing Kernel Association Test (SKAT)

(Wu et al., 2011) and others (Tzeng et al., 2011; Tzeng,

Lu, & Hsu, 2014; Zhao, Marceau, Zhang, & Tzeng,

2015); (ii) the degree of complication of the substructures

(Q. Liu et al., 2013; Mathieson & McVean, 2012); and

(iii) the number of variants collapsed (Q. Liu et al., 2013;

Mathieson & McVean, 2012; Zawistowski et al., 2014). In

addition, it is also not clear which types of variants (e.g., RVs

or CVs or both) should be used to capture the subtle sub-

structure of RVs (Babron et al., 2012; L. Liu et al., 2013) and

how many PCs should be used to sufficiently remove the con-

founding caused by population substructure (Babron et al.,

2012; L. Liu et al., 2013; Q. Liu et al., 2013; Mathieson &

McVean, 2012). It has been suggested that for simple strat-

ifications (e.g., two continental groups), top few PCs based

(e.g., 5–10) on CVs can effectively account for population

substructures (L. Liu et al., 2013; Q. Liu et al., 2013; Zhang,

Shen, & Pan, 2013). For regional and complex substructures,

many PCs (20–100 PCs) are required to remove the inflation

induced by population substructures (Mathieson & McVean,

2012).

Besides the PC-based approaches, there are also VC-

based approaches for adjusting for population substruc-

tures, e.g., Kang et al., 2010; Lippert et al., 2011; Schaid,

Mcdonnell, Sinnwell, & Thibodeau, 2013; Thornton &

McPeek, 2010. Instead of including the PCs as covariates,

VC correction methods account for the substructure effect by

empirically estimating the genealogical relatedness based on

whole genome sharing information. For association studies

of CVs, VC correction methods are known to perform better

than PC-based approaches when populations have subtle and

complex substructures and be applicable in a wide range of

substructures, including continental to regional stratification,

admixture, and cryptic relatedness (Kang et al., 2010). Never-

theless, only a few studies discussed the use of VC correction

methods in RV analysis (Babron et al., 2012; Listgarten,

Lippert, & Heckerman, 2013; Mathieson & McVean, 2012)

and majority of these studies are under the context of burden

tests. It is suggested that VC-based correction for burden test

can effectively correct for the inflations caused by complex

confounding structure and give maximum power among dif-

ferent controlling methods (Listgarten et al., 2013).

Recent work has suggested that similarity-based RV tests

(e.g., SKAT) may suffer more severe impact by population

substructure than burden-based RV tests (Q. Liu et al., 2013;

Zawistowski et al., 2014). However, the performance of PC vs.

VC correction methods has not been comprehensively exam-

ined for similarity-based RV tests. In this work, we aim to

evaluate the PC-based and VC-based correction methods for

SKAT and provide practical guidelines on the population sub-

structure control for RV testing. Specifically, we implement

the VC-based correction approaches under the framework of

SKAT (referred to as SKAT-VC) and compare their perfor-

mance with SKAT incorporating PC covariates (referred to

as SKAT-PC). We consider a variety of confounding effects

due to population structure ranging from stratification, admix-

ture, and geographically distributed nongenetic risk; we con-

sider COalescent Simulation (COSI) simulated sequence data

and real sequence data from CoLaus samples (Caucasians res-

idents of Lausanne, Switzerland (Firmann et al., 2008)). We

investigate the effectiveness of using CVs (minor allele fre-

quency (MAF) > 5%), RVs (MAF < 1%), less frequent vari-

ants (LFVs; 1%≤MAF≤5%), and all variants (AVs; includ-

ing RVs, LFVs, and CVs) in reconstructing the substructures

under each scenario and correcting for the inflation. We hope

that our findings can provide helpful guidelines in the practice



278 LUO ET AL.

of substructure controls in RV association tests using similar-

ity based tests.

2 METHODS

Consider a study consisting of 𝑛 individuals indexed by 𝑖 =
1,… , 𝑛. For individual 𝑖, let 𝑌𝑖 be the trait value;𝑋𝑖 be a vec-

tor of covariates excluding population substructures; 𝐺𝑖 be the

design vector of 𝐿 single nucleotide polymorphisms (SNPs)

in the gene region to be evaluated for association. Each ele-

ment of 𝐺𝑖, denoted by 𝐺𝑖𝓁 , corresponds to the minor allele

count for individual 𝑖 at locus 𝓁 and takes values 0, 1 or 2.
We also obtain genome-wide SNPs for each individual, using

which we compute genetic relationship matrix (GRM) (Price

et al., 2006; Yang et al., 2011) based on linkage disequilib-

rium (LD)-pruned RVs, LFVs, CVs, and AVs, and denote the

corresponding GRMs as 𝐾𝑅𝑉
𝐺𝑅𝑀

, 𝐾𝐿𝐹𝑉
𝐺𝑅𝑀

, 𝐾𝐶𝑉
𝐺𝑅𝑀

and 𝐾𝐴𝑉
𝐺𝑅𝑀

,

respectively. Specifically, given a set of whole genome SNPs,

e.g., the 𝑀 LD-pruned CVs, we obtain GRM by first comput-

ing the normalized genomic design matrix 𝑍𝑛×𝑀 so that each

locus has mean 0 and variance 1 for the genotypic value, and

then get 𝐾𝐶𝑉
𝐺𝑅𝑀

= 𝑍𝑍𝑇 ∕𝑀 .

In this paper, we use SKAT (Wu et al., 2011), a similarity-

based test, to evaluate the association between traits and rare

variants and account for population substructure by two differ-

ent methods: SKAT-PC and SKAT-VC. In SKAT-PC method,

we treat substructure as fixed effects and account for its effects

by including the top PCs of a particular 𝐾𝑣
𝐺𝑅𝑀

, with 𝑣 ∈
{RV, LFV, CV, AV}. In SKAT-VC method, we treat sub-

structure as random effects and account for the substructure-

induced relatedness by including a particular 𝐾𝑣
𝐺𝑅𝑀

as the

variance-covariance matrix for the substructure effects. Below

we briefly describe each of the methods.

2.1 SKAT-PC method
For continuous traits, the SKAT-PC model has the form of

𝑌𝑖 = 𝑋𝑖 𝛽 + 𝑋𝑃𝐶,𝑖𝛽𝑃𝐶 + ℎ
(
𝐺𝑖

)
+ 𝜖𝑖,

where 𝑋𝑃𝐶,𝑖 the 𝑞 × 1 vector of the top 𝑞 PC scores based on

a certain 𝐾𝑣
𝐺𝑅𝑀

for subject 𝑖 (and 𝑣 ∈ {RV, LFV, CV, AV})
obtained by eigensoft (Price et al., 2006); 𝛽 and 𝛽𝑃𝐶 are

the coefficient vectors for the covariates and population sub-

structures, respectively; ℎ(𝐺𝑖) is the genetic effect for indi-

vidual 𝑖; and 𝜖𝑖 is the random error with 𝑁(0, 𝜎2). As in

the standard kernel machine framework, the genetic effect is

modeled using random effects, i.e., ℎ𝑇 ≡ [ℎ(𝐺1),⋯ℎ(𝐺𝑛)] ∼
𝑀𝑉 𝑁(0, 𝜏𝐺𝐾𝐺), where 𝜏𝐺 is an unknown variance com-

ponent and 𝐾𝐺 is the 𝑛 × 𝑛 similarity matrix based on 𝐺𝑖

and 𝐺𝑗 . The (𝑖, 𝑗) entry of 𝐾𝐺 records the similarity between

subjects 𝑖 and 𝑗, and is defined using a prespecified kernel

function 𝑘𝐺(⋅, ⋅) based on the 𝐿 variants in the gene, i.e.,

𝐾𝐺{𝑖, 𝑗} = 𝑘𝐺(𝐺𝑖, 𝐺𝑗). In this article, we use the weighted

linear kernel function 𝑘𝐺(𝑖, 𝑗) =
∑𝐿

𝓁=1 𝑤𝓁𝐺𝑖,𝓁𝐺𝑗,𝓁 with the

suggested weight function
√

𝑤𝓁 = (1 − 𝑀𝐴𝐹𝓁)24. The asso-

ciation between trait and gene can be examined by test-

ing for 𝐻0 ∶ 𝜏𝐺 = 0, and the corresponding score test

statistic is 𝑇𝑃𝐶 = 1
2𝜎2 𝑌 𝑇 𝑃1𝐾𝐺𝑃1𝑌 | 𝜎2=𝜎̂2 , where 𝑃1 = 𝐼 −

𝑋̃(𝑋̃𝑇 𝑋̃)−1𝑋̃𝑇 , 𝑋̃ = (𝑋, 𝑋𝑃𝐶 ) and 𝜎̂2 is the moment esti-

mator for 𝜎2 under 𝐻0 ∶ 𝜏𝐺 = 0. The test statistic 𝑇𝑃𝐶 fol-

lows a weighted 𝜒2
1 distribution.

2.2 SKAT-VC method
For continuous traits, the SKAT-VC model has the form of

𝑌𝑖 = 𝑋𝑖 𝛽 + 𝑏𝑖 + ℎ
(
𝐺𝑖

)
+ 𝜖𝑖,

where the terms are defined as in SKAT-PC model, except

that 𝑏𝑖 is the substructure random effects for subject 𝑖,

and 𝑏 = [𝑏1,… , 𝑏𝑛]𝑇 ∼ MVN(0, 𝜏𝑅𝐾𝑣
𝐺𝑅𝑀

) with 𝑣 ∈
{RV,LFV, CV,AV}. Compared to the SKAT-PC method,

herein additional variance component of population substruc-

ture 𝜏𝑅 is introduced. Consequently, the score test statistic for

𝐻0 ∶ 𝜏𝐺 = 0 is 𝑇𝑉 𝐶 = 1
2 𝑌 𝑇 𝑃2𝐾𝐺𝑃2𝑌 | 𝜏𝑅=𝜏𝑅 , 𝜎2=𝜎̂2 ,

where 𝑃2 = 𝑉 −1
𝐺

− 𝑉 −1
𝐺

𝑋(𝑋𝑇 𝑉 −1
𝐺

𝑋)−1𝑋𝑇 𝑉 −1
𝐺

;

𝑉𝐺 = 𝜏𝑅 𝐾𝑣
𝐺𝑅𝑀

+ 𝜎2𝐼 , and (𝜏𝑅, 𝜎̂2) are the restricted

maximum likelihood estimates under 𝐻0 ∶ 𝜏𝐺 = 0. The

test statistic 𝑇𝑉 𝐶 approximately follows a weighted 𝜒2
1 distri-

bution, i.e.,
∑

𝑗 𝜆𝑗𝜒
2
1 , where 𝜆𝑗 are the nonzero eigenvalues

of
1
2𝑉

1
2

𝐺
𝑃2𝐾𝐺𝑃2𝑉

1
2

𝐺
.

2.3 Design of comparative study
We consider two simulation studies with different scenarios

of confounding effects to evaluate the performance of SKAT-

PC and SKAT-VC. In Simulation I, we explore the substruc-
ture confounders and use simulated sequence data using soft-

ware package COSI (Schneider, Roessli, & Excoffier, 2000).

In Simulation II, we explore the spatially distributed con-
founders and use the sequence data obtained from CoLaus

(Cohorte Lausannoise) sequencing study (Firmann et al.,

2008; Song et al., 2011).We describe the specific design for

each simulation study below.

2.4 Simulation I: Exploration of substructure
confounders
In Simulation I, we use COSI (Schneider et al., 2000) to gen-

erate sequence data for a 1 Mb region for 10,000 European

haplotypes, 10,000 African haplotypes, and 10,000 admix-

ture of European and African haplotypes based on the coa-

lescent model that mimics the corresponding population his-

tory. To create a stratified population, we first focus on the

African haplotypes and European haplotypes. We randomly

sample 2,000 haplotypes from each haplotype population with

replacement and form the genotypes of 1,000 European indi-

viduals and 1,000 African individuals. A total of 21,621
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polymorphic SNPs are obtained, including 3,558 CVs, 2,555

LFVs, and 15,508 RVs. We evenly partition the 21,621 SNPs

into 500 genes, with an average of 43 SNPs per gene.

To generate admixture population, we randomly sample

4,000 haplotypes with replacement from the admixture hap-

lotypes and form 2,000 individuals with admixed European

and African ancestry. And total of 16,571 polymorphic SNPs

(with 3,907 CVs, 2,427 LFVs, and 10,237 RVs) are evenly

partitioned into 500 genes. Next, we simulate trait values

based on the ancestry background and causal rare variants.

We then perform gene-based SKAT tests on the RVs of

every gene. Specifically, given the COSI simulated genotypes

of individual 𝑖, we simulate trait value 𝑌 𝑖 based on their

genotypes from Normal(𝜇𝑖, 1) with 𝜇𝑖 = 𝛽0 + 𝛽𝑃𝑆𝑋𝑃𝑆,𝑖 +∑𝐿
𝓁=1 𝑟𝓁𝐺𝑖𝓁 , where 𝑋𝑃𝑆,𝑖 is the ancestry of individual 𝑖 as

defined below, 𝛽𝑃𝑆 is the population substructure effect, 𝐺𝑖𝓁
is the minor allele count of locus 𝓁, and 𝑟𝓁 = 𝛾 × |logMAF𝓁|
if SNP 𝓁 is causal and is 0 otherwise. We consider three

scenarios: (i) stratification (𝛽𝑃𝑆 ≠ 0), where we have 1,000

individuals from European population with 𝑋𝑃𝑆,𝑖 = 1, and

1,000 individuals from African population with 𝑋𝑃𝑆,𝑖 = 0;

(ii) admixture (𝛽𝑃𝑆 ≠ 0), where we have 2,000 individuals

from the African European admixture population with 𝑋𝑃𝑆,𝑖

being the proportion of European ancestry; and (iii) no con-

founding from population substructure (𝛽𝑃𝑆 = 0), i.e., phe-

notypes were independent of ancestry. We set 𝛽𝑃𝑆 =−1 for (i)

and −20 for (ii), which lead to detectable confounding effects

caused by substructure.

2.5 Simulation II: Exploration of spatially
distributed confounders
Simulation II was conducted using the genome-wide asso-

ciation study (GWAS), target sequencing, and grandparental

origin data from the Cohorte Lausannoise (CoLaus) cohort

to create confounding. These data allow us to investigate the

impact of substructure based on realistic population substruc-

tures in Europe. The CoLaus GWAS study (Firmann et al.,

2008) contains SNPs data from 500K Affimetrix chips for a

cohort of 6,188 Caucasians residents of Lausanne, Switzer-

land, aged 35–75 years old. The CoLaus sequence study

(Nelson et al., 2012; Song et al., 2011) contained targeted

sequence data for 202 genes (11,839 loci) for 2,000 of the

6,188 subjects. We focus on the 1,769 subjects that have both

GWAS and sequence SNPs, use MArkov Chain Haplotyping

(MACH) to impute the missing genotypes, and obtain 442,171

loci. These SNPs include 340,973 CVs, 40,006 LFVs, and

61,192 RVs. We test the association between the RVs of 202

genes and a simulated response variable derived from origin

of grandparents. The birth place data of the four grandparents

of the CoLaus samples show that, among the 1,769 sub-

jects, ≈ 50% have all four paternal and maternal grandparents

born in Switzerland, about 7%, 6.6%, 5%, and 5% with all

four grandparents born in Italy, Portugal, Spain, and France,

respectively. The remaining subjects (≈ 500 subjects) had

grandparents born in same or different countries in Europe.

When simulating confounding effects, we adopt the design

of Mathieson and McVean (2012), which considers a non-

genetic risk factor that follows a certain spatial distribution

and the spatial distribution correlates with the population

substructure. To apply this design on the CoLaus samples,

we make the following modifications. First, we use the birth

places of the four grandparents to define an individual's

“location”; such set-up allows us to introduce a natural cor-

relation between the population substructure and the spatial

distribution of the nongenetic risk factor. Second, we set

Portugal and Spain as the geographic origin of the nongenetic

risk factor, and consider a discrete risk distribution and a

continuous risk distribution of the nongenetic factor. In the

data, there are ≈ 11.6% of CoLaus individuals with all four

grandparents born in Portugal or Spain. We simulate 𝑌𝑖 based

on the distance between the birth places of the four grandpar-

ents of individual 𝑖 and the risk center (Portugal and Spain),

i.e., 𝑌𝑖 ∼ Normal(𝜇𝑖, 1) with 𝜇𝑖 = 𝛽𝐵𝑃 𝑋𝐵𝑃 ,𝑖 +
∑𝐿

𝓁=1 𝑟𝓁𝐺𝑖𝓁 ,

where 𝑋𝐵𝑃 ,𝑖 indicates the birth places of the grandparents

of individual 𝑖 (as defined below); 𝛽𝐵𝑃 is the confounding

effect; 𝐺𝑖𝓁 and 𝑟𝓁 are the same as defined in Simulation I. In

Scenario (i), we let the nongenetic risk have a discrete spatial

distribution. To do so, we set 𝛽𝐵𝑃 > 0 and 𝑋𝐵𝑃 ,𝑖 equal to the

number grandparents born in Spain or Portugal for subject 𝑖.

In Scenario (ii), we let the nongenetic risk have a continuous

spatial distribution. Besides letting 𝛽𝐵𝑃 > 0, we define 𝑋𝐵𝑃 ,𝑖

using the following procedure: First, define a risk origin at

geographic coordinate (39.75, −6) (i.e., latitude 39.75 N and

longitude 6 W, the average coordinate of Spain and Portugal).

Next, we obtain the geographic coordinate of the birth place

for grandparent 𝑘 (𝑘 = 1,… , 4) of Subject 𝑖, denoted by

(𝐴𝑖𝑘, 𝑂𝑖𝑘), and calculate the distance to the high-risk origin,

i.e., 𝑑𝑘𝑖 =
√

(𝐴𝑘𝑖 − 39.75)2 + [𝑂𝑘𝑖 − (−6)]2 for grandparent

𝑘. Finally, for Subject 𝑖, we compute 𝐷𝑖 =
1
4
∑4

𝑘=1 𝑑𝑘𝑖, i.e.,

the average distance among the four grandparents to the risk

origin and set 𝑋𝐵𝑃 ,𝑖 = (𝐷𝑖 − 𝐷̄) ∕𝑠𝐷, where 𝐷̄ and 𝑠𝐷 are the

mean and standard deviations of 𝐷1,… , 𝐷𝑛, respecitively.

The resulting 𝑌𝑖 has a larger value if the grandparents of

Subject 𝑖 were born near the high-risk origin. We also

consider Scenario (iii) of 𝛽𝑃𝑆 = 0, i.e., no confounding

caused by the nongenetic risk factor. We set 𝛽𝐵𝑃 = 5 for (i)

and 10 for (ii), which lead to detectable confounding effects.

2.6 Evaluation of the performance of
SKAT-PC and SKAT-VC
We evaluate the type I error rates and power of the gene-

based RV test using SKAT-PC and SKAT-VC. The tests are

performed on RVs for each of the 500 genes in Simulation I

and for each of the 202 genes in Simulation II. We adjust the
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population substructure using PC or VC method, based on

RVs, LFVs, CVs, or AVs. An ideal method would be able

to correct for inflation caused by the confounding effects and

retain a high power to detect association signal of the causal

rare variants.

For type I error analysis, we set 𝛾 = 0 (i.e., no effect of

the causal RVs) with the effect size of causal variant 𝓁 as

𝑟𝓁 = 𝛾 × |logMAF𝓁|. For a given SKAT-PC/-VC method,

we collect the P-values from all genes and compare its dis-

tribution with the expected P-value distribution of no genetic

effect (i.e., Uniform (0,1)) using quantile–quantile plots (QQ

plots). In the QQ plot, if the dots fall along the 45 degree line,

it indicates the observed distribution agrees with the expected

distribution. To permit a visual inspection of major devia-

tions, we shade the 95% confidence band of the 45 degree

line as the “allowable” zone, and an empirical distribution

that follows outside the shaded area would imply major

deviation from the expected null distribution. We note that

this confidence band only serves as a coarse criterion to detect

gross deviations from the expected distribution. We repeat the

process 10 times and present the QQ plots averaged over the

10 replications as did in Mathieson and McVean (2012). In

addition, we also report the type I error rate at nominal level

𝛼 = 0.05 and 0.005, which is the proportion of rejection

among all genes, averaged over the 10 replications. We per-

form statistical tests to examine if the type I error rate (denoted

by 𝜋) of a method is significantly larger than the nominal

level 𝛼. The rejection region for testing for 𝐻0 ∶ 𝜋 ≤ 𝛼 vs.

𝐻𝐴 ∶ 𝜋 > 𝛼 and adjusting for 17 strategies (i.e., to correct for

confounders using 10 PCs, 50 PCs, 100 PCs, and VC com-

bined with RVs, LFVs, CVs, and AVs as well as no correction

of 0 PC) is 𝜋̂ > 𝛼 + |𝑍0.05∕17 tests|
√

𝛼× (1−𝛼)
# of replicates × # of genes .

For power analysis, we randomly select a causal gene and

set 𝛾 > 0 for the causal gene. The value of 𝛾 is determined so

that the SKAT power is around 0.7 to 0.8 at 𝛼 = 0.05 when no

confounders and no correction methods are used under each

scenario. We conduct 200 replications and compute the power

as the proportion of rejection among the 200 replications. We

report power only for those methods whose type I error rate is

not significantly larger than nominal level.

3 RESULTS

3.1 Simulation I: Exploration of substructure
confounders
Under the scenario of no confounding (Table 1a; top row

of Fig. 1/Supplementary Figure 1), both SKAT-PC and

T A B L E 1 Estimated type I error rates 𝜋 of SKAT-PC and SKAT-VC in Simulation I (substructure confounders) at nominal level 𝛼 = 0.05 and

𝛼 = 0.005. Bold cells indicate that the true type I error rate 𝜋 of a method is not significantly greater than 𝛼 (i.e., a correction method can adjust for

confounding effect). The rejection region for testing for 𝐻0 ∶𝜋 ≤ 𝛼 vs. 𝐻𝐴 ∶𝜋 > 𝛼 and adjusting for 17 strategies (i.e., to correct for confounders using

10 PCs, 50 PCs, 100 PCs, and VC combined with RV, LFV, CV, and AV as well as no correction (i.e., 0 PC)) is 𝜋̂ > 𝛼 + |𝑍0.05∕17 tests|
√

𝛼× (1−𝛼)
5000

,

which is > 0.0585 for 𝛼 = 0.05 and > 0.00775 for 𝛼 = 0.005

a. No population substructure
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟎𝟓

0 PC 10 PC 50 PC 100 PC VC 0 PC 10 PC 50 PC 100 PC VC
RV 0.0450 0.0504 0.0500 0.0466 RV 0.0044 0.0050 0.0048 0.0040
LFV 0.0464 0.0446 0.0474 0.0466 LFV 0.0038 0.0042 0.0046 0.0040
CV 0.0462 0.0480 0.0494 0.0466 CV 0.0036 0.0048 0.0052 0.0040
AV 0.0454 0.0440 0.0472 0.0466 AV 0.0034 0.0050 0.0050 0.0040

0.0466 0.0040

b. Stratified population
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟎𝟓

0 PC 10 PC 50 PC 100 PC VC 0 PC 10 PC 50 PC 100 PC VC
RV 0.2578 0.0818 0.0604 0.1490 RV 0.0988 0.0122 0.0064 0.0314

LFV 0.0792 0.0658 0.0584 0.0680 LFV 0.0130 0.0072 0.0064 0.0092

CV 0.0656 0.0494 0.0532 0.0512 CV 0.0100 0.0056 0.0050 0.0058
AV 0.0578 0.0488 0.0458 0.0394 AV 0.0066 0.0048 0.0056 0.0034

0.5020 0.3054

c. Admixed population
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟎𝟓

0 PC 10 PC 50 PC 100 PC VC 0 PC 10 PC 50 PC 100 PC VC
RV 0.1738 0.1670 0.1650 0.0638 RV 0.0448 0.0442 0.0464 0.0078

LFV 0.1652 0.1660 0.1468 0.1210 LFV 0.0488 0.0420 0.0420 0.0256

CV 0.1690 0.1618 0.1754 0.1390 CV 0.0454 0.0406 0.0470 0.0304

AV 0.1720 0.1556 0.1428 0.0484 AV 0.0488 0.0422 0.0300 0.0060

0.1616 0.0478
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F I G U R E 1 Power and type I error rates of SKAT-PC and SKAT-VC in Simulation I (substructure confounders) at nominal level 𝛼 = 0.05

(Panel A) and 0.005 (Panel B). The bars indicate power and the dots indicate type I error rates. Different rows are for different scenarios of population

substructure (PS), i.e., (from top to bottom) no PS, stratification, and admixture. Different columns indicate the types of variants used to construct

PC/VC, i.e., RV for rare variants, LFV for less frequent variants, CV for common variants and AV for all variants

SKAT-VC have reasonable performance, regardless of the

types of variants used to construct PCs and VCs (i.e., RVs,

LFVs, CVs, or AVs). The dots in the QQ plots fall within

the shaded area and the type I error rates are not significantly

higher than nominal level. For power (Fig. 1 top row), SKAT-

VC has similar power as SKAT-0PC (i.e., no substructure

adjustment) regardless which types of variants are used for

obtaining VCs. Though not very obvious, the power of SKAT-

PC tends to drop when more PCs are included.

Under the scenario of stratification (Table 1b; middle row

of Fig. 1/Supplementary Figure 1), the ability of SKAT-PC

and SKAT-VC to correct for the confounding depends on the

types of variants used to estimate substructure. For SKAT-

PC, the number PCs required increases when rarer variants

are used, e.g., SKAT-PC based on RVs or LFVs requires 50–

100 PCs and SKAT-PC based on AVs only requires 10 PCs.

The power of SKAT-PC seems to be similar regardless it is

based on LFVs CVs or AVs. For SKAT-VC, using AVs and

CVs can correct for stratification, but using RVs and LFVs

cannot. For power of those methods that can effectively cor-

rect confounding (Fig. 1 middle row), SKAT-VC-AV has the

highest power when 𝛼 = 0.05; SKAT-100PC-RV and SKAT-

VC-AV have the highest power when 𝛼 = 0.005.

Under the scenario of admixture (Table 1c; bottom row of

Fig. 1/Supplementary Figure 1), SKAT-VC with AVs is the

only method that can provide effectively control. Regardless

based on which types of variants, SKAT-PC with even 100

PCs cannot correct for the substructure effect regardless which

types of variants are used.

3.2 Simulation II: Exploration of spatially
distributed confounders
Under the scenario of no confounding (Table 2a; top row of

Fig. 2/Supplementary Figure 2), both SKAT-PC and SKAT-

VC have reasonable performance– the dots of QQ plot all fall

within the shaded area and the type I error rates are not sig-

nificantly higher than the nominal level. For power (Fig. 2 top

row), all methods have similar values comparing to no correc-

tion (i.e., SKAT-0PC).

When the nongenetic risk has a discrete spatial distribution

(Table 2b; middle row of Fig. 2/Supplementary Figure 2),
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both SKAT-PC and SKAT-VC can correct for confounding

effect, though (i) certain types of variants have to be used for

SKAT-VC, and (ii) all types of variants works for SKAT-PC.

For SKAT-PC, only 10 PCs are sufficient to capture the

confounding effect regardless which types of variants are

used. On the other hand, SKAT-VC works when RVs and

AVs are used. For power analysis (Fig. 2 middle row), SKAT-

PC-AV has the highest power, followed by SKAT-PC-RV

and SKAT-VC-RV; SKAT-VC-AV tends to have lower power

than SKAT-PC.

When the nongenetic risk has a continuous spatial distribu-

tion (Table 2c; bottom row of Fig. 2/Supplementary Figure 2),

both SKAT-PC and SKAT-VC can correct for the confound-

ing effect regardless which types of variants are used, though

SKAT-VC-CV has some slight inflation when 𝛼 = 0.05. For

SKAT-PC, 10 PCs are sufficient to correct for confounding.

For power analysis (Fig. 2 bottom row), SKAT-100PC-AV,

SKAT-50PC-AV, and SKAT-VC-RV have the highest power;

SKAT-VC-AV again tends to have lower power than SKAT-

PC.

In summary, when the confounding effects is caused by

nongenetic risk whose spatial distribution is related to sub-

structure, SKAT-PC can adjust for the confounders with just

10 PCs regardless of which types of variants used. The power

of SKAT-PC based on AVs tends to be the highest. SKAT-

VC can correct for the inflation except when RVs or AVs are

used; SKAT-VC-RV yields similar power to SKAT-PC and

SKAT-VC-AV yields lower power than SKAT-PC.

4 DISCUSSION

Focusing on SKAT RV tests, we evaluate the performance

of PC-based and VC-based methods for correcting inflation

caused by confounders related to population substructure. We

consider simulated and real sequence data, and confound-

ing caused by population stratification, population admix-

ture, and spatially distributed nongenetic factors. We find that

these correcting methods developed for CV association anal-

ysis can work for RV analysis. Specifically, SKAT-PC can

correct for the substructure-related confounders in all sce-

narios investigated in this work except for admixed popu-

lations; and SKAT-VC is capable to correct for confound-

ing effects in all scenarios. However, which variants to use

in order to reach effective correction depend on the specific

scenarios, and for SKAT-PC, it would also depend on the

number of PCs included. Overall speaking, for SKAT-PC,

using AVs often requires smaller number of PCs and yields
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T A B L E 2 Estimated type I error rates 𝜋 of SKAT-PC and SKAT-VC in Simulation I (spatially distributed confounders) at nominal level 𝛼 = 0.05
and 𝛼 = 0.005. Bold cells indicate that the true type I error rate 𝜋 of a method is not significantly greater than 𝛼 (i.e., a correction method can adjust for

confounding effect). The rejection region for testing for 𝐻0 ∶𝜋 ≤ 𝛼 vs. 𝐻𝐴 ∶𝜋 > 𝛼 and adjusting for 17 strategies (i.e., to correct for confounders using

10 PCs, 50 PCs, 100 PCs, and VC combined with RV, LFV, CV, and AV as well as no correction (i.e., 0 PC)) is 𝜋̂ > 𝛼 + |𝑍0.05∕17 tests|
√

𝛼 × (1 − 𝛼)
2020

,

which is > 0.0633 for 𝛼 = 0.05 and > 0.0093 for 𝛼 = 0.005

a. No confounders
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟎𝟓

0 PC 10 PC 50 PC 100 PC VC 0 PC 10 PC 50 PC 100 PC VC
RV 0.0551 0.0500 0.0469 0.0541 RV 0.0077 0.0061 0.0066 0.0082
LFV 0.0536 0.0536 0.0505 0.0546 LFV 0.0066 0.0071 0.0066 0.0082
CV 0.0536 0.0546 0.0546 0.0541 CV 0.0071 0.0066 0.0061 0.0077
AV 0.0561 0.0490 0.0464 0.0531 AV 0.0088 0.0082 0.0082 0.0082

0.0546 0.0083

b. Nongenetic confounder with discrete spatial distribution
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟎𝟓

0 PC 10 PC 50 PC 100 PC VC 0 PC 10 PC 50 PC 100 PC VC
RV 0.0597 0.0571 0.0546 0.0347 RV 0.0056 0.0041 0.0097 0.0026
LFV 0.0464 0.0500 0.0495 0.0725 LFV 0.0056 0.0082 0.0046 0.0128

CV 0.0622 0.0628 0.0612 0.0898 CV 0.0051 0.0015 0.0020 0.0163

AV 0.0587 0.0551 0.0475 0.0489 AV 0.0077 0.0071 0.0005 0.0051

0.1061 0.0327

c. Nongenetic confounder with continuous spatial distribution
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟎𝟓

0 PC 10 PC 50 PC 100 PC VC 0 PC 10 PC 50 PC 100 PC VC
RV 0.0490 0.0577 0.0367 0.0383 RV 0.0031 <0.0005 0.0117 0.0031
LFV 0.0510 0.0546 0.0526 0.0582 LFV 0.0056 0.0066 0.0041 0.0092
CV 0.0378 0.0418 0.0418 0.0710 CV 0.0046 <0.0005 0.0005 0.0077
AV 0.0464 0.0439 0.0301 0.0393 AV 0.0077 0.0026 0.0010 0.0036

0.0908 0.0148

reasonable power (although SKAT-PC cannot adjust for

admixture effects regardless which variants are used to con-

struct PCs). For SKAT-VC, VC-AV appears to be the opti-

mal strategy because it can adjust for confounding effects

in all scenarios investigated in this work, although some-

times it may have less power compared to its PC counterpart

(such as in the scenario of spatially distributed confounders

in the CoLaus simulations). Given the underlying confound-

ing sources is often unknown in a prior, SKAT-VC using

AVs would serve as a more reliable strategy to adjust for

substructure-related confounding effects.

In this work, the investigations of PC vs. VC correc-

tion methods in SKAT tests are conducted using quantita-

tive traits because there are currently no methods available

for SKAT-VC with binary traits. The extension of SKAT-VC

from continuous traits to binary traits is computationally and

numerically nontrivial–the binary SKAT-VC method requires

the estimation of nuisance variance component for the con-

founding effects under logistic mixed models; such estimation

involves optimization of a penalized likelihood of a general-

ized linear mixed model (Liu, Ghosh, & Lin, 2008) and/or

inversion of a high-dimensional covariance matrix as well

as high-dimensional integration (e.g., Zhang & Lin, 2003).

Although several algorithms have been proposed in the field

of SNP-set GxE kernel tests for binary traits, e.g., penalized

methods of Lin, Lee, Christiani, and Lin (2013) and EM algo-

rithms of Zhao et al. (2015), these approaches are computa-

tionally intensive and it is not clear if these methods, which

deal with a low-rank similarity matrix computed from a can-

didate SNP set, can appropriately handle the GRM (which is

computed from whole genome SNPs and has its rank equal

to the sample size) and yield computationally feasible and

numerically stable results for binary SKAT-VC tests. Never-

theless, given the robust performance observed in quantitative

SKAT-VC tests, it is worth the effort to develop computation-

ally efficient algorithms for binary SKAT-VC tests for future

study.

In Simulation I with substructure confounders, we observe

that SKAT-PC does not always provide effective control of

confounding effects. Recently, Sha, Zhang, and Zhang (2016)

proposes a new PC-based method, called PC-nonp, to control

for population substructure. Unlike the typical PC-based cor-

rection methods that assume the top PCs have a linear effect on

the traits, PC-nonp uses a nonparametric regression to model

the potential nonlinear or complex effects of the PCs. Sha

et al. (2016) show the effectiveness of PC-nonp in controlling

for population substructure with burden RV tests, and it is of

great interest to evaluate the performance of PC-nonp with
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F I G U R E 2 Power and type I error rates of SKAT-PC and SKAT-VC in Simulation II (spatially distributed confounders) at nominal level 𝛼 = 0.05

(Panel A) and 0.005 (Panel B). The bars indicate power and the dots indicate type I error rates. Different rows are for different type of confounders, i.e.,

(from top to bottom) no confounders, confounders with a discrete spatial distribution, and confounders with a continuous spatial distribution. Different

columns indicate the types of variants used to construct PC/VC, i.e., RV for rare variants, LFV for less frequent variants, CV for common variants,

and AV for all variants

SKAT. However, in our preliminary explorations, it seems

that SKAT-PC-nonp was not able to control for confounding

regardless which type of variants are used to obtain PCs (data

not shown). As noted in the literature (e.g., Q. Liu et al., 2013

and Zawistowski et al., 2014), similarity-based RV tests can

be more severely impacted by population substructure than

burden-based RV tests, and those PS methods that can effec-

tively account for confounding for one type of RV tests (e.g.,

burden-based tests) may not always work for the other types

(e.g., similarity based) of RV tests. We see that the optimal

usage in coupling confounder correction methods with SKAT

remains open for further investigations.

4.1 PC vs. VC
VC-based methods treat the population substructure as ran-

dom effects and it is known to be able to correct inflation

caused by complex confounding even when PC methods failed

(Listgarten et al., 2013). In our study, we see that SKAT-VC

can correct for the inflation caused by both stratification and

admixture and achieve higher power than SKAT-PC. On the

other hand, when the inflation is caused by spatially confined

nongenetic confounders, we see that both SKAT-VC (except

for SKAT-VC using CVs and LFVs) and SKAT-PC pro-

vide effective adjustment, and SKAT-PC tends to have higher

power than SKAT-VC. The results agree with the observa-

tion of Zhang and Pan (2014). Focusing on CV association

tests with PC and VC constructed using CVs, Zhang and Pan

(2014) investigate the ability of PC and VC methods in adjust-

ing for spatially distributed nongenetic confounders. They

found that (i) PC can more effectively adjust for the confound-

ing effects than VC because top PCs of genetic variants can

represent geographic coordinates (Wang, Zöllner, Rosenberg,

Weinblatt, & Shadick, 2012; Zhang & Pan, 2014); and (ii) VC

based on CVs may fail to correct for the confounding effects

in CV association tests. Besides reaching similar conclusions

as theirs in our investigation on RV association tests, we also

found that in RV tests, if AVs are used to correct for potential

confounding effects, VC-AV methods can successfully adjust

for spatially distributed confounders, and PC-AV methods can
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achieve higher power than PC methods using other types of

variants.

4.2 Which variants to use to obtain PC
and VC?
Several works investigated the performance of PC-based

correction methods under stratified populations (L. Liu

et al., 2013; Liu, Nicolae, & Chen 2013; Zhang et al., 2013;

Zhang et al., 2013). Although some found that using RVs to

construct PCs can more effectively adjust for inflation (Q. Liu

et al., 2013), most found that using CVs or AVs to construct

PCs would be more effective (L. Liu et al., 2013; Zhang

et al., 2013; Zhang et al., 2013). Our results in general agree

with the latter, i.e., using AVs to construct PCs provided

more effective adjustment (i.e., requiring fewer number of

PCs) than RVs for inflation caused by stratification. We also

observed that for confounding caused by spatially distributed

nongenetic risk factor, PCs-based AVs would provide the

most effective and efficient (i.e., yielding highest power)

adjustment than PCs based on other types of variants. As

pointed out by Zhang et al. (2013), although RVs were more

likely to cluster in a few subpopulations, only a low propor-

tion (≈ 25%) of RVs was population specific. In contrast, a

relatively high proportion of CVs and LFVs (e.g., > 70%)

were subgroup specific, which may lead to a better adjusting

performance under stratified population.

For VC-based methods, VC-AV provides the most reliable

performance across all scenarios, including admixed popu-

lation (where all PC methods failed), stratified population

(where VC-RV and VC-LFV failed), and discrete distributed

nongenetic risk factor (where VC-CV and VC-LFV failed).

VC-AV has the highest power among all PC and VC methods

in stratified populations; yet it does not yield the highest power

when accounting for spatially distributed confounders. On the

other hand, VC-RV, though fails to adjust for substructure

confounders, provides satisfactory adjusting performance for

spatially distributed confounders and often yields high power

among all PC and VC methods. This observation is not unex-

pected according to the results of Q. Liu et al. (2013), though

their evaluation focused on SKAT-PC and we focus on SKAT-

VC.

In conclusion, it has been noticed that similarity-based

association test of rare variants, such as SKAT, which can

accommodate a mixture of risky and protective variants

in a gene, can also be more vulnerable to substructures

than burden-based test (Zawistowski et al., 2014). Our work

attempts to provide some guidance regarding the choice of
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correction methods for SKAT RV tests. First, we would sug-

gest using AVs to obtain PCs or VCs to achieve effective cor-

rection and reasonable power across various scenarios. Sec-

ond, depends on the complexity of population substructure

and the type of variants used, the minimum number of PCs

required varies from 10 to 100, though 10 PCs are often suf-

ficient for SKAT-PC if AVs are used to construct PCs in the

scenarios explored in this study. Third, when population sub-

structure becomes more complex, such as admixture or local-

ized structure, SKAT-VC would be preferred. Overall, given

the underlying confounding mechanism is not known in a pri-

ori, SKAT-VC-based AVs would be the most robust correc-

tion method.

ACKNOWLEDGMENTS
The authors deeply thank Drs. Peter Vollenweider and Ger-

ardWaeber, PIs of the CoLaus study, and Drs. Meg Ehm and

Matthew Nelson, collaborators at GlaxoSmithKline, for pro-

viding the CoLaus genotype data. This work was supported

in part by National Institutes of Health grants P01CA142538,

R01HG006292, R01HG006703, and R01HL129132 and

Ministry of Science and Technology of Taiwan grant 106-

2811-B-002-006.

ORCID
Yun Li http://orcid.org/0000-0002-3467-2599

Jung-Ying Tzeng http://orcid.org/0000-0002-5505-1775

R E F E R E N C E S
Asimit, J. L., Day-Williams, A. G., Morris, A. P., & Zeggini, E. (2012).

ARIEL and AMELIA: Testing for an accumulation of rare variants

using next-generation sequencing data. Human Heredity, 73(2), 84–

94.

Babron, M.-C., de Tayrac, M., Rutledge, D. N., Zeggini, E., & Génin,

E. (2012). Rare and low frequency variant stratification in the UK

population: Description and impact on association tests. PloS One,

7(10), e46519.

Baye, T. M., He, H., Ding, L., Kurowski, B. G., Zhang, X., & Martin,

L. J. (2011). Population structure analysis using rare and common

functional variants. BMC Proceedings, 5(9), S8.

Cardon, L. R., & Palmer, L. J. (2003). Population stratification and spu-

rious allelic association. The Lancet, 361(9357), 598–604.

Firmann, M., Mayor, V., Vidal, P. M., Bochud, M., Pecoud, A., Hayoz,

D., … Vollenweider, P. (2008). The CoLaus study: A population-

based study to investigate the epidemiology and genetic determinants

of cardiovascular risk factors and metabolic syndrome. BMC Cardio-
vascular Disorders, 8(1), 6.

Haiman, C. a., Han, Y., Feng, Y., Xia, L., Hsu, C., Sheng, X.,… Stram, D.

O. (2013). Genome-wide testing of putative functional exonic vari-

ants in relationship with breast and prostate cancer risk in a multieth-

nic population. PLoS Genetics, 9(3), e1003419.

Hoffman, J. I., Krause, E. T., Lehmann, K., & Krüger, O. (2014). MC1R

genotype and plumage colouration in the zebra finch (Taeniopygia

guttata): Population structure generates artefactual associations.

PLoS One, 9(1), e86519.

Jiang, Y., Epstein, M. P., & Conneely, K. N. (2013). Assessing the impact

of population stratification on association studies of rare variation.

Human Heredity, 76(1), 28–35.

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. a, Kong, S.-Y. Y.,

Freimer, N. B., … Eskin, E. (2010). Variance component model to

account for sample structure in genome-wide association studies.

Nature Genetics, 42(4), 348–354.

Li, B., & Leal, S. M. (2008). Methods for detecting associations with rare

variants for common diseases: Application to analysis of sequence

data. The American Journal of Human Genetics, 83(3), 311–321.

Lin, X., Lee, S., Christiani, D. C., & Lin, X. (2013). Test for interactions

between a genetic marker set and environment in generalized linear

models. Biostatistics, 14(4), 667–681.

Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., & Heck-

erman, D. (2011). FaST linear mixed models for genome-wide asso-

ciation studies. Nature Methods, 8(10), 833–835.

Listgarten, J., Lippert, C., & Heckerman, D. (2013). Fast-LMM-Select

for confounding from spatial structure and rare variants. Nature
Genetics, 45(5), 470–471.

Liu, D., Ghosh, D., & Lin, X. (2008). Estimation and testing for the

effect of a genetic pathway on a disease outcome using logistic kernel

machine regression via logistic mixed models. BMC Bioinformatics,

24(9), 292.

Liu, L., Sabo, A., Neale, B. M., Nagaswamy, U., Stevens, C., Lim, E., …
Roeder, K. (2013). Analysis of rare, exonic variation amongst sub-

jects with autism spectrum disorders and population controls. PLoS
Genetics, 9(4), e1003443.

Liu, Q., Nicolae, D. L., & Chen, L. S. (2013). Marbled inflation from

population structure in gene-based association studies with rare vari-

ants. Genetic Epidemiology, 37(3), 286–292.

Madsen, B. E., & Browning, S. R. (2009). A groupwise association test

for rare mutations using a weighted sum statistic. PLoS Genetics,

5(2), e1000384.

Mathieson, I., & McVean, G. (2012). Differential confounding of rare

and common variants in spatially structured populations. Nature
Genetics, 44(3), 243–246.

Moore, C. B., Wallace, J. R., Wolfe, D. J., Frase, A. T., Pendergrass, S. a.,

Weiss, K. M., & Ritchie, M. D. (2013). Low frequency variants, col-

lapsed based on biological knowledge, uncover complexity of pop-

ulation stratification in 1000 genomes project data. PLoS Genetics,

9(12), e1003959.

Morgenthaler, S., & Thilly, W. G. (2007). A strategy to discover genes

that carry multi-allelic or mono-allelic risk for common diseases: A

cohort allelic sums test (CAST). Mutation Research, 615(1), 28–56.

Morris, A. P., & Zeggini, E. (2010). An evaluation of statistical

approaches to rare variant analysis in genetic association studies.

Genetic Epidemiology, 34(2), 188–193.

Nelson, M. R., Wegmann, D., Ehm, M. G., Kessner, D., St. Jean, P.,

Verzilli, C., … Mooser, V. (2012). An abundance of rare functional

variants in 202 drug target genes sequenced in 14,002 people. Sci-
ence, 337(6090), 100–104.

O'Connor, T. D., Kiezun, A., Bamshad, M., Rich, S. S., Smith, J. D.,

Turner, E., … Akey, J. M. (2013). Fine-scale patterns of population

http://orcid.org/0000-0002-3467-2599
http://orcid.org/0000-0002-3467-2599
http://orcid.org/0000-0002-5505-1775
http://orcid.org/0000-0002-5505-1775


LUO ET AL. 287

stratification confound rare variant association tests. PLoS One, 8(7),

e65834.

Price, A. L., Kryukov, G. V., de Bakker, P. I. W., Purcell, S. M., Sta-

ples, J., Wei, L.-J., & Sunyaev, S. R. (2010). Pooled association tests

for rare variants in exon-resequencing studies. American Journal of
Human Genetics, 86(6), 832–838.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick,

N. A., & Reich, D. (2006). Principal components analysis corrects for

stratification in genome-wide association studies. Nature Genetics,

38(8), 904–909.

Schaid, D. J., Mcdonnell, S. K., Sinnwell, J. P., & Thibodeau, S. N.

(2013). Multiple genetic variant association testing by collapsing and

kernel methods with pedigree or population structured data. Genetic
Epidemiology, 37(5), 409–418.

Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin: A software

for population genetics data analysis. User Manual Ver, 2, 2496–

2497.

Sha, Q., Zhang, K., & Zhang, S. (2016). A nonparametric regression

approach to control for population stratification in rare variant asso-

ciation studies. Scientific Reports, 18(6), 37444.

Song, K., Nelson, M. R., Aponte, J., Manas, E. S., Bacanu, S.-A. A.,

Yuan, X., … Waterworth, D. M. (2011). Sequencing of Lp-PLA2-

encoding PLA2G7 gene in 2000 Europeans reveals several rare loss-

of-function mutations. The Pharmacogenomics Journal, 12(5), 425–

431.

The 1000 Genomes Project Consortium. (2012). An integrated map of

genetic variation from 1,092 human genomes. Nature, 135(7422),

56–65.

Thornton, T., & McPeek, M. S. (2010). ROADTRIPS: Case-control asso-

ciation testing with partially or completely unknown population and

pedigree structure. The American Journal of Human Genetics, 86(2),

172–184.

Tzeng, J.-Y., Lu, W., & Hsu, F.-C. (2014). Gene-level pharmacogenetic

analysis on survival outcomes using gene-trait similarity regression.

The Annals of Applied Statistics, 8(2), 1232–1255.

Tzeng, J.-Y., Zhang, D., Pongpanich, M., Smith, C., McCarthy, M. I.,

Sale, M. M., … Sullivan, P. F. (2011). Studying gene and gene-

environment effects of uncommon and common variants on continu-

ous traits: A marker-set approach using gene-trait similarity regres-

sion. American Journal of Human Genetics, 89(2), 277–288.

Wang, C., Zhan, X., Bragg-Gresham, J., Kang, H. M., Stambolian, D.,

Chew, E. Y., …Abecasis, G. R. (2014). Ancestry estimation and con-

trol of population stratification for sequence-based association stud-

ies. Nature Genetics, 46(4), 409–415.

Wang, C., Zöllner, S., Rosenberg, N. A., Weinblatt, M., & Shadick, N.

(2012). A quantitative comparison of the similarity between genes

and geography in worldwide human populations. PLoS Genetics,

8(8), e1002886.

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. (2011). Rare-

variant association testing for sequencing data with the sequence ker-

nel association test. The American Journal of Human Genetics, 89(1),

82–93.

Zawistowski, M., Reppell, M., Wegmann, D., St Jean, P. L., Ehm, M.

G., Nelson, M. R., … Zöllner, S. (2014). Analysis of rare variant

population structure in Europeans explains differential stratification

of gene-based tests. European Journal of Human Genetics, 22(9),

1137–1144.

Zhang, D., & Lin, X. (2003). Hypothesis testing in semiparametric addi-

tive mixed models. Biostatistics, 4(1), 57–74.

Zhang, Y., Guan, W., & Pan, W. (2013). Adjustment for population strati-

fication via principal components in association analysis of rare vari-

ants. Genetic Epidemiology, 37(1), 99–109.

Zhang, Y., & Pan, W. (2014). Principal Component Regression and

Linear Mixed Model in Association Analysis of Structured Sam-

ples: Competitors or Complements? Genetic Epidemiology, 39(3),

149–155.

Zhang, Y., Shen, X., & Pan, W. (2013). Adjusting for population stratifi-

cation in a fine scale with principal components and sequencing data.

Genetic Epidemiology, 37(8), 787–801.

Zhao, G., Marceau, R., Zhang, D., & Tzeng, J.-Y. J.-Y. (2015). Assess-

ing gene-environment interactions for common and rare variants with

binary traits using gene-trait similarity regression. Genetics, 199(3),

695–710.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: Luo Y, Maity A, Wu MC,

et al. On the substructure controls in rare variant anal-

ysis: Principal components or variance components?.

Genet Epidemiol. 2018;42:276–287. https://doi.org/

10.1002/gepi.22102

https://doi.org/10.1002/gepi.22102
https://doi.org/10.1002/gepi.22102

