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CRNET User Manual (V2.2) 
 

CRNET is designed to use time-course RNA-seq data for the refinement of functional regulatory 
networks (FRNs) from initial candidate networks that can be constructed from ChIP-seq data. 
CRNET uses a two-stage Gibbs sampling framework to iteratively estimate the hidden 
transcription factor activities and the posterior probabilities of binding events. By using a t-
statistic jointly considering regulation strength and regression error, the sampling process of 
CRNET converges much faster than current Bayesian based regulatory network inference 
methods and the performance of CRNET is more robust against the noise in prior binding 
information and gene expression. Fig. 1 shows the flowchart of CRNET for functional regulatory 
network inference. The R scripts of CRNET have been tested using R 3.3 under MAC OS 10.11 
and Ubuntu 12.04 64 bit.  
 

 
Fig. S1. A workflow of CRNET. 

 
1. CRNET input data 
1.1 FRN inference at gene promoter regions 
 
An initial network and a time-course gene expression dataset are needed to run CRNET, which 
are usually the minimal requirements for functional network inference with most of the methods. 
CRNET accepts either weighted (0~1) or binary prior binding information. If ChIP-seq data are 
used, a weighted binding network can be generated using our previously developed tool ChIP-
BIT2 (http://www.cbil.ece.vt.edu/software.htm). From other resources (such as RegNetwork 
(http://www.regnetworkweb.org/)), a binary binding network can be constructed by users as a 
prior. In the prior binding file, each row represents a gene and each column represents a TF.  
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Load prior TF binding network at promoters 
B<-as.matrix(read.table('TF_promoter_binding.txt', row.names = 1, header=TRUE)) 
TF_symbols<-colnames(B) 
Gene_symbols<-row.names(B) 

 
The format of prior binding matrix is defined as follows: 

Gene_symbols CEBPB cFOS cJUN CREB1 … 
ABAT 0.66319 0.97672 0 0.89466  
ABCE1 0 0.84328 0 0.72576  
ABHD2 0 0 0.7332 0.81202  
ACAT2 0.74986 0 0 0.7724  
…      

 
The first row denotes TF symbols and the first column denotes gene symbols. The prior binding 
information can be weighted or just ‘0’ or ‘1’, which can be specified using parameter 
‘prior_flag’.  
#set binary flag of prior binding matrix: 1 weighted; 0 binary 
prior_flag=1 

 
Load time-course gene expression data 

A time-course RNA-seq gene expression dataset is needed. We recommend using the TPM value 
of each gene as gene expression, which can be estimated using RSEM 
(https://deweylab.github.io/RSEM/). However, if RNA-seq data are not available, properly 
normalized time-course microarray gene expression data also works.  

 
Gene_EXP<-as.matrix(read.table('Time_course_gene_expression.txt', row.names = 1, 
header=TRUE)) 

 
The format of time-course gene expression data is defined as follows: 

SampleID Sample_1 Sample_2 Sample_3 Sample_4 … 
Timepoints 5 10 20 40  
ABAT -0.07744 0.053572 -0.055054 0.015113  
ABCE1 -0.13893 -0.01361 -0.09728 0.003758  
ABHD2 -0.11876 0.063178 0.02229 0.032758  
ACAT2 -0.034728 0.059747 0.13875 -0.045705  
…      

 
The first column of gene expression data denotes gene symbols, which must be consistent to the 
first column of gene symbols in the prior binding matrix. The first row denotes unique sample ID 
for gene expression samples and the second row is a numerical row including time points for 
individual gene expression samples. We provide an option to estimate the same TF activity for 
multiple replicates of the same time point by setting parameter ‘replicate_flag’. If only one 
sample is provided for each time point, as shown above, ‘replicate_flag’ is set to ‘0’. 
#set the flag for sample replicates under each time point: 0 independent or no-
replicates; 1 related replicates  
replicate_flag=0 
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Otherwise, if two or more replicates are generated under each time point as follows: 
SampleID Sample_1_rep1 Sample_1_rep2 Sample_2_rep1 Sample_2_rep2 … 
Timepoints 5 5 10 10  
…      

 
At the first time point, we need put the same number, 5 (5mins), in the second row for two 
replicates. And set ‘replicate_flag’ is set to ‘1’. 
 
 

1.2 FRN inference at enhancer regions 
To infer FRNs at enhancer regions, we will need a prior binding matrix containing distal binding 
events at enhancer regions and another enhancer-gene map to associate those distal binding 
events with target genes. ChIP-BIT2 can also be used to detect binding events at enhancer 
regions. Alternatively, users can generate their own binding profiles at enhancer regions, which 
can be either weighted or binary.  
 
Load TF binding network at enhancers 
B<-as.matrix(read.table('TF_enhancer_binding.txt', row.names = 1, header=TRUE)) 
TF_symbols<-colnames(B) 
prior_flag=1 

 

Enhancer_ID CEBPB cFOS cJUN CREB1 … 
Distal-Prediction-162 0.81353 0 0 0.56975  
Distal-Prediction-169 0 0 0 0.59993  
Distal-Prediction-358 0.64626 0 0 0.82118  
Distal-Prediction-464 0 0 0 0.64376  
Distal-Prediction-671 0 0 0 0  
…      

 
Here, the first row still represents individual TFs but the first column denotes enhancer ID 
instead of gene symbols since each TF binds to enhancer regions directly and indirectly regulate 
enhancer target gene expression.  
 
Load enhancer-gene loop map 
Enhancer_gene_loop<-as.matrix(read.table('Enhancer_Gene_map.txt', row.names = 1, 
header=TRUE)) 

 
Enhancer_ID CELSR2 CTPS1 LHX4 RAP1A … 
Distal-Prediction-162 0 0 1 0  
Distal-Prediction-169 0 0 1 0  
Distal-Prediction-358 0 1 0 0  
Distal-Prediction-464 1 0 0 0  
Distal-Prediction-671 0 0 0 1  
…      
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The enhancer-gene loop input is the key to link binding events at enhancer regions to target 
genes. The first column represents enhancer ID, which must be consistent with prior binding 
matrix. The first row denotes gene symbols, which needs to be consistent with gene symbols in 
the gene expression data.  

 
Load time-course gene expression data 
Gene_EXP<-as.matrix(read.table('Enhancer_target_gene_expression.txt', row.names = 1, 
header=TRUE)) 
replicate_flag=0 

 
SampleID Sample_1 Sample_2 Sample_3 Sample_4 … 
Timepoints 5 10 20 40  
CELSR2 -0.1137 0.11911 0.1428 0.17023  
CTPS1 -0.4027 -0.33153 0.014567 -0.28826  
LHX4	 -0.074116 -0.10675 -0.18672 0.03247  
RAP1A -0.19733 -0.040421 0.21822 0.16403  
…      

… 
 

2. CRNET workflow  
2.1 Hyper-parameters 
As introduced in the CRNET paper, two hyper-parameters are needed as gene expression data 
noise variance (sigma_noise) and transcription factor activity (TFA) noise variance (sigma_X). 
In some methods these parameters may be assumed as random variables and sampled together 
with the other major variables under a Bayesian framework. However, the distribution of these 
variance variables are hard to know and there is no clear evidence to show that sampling these 
parameters can really improve the overall performance. Therefore, to make the sampling process 
more efficient, we directly set them as hyper-parameters with fixed values.  

In detail, we set the value of ‘sigma_noise’to 1, as informative prior control over the noise in 
gene expression data because RNA-seq data are used in this study. Different value settings of 
sigma_X from 1 to 100 has been discussed in BNCA (Sabatti and James, 2006). Network 
prediction performances are quite similar using different values and the author suggested using 
an informative prior as 1 to speed up the convergence. Definitely, these two parameters can be 
adjusted according to the gene expression data quality.  

 
# CRNET model hyper-parameters 
sigma_noise=1 # Gene expression data noise variance 
sigma_X=1 #TFA variance 
 
 

2.2 CRNET two stage sampling 
CRNET iteratively samples the binding network and transcription factor activities using a Gibbs 
sampling framework. In this demo case, we set the total number of iterations to 1000. We 
provide two different functions to infer FRNs, respectively, at promoter and enhancer regions.   
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#FRN inference at promoter region 
Sampling_results<-CRNET_promoter(Gene_EXP, B, prior_flag, sigma_X, sigma_noise, b1, b0, 
Num_iteration, replicate_flag) 

 
#FRN inference at enhancer region 
Sampling_results<-CRNET_enhancer(Gene_EXP, Enhancer_gene_loop, B, prior_flag, sigma_X, 
sigma_noise, b1, b0, Num_iteration, replicate_flag) 

 

2.3 CRNET logistic function parameter training (optional) 
We define a logistic function to convert the t-statistic value for each binding into a probability. 
The training procedure of logistic function parameters is summarized as follows: 
 
(1) Randomly select a number of TFs (smaller than that of gene expression samples) and run 
Network Component Analysis (NCA) to estimate hidden TFA and regulation strength; 
 

TF_index = randsample(T,M-1);  
A_selected=A(:, TF_index); 
% Network Component Analysis 

    [Ae,Se] = FastNCA(Y,A_selected);  

 
(2) For each binding event, covert regulation strength and regression error into to a t-score and 
make a local judgement as ‘1’ if the t-score is larger the value with a false positive rate < 0.05; 
otherwise as ‘0’; 
 
for g=1:G 
    ssr=sum((Y(g,:)-Ae(g,:)*Se).^2); 
    for t=1:size(A_selected,2) 
        if A_selected(g,t)>0 
           C=1/(sum(Se(t,:).^2)); 
           t_statistics(g,( t)=Ae(g,t)/sqrt(C*ssr/(M-1-sum(A_selected(g,:)))); 
           threshold=tinv(0.975,M-1-sum(A_selected(g,:))); 
           %Logistic judgement  
           if abs(t_statistics(g, t))>=threshold 
              logistic_flag(g,( t)=1; 
           end 
        end 
    end 
end 

 
(3) Repeat (1) and (2) 100 times to test all TFs sufficiently; 
 
(4) Run a logistic regression on all t-scores as well as their labels. We use a MATLAB 
implementation of NCA (http://www.eee.hku.hk/~cqchang/FastNCA.htm) and provide a short 
MATLAB script ‘CRNET_logistic_function_training.m’ for parameter training. Using a 
MATLAB function of glmfit, we can perform logistic regression by setting function parameters 
as 'binomial', 'logit'.  
 
%Logistic regression 
label=logistic_flag(A_selected>0); 
B = glmfit(abs(t_statistics(A_selected>0)), [label ones(size(label))], 'binomial', 
'logit'); 

 
Values of b1and b0 can be found in the output vector B = [b0, b1].  
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3 CRNET output 
CRNET will output a matrix to denote the predicted FRN at promoter regions where each row 
represents a gene and each column represents a proximal TF.  
 
colnames(Sampling_results$Zf) <- TF_symbols 
rownames(Sampling_results$Zf) <- Gene_symbols 
write.csv(Sampling_results$Zf, file = 'Promoter_FRN.csv', quote = FALSE) 

 
Gene_symbols	 CEBPB	 cFOS	 cJUN	 CREB1	 … 
ABAT 215 225 0 196  
ABCE1 0 214 0 201  
ABHD2 0 0 206 186  
ACAT2 195 0 0 228  
…      

 
In the predicted FRN at enhancer regions, each row represents an enhancer-gene interaction as 
enhancer_ID:gene_ID and each column represents a distal TF.  
 
colnames(Sampling_results$Zf) <- (TF_symbols) 
rownames(Sampling_results$Zf) <- 
paste(Sampling_results$Enhancer_ID[Sampling_results$Enhancer_gene_loops[,1]], 
Sampling_results$Gene_symbols[Sampling_results$Enhancer_gene_loops[,2]], sep=":") 
write.csv(Sampling_results$Zf, file = 'Enhancer_FRN.csv', quote = FALSE) 

 

 
CEBPB cFOS cJUN CREB1 … 

Distal-Prediction-162: LHX4 235 0 0 225  
Distal-Prediction-169: LHX4 0 0 0 211  
Distal-Prediction-358: CTPS1 223 0 0 214  
Distal-Prediction-464: CELSR2 0 0 0 211  
Distal-Prediction-671: RAP1A 0 0 0 0  
…      

 
We calculate a sampling frequency for each unit as Num. of samples/Total rounds of sampling. 
We recommend users set the cut-off threshold after examining the overall distribution of 
sampling frequencies as shown in the following figure (Fig. 2). Binding network density, number 
of TFs, number of genes, gene expression data quality and number of expression samples may all 
affect the learned distribution of binding connections.  

 
Figure 2. Distribution of samples on all binding connections (demo). 
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