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S1. Workflow of CRNET
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Fig. S1. A workflow of CRNET.
The main steps of the CRNET workflow (see Fig. S1) can be summarized as follows:

Step 1: CRNET can be run in either ‘promoter mode’ or ‘enhancer mode’. Promoter or enhancer
regions should be pre-defined. We define a gene’s promoter region as £10k bps around its
transcription starting site (TSS) according to the UCSC hgl9 RefSeq file. Enhancer regions can
be identified using ChIP-seq data of enhancer markers like H3K27ac or DNase-seq data. For
some cell types, their cell type-specific enhancer regions can be downloaded from ENCODE
website (https://www.encodeproject.org/data/annotations/). We extend each enhancer region to
+1k bps around the middle point of the region.

Step 2: We use ChIP-BIT2 (http://www.cbil.ece.vt.edu/software.htm) to call transcription factor
binding sites (TFBSs) at promoter or enhancer regions from ChIP-seq data of individual TFs. For
each binding event, ChIP-BIT2 will report a probability denoting the possibility of binding
occurrence. This probability is used as a prior in further functional regulatory network (FRN)
inference. A brief description of ChIP-BIT2 can be found in Section S2. Alternatively, using
ChIP-seq data with different peak callers or using other transcription factor database we may
obtain binary binding information. CRNET can take binary prior input, too.



Step 3: Given time-course RNA-seq data, RSEM (https://deweylab.github.io/RSEM/) is used to
align raw reads of each RNA-seq sample to the reference genome UCSC hgl9 and estimate
transcripts per million (TPM) value of each gene. We transfer the raw expression value to log2
format for further analysis. In this study, a candidate target gene is selected if at least at one time
point its absolute fold change to the basal expression (‘0’ time point) is larger than 0.5. Further
gene refinement like selecting a specific expression pattern or a biologically meaningful gene set
is greatly helpful to narrow the candidate gene pool. To ensure reasonable computational time
and parameter estimation accuracy, we suggest narrow the gene list to be shorter than 1000.
CRNET has been tested with a few hundred to one thousand genes.

Step 4: For promoter study, binding events and target genes have already been linked together
by ChIP-BIT2. If other peak calling is used, additional gene annotation needs to be done. We
construct a prior binding matrix where each row represents a gene and each column represents a
TF. For enhancer study, additional prior knowledge of 3D chromatin interactions is a must to
map enhancer regions to target genes. Then, distal binding events can be linked together with
target genes and a similar prior binding matrix as the promoter study can be established.

Step 5: To set the initial state of FRN, for each gene we select partial bindings (the number of
selected bindings should be smaller than the number of total expression samples) according to
their prior probabilities. And for each TF, we randomly select a Gaussian process with zero mean
and unit variance as initial TF activity (TFA).

Step 6: CRNET is a two-stage Gibbs sampling approach. For each TF, we sample the mean and
standard deviation of TFA (see Egs. (7) and (8) of the main text) based on the conditional
probability as defined in Eq. (5) in the main text. More details will be given in Section S3.2.

Step 7: For each binding event, we sample its state based on a t-score as defined in Eq. (7). Here,
for sampling purpose, each t-score is transformed into a probability using logistic regression as
Eq. (8). The logistic regression function will be further discussed later in Section S3.3.

Step 8: We repeat Steps 6 and 7 for sufficient times and collect Gibbs samples for each binding
event. The sampling frequency (observed samples/total rounds) of each binding event represents
the posterior probability for functional binding occurrence.

Step 9: As an optional step, users can run CRNET multiple times by varying initial settings in
Step 5 and generate multiple Markov chains. As described in Section 3.4, sampling convergence
on each variable can be monitored used a method proposed in (Gelman and Rubin, 1992).



S2. TFBS identification using ChIP-BIT2

ChIP-BIT2 (an extended version of ChIP-BIT (Chen, et al., 2016)) uses a Gaussian mixture
model (consisting of global and local Gaussian components) to capture both binding and
background signals in the sample data. A unique feature of ChIP-BIT2 is that the Gaussian
component modeling background signals is specially designed as a local Gaussian distribution
that can be estimated accurately from the input data. Specific for promoter-focused studies, an
exponential distribution is used to model the relative distance of TFBSs to TSS, which is further
incorporated into the Bayesian approach of ChIP-BIT2 for target gene inference. Estimated by an
expectation-maximization (EM) algorithm, a posterior probability is assigned to each TFBS
under consideration, indicating the likelihood of a binding occurrence. A C++ package of ChIP-
BIT2 can be downloaded from http://www.cbil.ece.vt.edu/software.htm.

Given ChIP-seq data of multiple TFs (the total number of TFs is denoted by 7') and annotation
files of promoter or enhancer regions, a prior binding matrix B can be constructed using ChIP-
BIT2. Note that ChIP-BIT2 can be run in either ‘promoter mode’ or ‘enhancer mode’, but it
cannot be run on both types of regions simultaneously because the mathematical models of the
relative distance of TFBS to TSS are different under two cases. ChIP-BIT2 detects TFBSs
reliably at promoter or enhancer regions by jointly modeling binding signals (read intensities)
and binding locations of TFBSs.

Assuming that we have J promoter or enhancer regions and 7 TFs, for the j-th promoter or
enhancer region, we partition it into small windows each with a size of 200 bps and calculate
read intensities of the #-th TF’s ChIP-seq profile and its matched input data as s, and s

Jsinput ,w
respectively for the w-th window (please see ChIP-BIT (Chen, et al., 2016) for read intensity
calculation). For each window, the relative distance to the nearest TSS is recorded as d,

Given the above observations, the conditional probability for binding event z, , , is defined as
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For z,, =1, s, 1s sequenced from a TFBS so it follows a global Gaussian distribution with
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O';pm is the variance of background signals, which can be directly calculated from the input data.

The second likelihood function in Eq. (S-1), P(d is determined by the relative

J.t.w | Zj,t,w) 2
distance d,,, to TSS as well as the binding state z,,, . Note that this is a special feature for
TFBSs at promoter regions. Previous studies (Chen, et al., 2016) have shown that the average

read enrichment in sample ChIP-seq data (binding signals) follows an exponential distribution
along the gene promoter region, while this distribution in input ChIP-seq data (background

signals) is relatively uniform. Therefore, for TFBSs located at promoter regions, P, 1z;,.)
is also a mixture distribution with
P(dj,t,w ’ Zj,t,w = 1) = Exp(ﬂ’t)’ (S 3)
P(dj,t,w | Zj,t,w = 0) = U(_dp:dp)-

where 4, is the exponential distribution parameter and d, (=10k bps) is the half length of a

promoter region. For enhancer studies, we do not need to estimate parameter A, . Instead for

TFBS prediction at enhancer regions, we assume that both binding signals and background
signals follow a uniform distribution as defined in Eq. (S-3).

ChIP-BIT?2 iteratively estimates distribution parameters using an Expectation-Maximization (EM)
algorithm and finally estimates a probability 5., for each candidate binding event z,,  =1. It

is possible that, for a promoter or enhancer region, there are multiple windows containing TFBSs
of the same TF. In that case, we select the largest b, , , as b;, to denote the probability of binding

occurrence between the #-th TF and the j-th promoter or enhancer region. Finally, we report all
binding events with a probability larger than 0.5 and construct a weighted prior binding matrix B
with J rows and T columns.

ChIP-BIT?2 is developed to detect TFBSs from a set of pre-selected enhancer or promoter regions.
Therefore, users are required to identify or predict a list of active enhancer or promoter regions
before using ChIP-BIT2. In this paper, we select two widely used human enhancer and promoter
database: ENCODE cell type-specific enhancer regions and hgl9 RefSeq promoter regions (+/-
10k bps around TSS). Note that optimal selection of enhancer or promoter regions for a certain
cell type is helpful to improve the accuracy of functional binding inference by eliminating noisy
prior bindings from false positive enhancer or promoter regions.



S3. CRNET model

S3.1 Enhancer-gene loop generation

A distal enhancer region will physically interact with the promoter region of a target gene
through a 3D chromatin interaction and then, TFs binding at enhancer regions will actively
regulate the target gene expression (Sanyal, et al., 2012). However, there is no clear evidence for
the functional relationship between TFs from different enhancers looping to the same gene, and
also no clear relationship between TFs binding at the two ends in the same loop. Therefore, we
cannot make a hard claim that those TFs work at the same time or hierarchically. Therefore,
using CRNET we predict FRNSs either at promoter or enhancer regions. In current framework, we
do not integrate binding events at enhancer and promoter region together.

3D chromatin interactions between enhancers and target genes can be extracted from ChIA-PET
data or Hi-C data. The difference between these two types of data is that the ChIA-PET
technique is more like ChIP-seq technique and it can provide TF-specific enhancer-promoter
loops, which can be  extracted from  ChIA-PET data using Mango
(https://github.com/dphansti/mango); the Hi-C technique is more like the whole genome
sequencing technique and it can provide topological association domains (TADs) across the
whole chromosome, with which the enhancer-promoter loops can be extracted from Hi-C data
using HiC-Pro (https://github.com/nservant/HiC-Pro). The resolution of ChIA-PET results is
usually higher than those interactions provided by Hi-C and they are also much sparser. We map
3D chromatin interactions to enhancer and promoter regions used in ChIP-BIT2. If one end of an

interaction is mapped to an enhancer region (2kbps long) with at least 500 bps overlap and the
other end is mapped to a promoter region (20kbps long) with at least 500 bps overlap, it will be
annotated as an enhancer-promoter loop. Based on annotated enhancer-promoter (gene) loops
and binding observations at enhancer regions, we construct a prior binding matrix B specific for
enhancer studies, where each row of B denotes an enhancer-gene association
(enhancerID:genelD) and each column represent a TF.

S3.2 Gibbs sampling of TFA
The posterior probability of hidden variable X is defined as follows:

2
1
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We assume conditional independence among units in matrix X and hence the posterior
probability of each variable x_, the hidden activity of the #-th TF at the m-th time point or
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condition, can be calculated as follows:
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Equation (S-4) is a multiplication of two Gaussian distributions so the posterior probability of
x,,, 1s still a Gaussian distribution. Equation (S-5) can be further expanded as follows:
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We define two new variables /> and 4/ as follows:
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Bring 5> and 4 back to Equation (S-3) and then we can obtain a new equation as follows:
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probability of x,, follows a Gaussian distribution with mean 4,/ and variance ¢'>, which can be

computed as in Equations (S-7) and (S-8).



S3.3 Logistic function parameter training for binding variable sampling

Converting the Student’s t-statistic value (t-score) for each binding into a probability we define a
logistic function in Eq. (8) of the main text. Before running CRNET, we need to estimate the
logistic function parameters via a training procedure. The training procedure is summarized as
follows:

1) Randomly select a number of TFs (smaller than that of gene expression samples) and run
Network Component Analysis (NCA) (Liao, et al., 2003) to estimate hidden TFAs and regulation
strengths;

2) For each binding event, calculate the t-statistic ( f(a,,) as defined in Eq. (10) of the main text)

using its regulation strength and regression error, and make a decision as functional binding (z
=1) if the t-statistic value is larger than 7y s (the t-statistic value corresponding to a false positive
rate<(.05); otherwise as non-functional binding (z=0);

3) Record t-statistic values and their associated binding decisions/labels (z=0 or z=1);
4) Repeat Step 1) to Step 3) 100 times to test all TFs in a sufficient number of times;
5) Run a logistic regression using all t-statistic values and their binding labels.

From the training procedure, the logistic function parameters by and b; are estimated as -15.15
and 5.72, respectively. The logistic function curve is shown in Fig. S2.
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Fig. S2. Logistic function curve.



S3.4 Convergence check

If benchmark network is available, convergence to those ‘true’ interactions can be directly
monitored by examining Precision-Recall performance. For real data analysis without much
knowledge about ‘true’ interaction, convergence of Gibbs sampling can also be monitored based
on the ratio (R) of within variance and between variance using multiple sequences with different
initial states (Gelman and Rubin, 1992). Here is a brief outline of the calculation of R for each
variable estimated using Gibbs sampling.

First, we simulate S > 2 sequences independently, each of length k. S and K are set up to10
and 1000, respectively. This relatively short sequence is mainly used to check when the chains
tart to converge.

Second, after each round of sampling, i.e., k , for each variable v(s, k), we update the target

mean, which is the mean of the S Xk sampled values, as v .
Third, we calculate between variance B and the average value of within variance W as follows:
B/ k = the variance between the K sequence means, v(s), each based on k values of v(s,k),

B2 ((9)-7)
koS-l

) (5-10)

W = the average of S within-sequence variances, y? , each based on k-1 degrees of freedom,

PG
W=l S-11
S (S-11)
Fourth, we estimate the target variance by a weighted average of /¥ and B as follows:
o k-1 1
6’ =—W+—B. (S-12)
k k

Fifth, we estimate what is now known about v. The result is an approximate Student’s t-
distribution for v with center v , scale \/? =\J6*+B/Sk and degrees of freedom
df = W Var(l}).

Sixth, we monitor convergence of sampled Markov Chain by estimating the factor \/E, which

the scale of the current distribution for x might be reduced if the simulations are continued in the
limit n — oo. This potential scale reduction is estimated by

vV df _(k—1+S+1£J df
wdf-2 \ k kS W)df -2

R= (S-13)

which declines to 1 as k — oo,



S4. Simulation study

S4.1 Prior binding network simulation

We simulated a regulatory network with 200 genes and 20 TFs as shown in Fig. S3(A). Each
gene is regulated by a random number of TFs from 0 to 6 (on average 2), as shown in Fig. S3(B).
The prior probability of each binding is a random value from 0.5 to 1 following a distribution as
observed from ChIP-BIT2 results of analyzing ENCODE MCF-7 ChIP-seq data, as shown in Fig.
S3(C).
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Fig. S3. Simulated prior binding network. (A) Network structure (‘red’ color denotes bindings);
(B) a histogram of binding degree on each gene; (C) a histogram of binding prior probabilities on
simulated bindings (following a distribution of ChIP-BIT2 results of ENCODE MCF-7 cell
ChIP-seq data).
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S4.2 Gene expression data simulation

According to the distribution assumption made on regulation strength by existing Bayesian
methods like BNCA and COGRIM, we simulated the regulation strength (matrix A) on each
binding connection by following a Gaussian distribution with zero mean and unit deviation. We
simulated two different time course gene expression datasets: in Case 1, we simulated TFAs
(matrix X) for individual TFs using Gaussian random process with zero mean and unit variance
under 20 time points; gene expression (matrix Y) was then simulated based on the log-linear
model introduced in Eq. (1) with X and A; in Case 2, we only generated 10 time course samples.
Case 2 is more challenging because the number of TFs is larger than the number of gene
expression samples.

TFs Samples

— — Samples

Genes

Genes
|
I
I
|
X

(A) (B) (©)

Fig. S4. Simulated gene expression data. (A) Regulatory strength of prior binding events (matrix
A); (B) a heatmap of simulated TFA (matrix X); (C) a heatmap of simulated gene expression
data (matrix Y).

S4.3 Definitions of Precision, Recall and F-measure

Number of true positive edges

Precision —
recision Number of selected edges over threshold

Number of true positive edges

Recall =
eca Number of ground truth edges

2 * precision * recall

F — measure = —
precision + recall
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S4.4 Convergence of Bayesian methods
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Fig. S5. Convergence of competing methods. (A) AUC at different rounds of sampling for Case
1 with FPR = 15% and SNR = 3dB; (B) AUC performance at different rounds of sampling for

Case 2 with FPR = 15% and SNR = 3dB.
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SS. Large-scale FRN inference

S5.1 Prior binding network and candidate target gene expression

K562 cell: ChIP-seq data of 228 TFs generated from K562 cells was downloaded from
ENCODE database. We used ChIP-BIT2 to process BAM files of each TF and its match input
and further constructed a prior binding matrix at promoter region. A time-course gene expression
dataset (GSE1036) of K562 cells was downloaded from GEO database. In this dataset, K562
cells were treated with 50 mm hemin for 72 hours and at each time point (Oh, 6h, 12h, 24h, 48h,
72h) two replicates were generated using Affymetrix Human Genome U133A Array. We
downloaded the normalized gene expression data as described in (Addya, et al., 2004) and
estimated the Signal-to-Noise Ratio (SNR) of each gene expression sample relative to the basal
expression at ‘0’ time point (control) using SNAGEE (Venet, et al., 2012), as shown in Table S1.
On average the SNR of this gene expression dataset is 2.82dB. As shown in previous simulation
studies, under this SNR range around 3dB CRNET can achieve a F-measure higher than 0.7.
Following the gene selection procedure as described in (Addya, et al., 2004), 1,569 differentially
expressed genes were selected. We selected genes with at least two binding observations from
the prior binding matrix. Finally, 1,351 genes expression were selected. The prior binding matrix
and normalized gene expression data can be found from Table S2. A heatmap of time-course
gene expression is shown in Fig. S7(A).

Table S1. Relative SNRs of individual samples in the GSE1036 dataset.

Sample ID Relative SNR
Oh_repl 0
Oh rep2 0.19
6h repl 3.08
6h rep2 3.92
12h_repl 3.65
12h_rep2 3.51
24h repl 3.48
24h_rep2 3.99
48h repl 3.71
48h rep2 2.32
72h_repl 1.45
72h rep2 1.74

Table S2. Prior binding matrix and normalized gene expression data of K562 cells.

Table S2 can be found in the supplementary file: “Supplementary Material Table S2.x1sx”.
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GM12878 cell: ChIP-seq data of 122 TFs generated from GM12878 cells was downloaded from
ENCODE database. We used ChIP-BIT2 to process BAM files of each TF and its match input
and construct a prior binding matrix at promoter region. A time-course gene expression dataset
of GM 12878 cells was downloaded from GEO data base with access number GSE51709. In this
dataset, GM 12878 cells were treated with 0.5 uM doxorubicin (Calbiochem) for Oh, 4h and 18h
and at each time point three replicates were generated using Affymetrix Human Exon 1.0 ST
arrays. We downloaded the gene expression data analyzed through Affymetrix Expression
Console using gene-level RMA summarization and sketch-quantile normalization methods (Su,
et al., 2015). The relative SNR of each gene expression sample is shown in Table S3. SNRs vary
from 1.55dB to 2.97dB with an average value of 2.04dB. Differentially expressed genes were
identified at each time point using t-test with corrected p-value <0.05 and absolute fold
change >2. We refined gene list by selecting genes with at least two binding observations from
the prior binding matrix. Finally, 925 genes were selected for FRN inference. The prior binding
matrix and normalized gene expression data can be found in Table S4. A heatmap of time-course
gene expression is shown in Fig. S7(B).

Table S3. Relative SNRs of individual samples in the GSE51709 dataset.

Sample ID Relative SNR
Oh_repl 0

Oh rep2 -0.4051867
Oh_rep3 2.2919465
4h repl 2.6966258
4h rep2 2.9733475
4h rep3 2.9664372
18h_repl 24840261
18h_rep2 1.5534577
18h_repl 1.8033868

Table S4. Prior binding matrix and normalized gene expression data of GM 12878 cells.
Table S4 can be found in the supplementary file: “Supplementary Material Table S4.x1sx”.

Weighted binding matrix
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Fig. S8. Posterior distributions of Gibbs samples (sampling frequency) generated by CRNET and
COGRAM: (A) CRNET results for K562 cells; (B) COGRIM results for K562 cells; (C) CRNET
results for GM 12878 cells; (D) COGRIM results for GM 12878 cells.

15



o

o
T

N
T

Number of TFs
n w

Number of TFs

-
T

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Correlation coefficient Correlation coefficient
(A) (B)
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TFs in K562 cells; (B) 80 TF in GM 12878 cells.
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S5.2 Target gene validation for TFs (ATF3, EGR1 and SRF) in K562 cells

We use the matched RNA-seq data generated before or after specific TF knockdown to validate
genes identified by each method on each data set. The RNA-seq data is downloaded from GEO
data base under access number GSE33816. For each TF, there are two replicates under control or
treatment conditions (Vehicle vs. sShRNA). We apply RSEM (https://deweylab.github.io/RSEM/)
to the fastq files of each RNA-seq sample and estimate read counts and transcripts per million
(TPM) values of genes across all samples. For each TF, we wuse DeSeq2
(https://bioconductor.org/packages/release/bioc/html/DESeq2.html) to identify its target genes
(differentially expressed genes with a g—value cutoff as 0.05). In total, we identified 1133 genes
for ATF3, 893 genes for EGR1 and 1011 genes for SRF, whose expression patterns are shown in
Fig. S10. Note that as a baseline for comparison, TIP (Cheng, et al., 2011) (a probabilistic
method using binding data alone) was applied to each ChIP-seq data set for target gene
prediction. 13.61%, 9.42% or 11.45% of its predicted target genes are also differentially
expressed when ATF3, EGR1 or SRF is knocked down.

Differently expressed ATF3 target genes
Differently expressed EGR1 target genes
Differently expressed SRF target genes

o Pl a Q - N - o
= & o Q e 2 e 2 g S g &
3 3 © 3 T T b b I T w w
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Fig. S10. Heat map of differentially expressed target genes after knocking down each specific TF.
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Table S5. Validation of ATF3, EGR1 and SRF’s target genes using shRNA knockdown
experiments

TF symbols ATF3 EGR1 | SRF
CRNET Number of predicted target genes 644 296 112
(ChIP-BIT2 | Number of ‘true’ target genes 96 33 14
weighted Validation rate 14.9% 11.15% | 12.5%
prior) Enrichment p-value 2.28e-4 | Se-2 3.27e-2
CRNET Number of predicted target genes 141 249 62
(confident Number of ‘true’ expressed target genes 20 26 7
binary Validation rate 14.8% 10.44% | 11.3%
prior) Enrichment p-value 2.92e-3 | 2.38e-2 | 3.25¢-2
Number of predicted target genes 240 354 95
Number of ‘true’ expressed target genes 20 26 7
COGRIM Validation rate ’ e 8.33% 7.34% | 7.37%
Enrichment p-value 0.35 0.528 0.197
Number of predicted target genes 159 266 101
LASSO Number of ‘true’ expressed target genes 20 27 7
Validation rate 12.58% 10.15% | 6.93%
Enrichment p-value 1.19e-2 | 6.60e-2 | 0.242
Number of predicted target genes 426 427 154
Number of ‘true’ expressed target genes 20 26 6
GENIE3 | Validation rate 4.69% | 6.09% | 3.90%
Enrichment p-value 0.997 0.176 0.476

Hypergeometric p-value calculation:

In total, we have 1348 candidate target genes. They are bound by at least one TF in K562 cells.
159 genes (96+63 in the middle) are validated as ATF3 target genes since they are significantly
differentially expressed when ATF3 is knocked down. Using CRNET we finally identify 644
target genes for ATF3, where 96 of them are validated. We calculate the p-value using
hypergeometric test as follows:

S LEG)

where N is the number of candidate target genes, K is the number of all validated genes, 7 is the
number of genes identified by CRNET, and & is the number of validated genes in the CRNET
results. In this case, N = 1348, K = 159, n = 644 or k = 96. The significance p-value is 2.28e-4.
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Fig. S11. Venn diagrams of selected candidate genes, differentially expressed genes and CRNET
predicted genes. (A), (C) and (E) represent gene validation for ATF3, EGR1 and SRF,
respectively, where all ChIP-BIT2-detected binding events are used; (B), (D) and (F) represent
gene validation for ATF3, EGR1 and SRF, respectively, where ChIP-BIT2-detected bindings
events of high confidence (probability > 0.85) are used. The overlap area between ‘green’ and
‘blue’ circles represents validated target genes for each study, while the overlap of three circles
represents validated CRNET-predicted targets.
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S6. Inference of FRNs in breast cancer MCF-7 cells

S6.1 Candidate target gene selection

A breast cancer MCF-7 RNA-seq dataset was downloaded from the GEO database (accession
number: GSE62789). This is a time-course dataset including 10 samples generated within 24
hours of 10nM 17b-estradiol (E2) treatment (one sample for Omin, Smin, 10min, 20min, 40min,
80min, 160min, 320min, 640min or 1,280min). The transcripts per million (TPM) values of
genes (see Supplementary Table S6) were estimated using RSEM
(https://deweylab.github.io/RSEMY/). Using the basal expression at Omin as control, the relative
SNR of each sample is estimated by SNAGEE (Venet, et al., 2012), as shown in Table S7. The
average SNR is 2.83dB.

Table S6. RSEM estimated TPM values for genes from UCSC RefSeq hgl9.

Table S6 can be found in the supplementary file: “Supplementary Material Table S6.x1sx”.

Table S7. Relative SNRs of individual samples in the GSE51709 dataset.

Sample ID Relative SNR
Omin 0
Smin 4.23
10min 3.00
20min 3.12
40min 2.70
80min 2.33
160min 0.90
320min 1.74
640min 3.05
1280min 4.38

Following the RNA-seq processing pipeline described in the Methods section, we identified
3,258 significantly up/down regulated genes. Breast cancer MCF-7 cells are E2 sensitive so
under E2 stimulation, MCF-7 cells will grow very fast with cell cycle, cell proliferation and cell
growth signaling pathway activated. Using this E2 treated MCF-7 cell line model, it is
reasonable to associate TFs with up activity and their target genes with up-regulation pattern to
those E2 stimulated functional pathways, which have been demonstrated to be involved in breast
cancer development. Furthermore, if we knockdown a TF with up activity using siRNA,
theoretically its direct target genes should show a down-regulated gene expression pattern, as
opposite to their original up-regulated expression under E2 treatment. Specific for MCF-7 cells
and the E2 treatment condition, we were only focused on 1,907 up-regulated target genes and
aimed to infer the FRNs regulating those genes.
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To narrow the search space and gain more confidence on gene selection, we downloaded another
steady-state RNA-seq dataset from GEO database (accession number: GSE51403). In this dataset,
there are seven RNA-seq replicates generated under vehicle (VEH) condition and another 7
replicates generated after 24 hours of 10nM E2 treatment. Read counts of each gene under in
total 14 samples were estimated using RSEM and differential expression analysis was performed
using DeSeq?2 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html) with a cut-off
g-value 0.05 and fold change > 0.5 (higher expression after E2 treatment). Finally, we have
identified 489 common target genes. Heatmaps of gene expression pattern in both datasets are
shown in Fig. S12.

10min — 1280min E2 treatment VEH 24hr E2 treatment

~

uorssardxa
pazijeutioN

o
uorssardxa
PazI[euLION

KR =S——Y
P4

E2 upregulated target genes
E2 upregulated target genes

(A) (B)
Fig. S12. E2 upregulated candidate target gene expression pattern. (A) A heatmap of 489

common genes in E2 treated MCF-7 cell time-course RNA-seq data (GSE62789); (B) a heatmap
of 489 common genes in E2 treated MCF-7 cell steady-state RNA-seq data (GSE51403);

S6.2 Prior binding matrix construction

Table S8. 39 TF ChIP-seq profiles of breast cancer MCF-7 cells.

Data source TF symbols

CEBPB, CTCF, E2F1, EGRI1, ELFI, EP300, FOSL2, FOXMI1, GABPA,
ENCODE GATA3, HDAC2, JUND, MAX, MYC, NR2F2, NRSF, PML, POLR2A,
RAD21, SIN3AK20, SRF, TAF1, TCF7, TCF12, TEAD4, ZNF217

GSE26831 c-FOS, c-JUN, FOXA1

GSE41561 | CREBI, ER-0, KLF4, RXRA, TLE3

GSE38901 HSF1

GSE44737 MBD3

GSE28008 PBX1

GSE22612 TDRD3
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Promoter regions were extracted from human reference genome hg19 as =10k bps around each
TSS. In total, we obtained 25,802 promoter regions regardless of potential overlap. We
downloaded  breast cancer @ MCF7  enhancer like regions from ENCODE
(https://www.encodeproject.org/data/annotations/ ). In total, we obtained non-overlap 33957
enhancer regions. We extended or pruned enhancer regions as +lk bps around the original
middle points. Then, we used ChIP-BIT2 to call TFBSs at promoter and enhancer regions,
respectively. MACS2 was also applied to the same ChIP-seq data with default setting for narrow
peak detection and detected peaks were further mapped to promoter or enhancer regions. We
selected target genes with promoter binding events first. 464 genes (among the genes in Fig. S12)
having at least one TF binding event were selected. Prior bindings and gene expression for these
464 genes can be found in Table S9, which were used for promoter FRN inference. We also
presented MACS2 results together with ChIP-BIT2 in Fig. S13. We found that there were several
TFs without many peaks predicted by MACS2. For example, TDRD3 had a very few MACS2-
detected peaks. However, after evaluating read intensities using ChIP-BIT2, most of them were
significantly higher than the matched input data and weak peaks (probability >0.85) could be
identified on 444 candidate gene promoters. For another transcription factor MBD3, using
MACS2-detected peaks we could only obtain 170 candidate target genes, but using ChIP-BIT2
we had obtained 398 genes whereas 268 of them were of a probability over 0.85.

Table S9. Prior binding matrix (promoter) and normalized gene expression data of MCF7 cells.

Table S9 can be found in the supplementary file: “Supplementary Material Table S9.xlsx”.

To map distal binding events at enhancer regions with target genes, we downloaded all MCF7
ChIA-PET data from ENCODE and used Mango (https://github.com/dphansti/mango) to extract
significant 3D chromatin interactions with default setting. We annotated two ends of each
interaction using enhancer or promoter regions (minimum 500 bps overlap). In total, 39,703
interactions were annotated as enhancer-promoter interactions including 9,977 enhancer regions

and 9,651 target genes. Among those genes in Fig. S12, 318 genes had at least one enhancer-
promoter interaction with 1,050 enhancers. In total, we obtained 1,122 enhancer-promoter
interactions. Prior binding events at enhancer regions, enhancer-promoter interactions and target
gene expression data can be found in Table S10, which were further used for enhancer FRN
inference.

Table S10. Prior binding matrix (enhancer), enhancer-promoter interactions and normalized
gene expression data of MCF7 cells.
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Table S10 can be found in the supplementary file: “Supplementary Material Table S10.xIsx”.
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Fig. S13. Prior bindings at gene promoter regions. (A) ChIP-BIT2-generated prior binding
matrix (weighted, 0~1); (B) MACS2-generated prior binding matrix (binary, 0 (white) or 1(red));
(C) Similarity between binding events detected by ChIP-BIT2 and MACS2; (D) a distribution of
ChIP-BIT?2 probabilities for common binding events; (E) a distribution of ChIP-BIT2
probabilities for binding events detected by ChIP-BIT2 only.
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Fig. S14. Prior bindings at enhancer regions. (A) ChIP-BIT2-generated prior binding matrix
(weighted, 0~1); (B) MACS2-generated prior binding matrix (binary, 0 (white) or 1 (red)); (C)
Similarity between binding events detected by ChIP-BIT2 and MACS2; (D) a distribution of
ChIP-BIT2 probabilities for common binding events; (E) a distribution of ChIP-BIT2
probabilities for binding events detected by ChIP-BIT2 only.

S6.3 Convergence check of CRNET

24



IN

et
o

w
T

N
&l
T

llllmiiiiiiiilbummmumanmuuuummuuuumumuumuuumummmm

-
U‘!

R (Regulatory strength)
- v\:

o
cn

o : : : : : : : : :
0 100 200 300 400 500 600 700 800 900 1000
Sampling rounds

(A)

IS

ot
2]

(tJ

N
m

Ilulal||l|mml|||mm ~

R (Regulatory strength)
-?n ©

““ﬂ“mmﬂlmllllIlllbmllimlllllllldl“llllluhbluulllmm

0
0 100 200 300 400 500 600 700 800 900 1000
Sampling rounds

(B)

-

e
01

IS

et
&

w
T T

N
01

R (TF activity)
-a o

||||0ummuuuwm .................................... .

o
01

0 : : : : : : : : :
0 100 200 300 400 500 600 700 800 900 1000
Sampling rounds

©)
Fig. S15. Boxplots of R values (convergence) for the inferred FRNs at promoter regions. (A) R
values of the regulatory strength sampled by CRNET; (B) R values of the regulatory strength

sampled by COGRIM; (C) R values of TF activities sampled from time-course gene expression
data using CRNET.
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Fig. S16. Boxplots of R values (convergence) for the inferred FRN at enhancer regions. (A) R
values of the regulatory strength sampled by CRNET; (B) R values of TFAs sampled from time-
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S6.4 CRNET-estimated TFAs and their similarity to TF expression

2 2NF217 0.4805
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Fig. S17. CRNET-estimated TFAs for TFs functional at promoter regions and their similarity
with original TF expression: (A) heatmap of TFAs; (B) histogram of Pearson correlation
coefficients between TFAs and TF expression.
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Fig. S18. CRNET-estimated TFAs for TFs functional at enhancer regions and their similarity
with original TF expression: (A) heatmap of TFAs; (B) histogram of Pearson correlation
coefficients between TFAs and TF expression.
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S6.5 Validation of MYC’s proximal or distal target genes

Setting the threshold of fold change as 0.5, we obtained 2,720 differentially expressed genes
among a total of 34,694 genes. A high proportion (2,271 genes, 83.5%) of them are down-
regulated (fold change < -0.5) under siMYC condition. This suggests MYC is regulating most
target genes positively in breast cancer MCF-7 cells under E2-induced condition. This is
consistent to our observations of CRNET TFA estimation since the activities of MYC become
stronger when MCF-7 cells are stimulated by E2, as shown in Figs. S17 and S18.

Previously we collected 464 E2 up-regulated genes for FRN prediction at gene promoter regions.
Here, 119 of them are validated as MYC targets (significantly down regulated under siMYC
condition). The success rate of validation is 25.7%. Also, among 317 genes used for enhancer
FRN prediction, 85 are validated MYC'’s target genes. The success rate of validation is 26.8%.
Using CRNET or COGRIM, we integrated prior binding information with time-course gene
expression data to predict functional bindings for a set of TFs. We calculate the success rate of
validation on MYC’s target genes in promoter FRN predicted by CRNET (ChIP-BIT2), CRNET
(MACS2) or COGRIM (ChIP-BIT2), and that of enhancer FRN predicted by CRNET (ChIP-
BIT2) or CRNET (MACS?2) (as shown in Table S11).

Table S11. Summary of validated genes in the FRNs predicted by competing methods.

Region Promoter Enhancer

Raw validation rate 25.7% (119/464) 26.8% (85/317)

Method CRNET CRNET COGRIM CRNET CRNET
(ChIP-BIT2) | (MACS2) | (ChIP-BIT2) | (ChIP-BIT2) | (MACS2)

Predicted MYC targets | 101 87 55 92 78

Validated MYC targets | 40 34 23 44 35

p-value 1.3e-4 6.5e-4 1.5e-3 3.4e-8 2.9e-6

A true (validated) target gene is a gene with predicted MYC’s functional binding and
differentially expressed when MYC is knocked down. In the FRN of CRNET (ChIP-BIT2), we
have validated 40 proximal genes (with proximal MY C bindings) and 44 distal genes (with distal
MY C bindings).

A false positive (non-validated) target gene is a gene with predicted MYC’s functional binding
but non-differentially expressed when MYC is knocked down. In the FRN of CRNET (ChIP-
BIT2), we have 61 false positive proximal genes and 48 false positive distal genes.

A false negative target gene is a gene with predicted non-functional binding but differentially
expressed when MYC is knocked down. In the FRN of CRNET (ChIP-BIT2), we have 97 false
negative proximal genes and 63 false negative distal genes.

A negative target gene is a gene without a predicted non-functional binding and non-
differentially expressed when MYC is knocked down. In the FRN of CRNET (ChIP-BIT2), we
have 212 negative proximal genes and 98 negative distal genes.
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Heatmap of gene expression of validated true target genes and false positive genes, and Venn
diagrams of false positive/false negative predictions are shown in Fig. S19.

40 validated MYC proximal target genes
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Fig. S19. Target gene validation of MYC in the CRNET-predicted FRN: (A) and (B) validated
and non-validated MYC’s target genes, respectively, in the CRNET (ChIP-BIT2)-predicted
promoter FRN; (C) and (D) validated and non-validated MYC’s target genes, respectively, in the
CRNET (ChIP-BIT2)-predicted enhancer FRN; (E) and (F): Venn diagrams showing false
positive/negative MY C functional predictions in promoter and enhancer FRNS.
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S7. Summary of data, tools and results

Robustness
test

Data Competing Methods | Results

Simulated regulatory network (a) CRNET is more
with weighted binding prior and CRNET robust against false
time-course gene expression BNCA (Sabatti and positive bindings and

DREAM4 regulatory network
with binary binding prior and
time-course gene expression

James, 2006)
COGRIM (Chen, et
al., 2007)

LASSO (Qin, et al.,
2014)

NARROMI (Zhang, et
al., 2013)

GENIE3 (Huynh-Thu,
et al., 2010)

noise in gene
expression data than
competing methods.

(b) CRNET converges
much faster than
existing Gibbs
sampling based
methods.

ENCODE ChIP-seq data of 228
TFs from K562 cells and time-
course gene expression data

(c) CRNET can be
used to jointly analyze

hundreds of TFs and is
Large (GSE1036) CRNET running much faster
scale RNA-seq data (GSE33816) from COGRIM than COGRIM.
network K562 cells with shRNA targeting LASSO .
. NARROMI (d) CRNET has higher
inference to ATF3, EGR1 or SRF GENIE3 validate rates on ‘true’
ENCODE ChIP-seq data of 122 target genes of ATF3
TFs from GM 12878 cells and EGR1 and SRF than ’
time-course gene expression data competing methods
(GSE51709) )
(e) CRNET can also
be used to infer
regulatory networks
from enhancer regions.
39 TFs ChIP-seq data from MCF- (f) CRNET has a
7 cells and time-course gene better performance on
expression data (GSE62789) ﬁfgg;fé;%%ﬁgr predicting MYC target
Real ChIP- geges 11? both pro&notei
application | ECNODE MCF-7 ChIA-PET data and enhancer studies i
BIT2+COGRIM ChIP-BIT?2 results are
Gene expression data from MCF-7 used as binding prior.
cells treated by siMYC
(g) CRNET is better
than COGRIM even if
ChIP-BIT?2 results are
given to COGRIM as
binding prior.
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S8. Glossary of variables and parameters

B prior TF-gene binding network (weighted (0~1) or binary [0,1])
T the total number of TFs
J the total number of genes (or enhancer-gene loops)
M the total number of gene expression samples (or conditions)
z;, a binary binding event of #-th on j-th gene
b;, a prior probability for physical binding event z =1
S, read intensity of #-th TF at j-th gene promoter region
Horpps mean of the global Gaussian distribution component of ChIP-BIT
O s variance of the global Gaussian distribution component of ChIP-BIT
S} input read intensity of input ChIP-seq data at j-th gene promoter region;
which is also the mean of the local Gaussian distribution component
Tt variance of the local Gaussian distribution component
d;, relative distance of binding site of #-th TF to j-th gene TSS
2, binding distance exponential distribution parameter for j-th TF
d, length of one side gene promoter region
Y a Jx M matrix of all J genes expression under all M conditions (time points)
Y, a gene expression vector of j-th gene under M conditions
Vim gene expression of j-th gene under m-th condition
n gene expression data noise
2 variance of noise
X a T'x M matrix of all 7 TFs’ activities under M conditions
X, a TFA vector of #-th TF under M conditions
X, a TFA variable of #-th TF under m-th condition
)74 mean of sampled TFA
o’ variance of sampled TFA
n; base line gene expression of j-th gene
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A aJ x T matrix of regulation strength of 7 TFs on J genes
a;, regulation strength of -TF on j-th gene

z functional TF-gene binding network

bo logistic regression parameter

b logistic regression parameter
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