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S1. Workflow of CRNET 
 

 

Fig. S1. A workflow of CRNET. 

The main steps of the CRNET workflow (see Fig. S1) can be summarized as follows: 

Step 1: CRNET can be run in either ‘promoter mode’ or ‘enhancer mode’. Promoter or enhancer 
regions should be pre-defined. We define a gene’s promoter region as ±10k bps around its 
transcription starting site (TSS) according to the UCSC hg19 RefSeq file. Enhancer regions can 
be identified using ChIP-seq data of enhancer markers like H3K27ac or DNase-seq data. For 
some cell types, their cell type-specific enhancer regions can be downloaded from ENCODE 
website (https://www.encodeproject.org/data/annotations/). We extend each enhancer region to 
±1k bps around the middle point of the region. 

Step 2: We use ChIP-BIT2 (http://www.cbil.ece.vt.edu/software.htm) to call transcription factor 
binding sites (TFBSs) at promoter or enhancer regions from ChIP-seq data of individual TFs. For 
each binding event, ChIP-BIT2 will report a probability denoting the possibility of binding 
occurrence. This probability is used as a prior in further functional regulatory network (FRN) 
inference. A brief description of ChIP-BIT2 can be found in Section S2. Alternatively, using 
ChIP-seq data with different peak callers or using other transcription factor database we may 
obtain binary binding information. CRNET can take binary prior input, too.  
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Step 3: Given time-course RNA-seq data, RSEM (https://deweylab.github.io/RSEM/) is used to 
align raw reads of each RNA-seq sample to the reference genome UCSC hg19 and estimate 
transcripts per million (TPM) value of each gene. We transfer the raw expression value to log2 
format for further analysis. In this study, a candidate target gene is selected if at least at one time 
point its absolute fold change to the basal expression (‘0’ time point) is larger than 0.5. Further 
gene refinement like selecting a specific expression pattern or a biologically meaningful gene set 
is greatly helpful to narrow the candidate gene pool. To ensure reasonable computational time 
and parameter estimation accuracy, we suggest narrow the gene list to be shorter than 1000. 
CRNET has been tested with a few hundred to one thousand genes. 	

Step 4: For promoter study, binding events and target genes have already been linked together 
by ChIP-BIT2. If other peak calling is used, additional gene annotation needs to be done. We 
construct a prior binding matrix where each row represents a gene and each column represents a 
TF. For enhancer study, additional prior knowledge of 3D chromatin interactions is a must to 
map enhancer regions to target genes. Then, distal binding events can be linked together with 
target genes and a similar prior binding matrix as the promoter study can be established. 

Step 5: To set the initial state of FRN, for each gene we select partial bindings (the number of 
selected bindings should be smaller than the number of total expression samples) according to 
their prior probabilities. And for each TF, we randomly select a Gaussian process with zero mean 
and unit variance as initial TF activity (TFA). 

Step 6: CRNET is a two-stage Gibbs sampling approach. For each TF, we sample the mean and 
standard deviation of TFA (see Eqs. (7) and (8) of the main text) based on the conditional 
probability as defined in Eq. (5) in the main text. More details will be given in Section S3.2. 

Step 7: For each binding event, we sample its state based on a t-score as defined in Eq. (7). Here, 
for sampling purpose, each t-score is transformed into a probability using logistic regression as 
Eq. (8). The logistic regression function will be further discussed later in Section S3.3. 

Step 8: We repeat Steps 6 and 7 for sufficient times and collect Gibbs samples for each binding 
event. The sampling frequency (observed samples/total rounds) of each binding event represents 
the posterior probability for functional binding occurrence.  

Step 9: As an optional step, users can run CRNET multiple times by varying initial settings in 
Step 5 and generate multiple Markov chains. As described in Section 3.4, sampling convergence 
on each variable can be monitored used a method proposed in (Gelman and Rubin, 1992). 
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S2. TFBS identification using ChIP-BIT2 
ChIP-BIT2 (an extended version of ChIP-BIT (Chen, et al., 2016)) uses a Gaussian mixture 
model (consisting of global and local Gaussian components) to capture both binding and 
background signals in the sample data. A unique feature of ChIP-BIT2 is that the Gaussian 
component modeling background signals is specially designed as a local Gaussian distribution 
that can be estimated accurately from the input data. Specific for promoter-focused studies, an 
exponential distribution is used to model the relative distance of TFBSs to TSS, which is further 
incorporated into the Bayesian approach of ChIP-BIT2 for target gene inference. Estimated by an 
expectation-maximization (EM) algorithm, a posterior probability is assigned to each TFBS 
under consideration, indicating the likelihood of a binding occurrence. A C++ package of ChIP-
BIT2 can be downloaded from http://www.cbil.ece.vt.edu/software.htm. 
 
Given ChIP-seq data of multiple TFs (the total number of TFs is denoted by ) and annotation 
files of promoter or enhancer regions, a prior binding matrix B can be constructed using ChIP-
BIT2. Note that ChIP-BIT2 can be run in either ‘promoter mode’ or ‘enhancer mode’, but it 
cannot be run on both types of regions simultaneously because the mathematical models of the 
relative distance of TFBS to TSS are different under two cases. ChIP-BIT2 detects TFBSs 
reliably at promoter or enhancer regions by jointly modeling binding signals (read intensities) 
and binding locations of TFBSs.  
 
Assuming that we have J promoter or enhancer regions and T TFs, for the j-th promoter or 
enhancer region, we partition it into small windows each with a size of 200 bps and calculate 
read intensities of the t-th TF’s ChIP-seq profile and its matched input data as  and 

respectively for the w-th window (please see ChIP-BIT (Chen, et al., 2016) for read intensity 
calculation). For each window, the relative distance to the nearest TSS is recorded as . 

Given the above observations, the conditional probability for binding event  is defined as  

            (S-1)  

where  is a normalization factor. 

 

The conditional probability  is a Gaussian mixture distribution with 
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For ,  is sequenced from a TFBS so it follows a global Gaussian distribution with 

mean  and variance ; for ,  is sequenced from background region so it 

follows a local Gaussian distribution with mean  (its input signal) and variance . 

 is the variance of background signals, which can be directly calculated from the input data. 

 

The second likelihood function in Eq. (S-1), , is determined by the relative 

distance  to TSS as well as the binding state . Note that this is a special feature for 

TFBSs at promoter regions. Previous studies (Chen, et al., 2016) have shown that the average 
read enrichment in sample ChIP-seq data (binding signals) follows an exponential distribution 
along the gene promoter region, while this distribution in input ChIP-seq data (background 
signals) is relatively uniform. Therefore, for TFBSs located at promoter regions,  

is also a mixture distribution with  

         (S-3) 

where  is the exponential distribution parameter and  (=10k bps) is the half length of a 
promoter region. For enhancer studies, we do not need to estimate parameter . Instead for 
TFBS prediction at enhancer regions, we assume that both binding signals and background 
signals follow a uniform distribution as defined in Eq. (S-3). 

 

ChIP-BIT2 iteratively estimates distribution parameters using an Expectation-Maximization (EM) 
algorithm and finally estimates a probability  for each candidate binding event . It 

is possible that, for a promoter or enhancer region, there are multiple windows containing TFBSs 
of the same TF. In that case, we select the largest  as bj,t  to denote the probability of binding 

occurrence between the t-th TF and the j-th promoter or enhancer region. Finally, we report all 
binding events with a probability larger than 0.5 and construct a weighted prior binding matrix B 
with J rows and T columns.  
 
ChIP-BIT2 is developed to detect TFBSs from a set of pre-selected enhancer or promoter regions. 
Therefore, users are required to identify or predict a list of active enhancer or promoter regions 
before using ChIP-BIT2. In this paper, we select two widely used human enhancer and promoter 
database: ENCODE cell type-specific enhancer regions and hg19 RefSeq promoter regions (+/- 
10k bps around TSS). Note that optimal selection of enhancer or promoter regions for a certain 
cell type is helpful to improve the accuracy of functional binding inference by eliminating noisy 
prior bindings from false positive enhancer or promoter regions.  
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S3. CRNET model 

S3.1 Enhancer-gene loop generation 

A distal enhancer region will physically interact with the promoter region of a target gene 
through a 3D chromatin interaction and then, TFs binding at enhancer regions will actively 
regulate the target gene expression (Sanyal, et al., 2012). However, there is no clear evidence for 
the functional relationship between TFs from different enhancers looping to the same gene, and 
also no clear relationship between TFs binding at the two ends in the same loop. Therefore, we 
cannot make a hard claim that those TFs work at the same time or hierarchically. Therefore, 
using CRNET we predict FRNs either at promoter or enhancer regions. In current framework, we 
do not integrate binding events at enhancer and promoter region together.  
 
3D chromatin interactions between enhancers and target genes can be extracted from ChIA-PET 
data or Hi-C data. The difference between these two types of data is that the ChIA-PET 
technique is more like ChIP-seq technique and it can provide TF-specific enhancer-promoter 
loops, which can be extracted from ChIA-PET data using Mango 
(https://github.com/dphansti/mango); the Hi-C technique is more like the whole genome 
sequencing technique and it can provide topological association domains (TADs) across the 
whole chromosome, with which the enhancer-promoter loops can be extracted from Hi-C data 
using HiC-Pro (https://github.com/nservant/HiC-Pro). The resolution of ChIA-PET results is 
usually higher than those interactions provided by Hi-C and they are also much sparser. We map 
3D chromatin interactions to enhancer and promoter regions used in ChIP-BIT2. If one end of an 
interaction is mapped to an enhancer region (2kbps long) with at least 500 bps overlap and the 
other end is mapped to a promoter region (20kbps long) with at least 500 bps overlap, it will be 
annotated as an enhancer-promoter loop. Based on annotated enhancer-promoter (gene) loops 
and binding observations at enhancer regions, we construct a prior binding matrix B specific for 
enhancer studies, where each row of B denotes an enhancer-gene association 
(enhancerID:geneID) and each column represent a TF.  
	

S3.2 Gibbs sampling of TFA 

The posterior probability of hidden variable X  is defined as follows: 
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We assume conditional independence among units in matrix X  and hence the posterior 
probability of each variable ,t mx , the hidden activity of the t-th TF at the m-th time point or 

condition, can be calculated as follows:  
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Equation (S-4) is a multiplication of two Gaussian distributions so the posterior probability of 

,t mx  is still a Gaussian distribution. Equation (S-5) can be further expanded as follows: 
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We define two new variables 2

xs ¢  and xµ ¢  as follows: 
 

( )
1

22
, ,2 2

1

1 J

x j t j t
j x

Ja zs
s s

-

=

æ ö
¢ = +ç ÷

è ø
å       (S-7) 

( )

, , ' , ' ', , ,
1 ' 1, '

22

, , 2
1

J T

j m j t j t t m j j t j t
j t t t

x J

j t j t
j x

y a z x a z

Ja z

h
µ

s
s

= = ¹

=

æ öæ ö
- -ç ÷ç ÷ç ÷è øè ø¢ =

+

å å

å
    (S-8) 

 
 
Bring 2

xs ¢  and xµ ¢  back to Equation (S-3) and then we can obtain a new equation as follows: 
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where 
2

1
2 xps ¢

 is a constant for ,t mx .From Equation (S-9) it can be found that the posterior 

probability of ,t mx  follows a Gaussian distribution with mean xµ ¢  and variance 2
xs ¢ , which can be 

computed as in Equations (S-7) and (S-8). 
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S3.3 Logistic function parameter training for binding variable sampling  

Converting the Student’s t-statistic value (t-score) for each binding into a probability we define a 
logistic function in Eq. (8) of the main text. Before running CRNET, we need to estimate the 
logistic function parameters via a training procedure. The training procedure is summarized as 
follows: 

1) Randomly select a number of TFs (smaller than that of gene expression samples) and run 
Network Component Analysis (NCA) (Liao, et al., 2003) to estimate hidden TFAs and regulation 
strengths; 

2) For each binding event, calculate the t-statistic ( ,( )j tf a  as defined in Eq. (10) of the main text) 

using its regulation strength and regression error, and make a decision as functional binding (z 
=1) if the t-statistic value is larger than t0.05 (the t-statistic value corresponding to a false positive 
rate<0.05); otherwise as non-functional binding (z=0); 

3) Record t-statistic values and their associated binding decisions/labels (z=0 or z=1); 

4) Repeat Step 1) to Step 3) 100 times to test all TFs in a sufficient number of times; 

5) Run a logistic regression using all t-statistic values and their binding labels.  

From the training procedure, the logistic function parameters b0 and b1 are estimated as -15.15 
and 5.72, respectively. The logistic function curve is shown in Fig. S2.  
 

 
Fig. S2. Logistic function curve. 
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S3.4 Convergence check  

If benchmark network is available, convergence to those ‘true’ interactions can be directly 
monitored by examining Precision-Recall performance. For real data analysis without much 
knowledge about ‘true’ interaction, convergence of Gibbs sampling can also be monitored based 
on the ratio (R) of within variance and between variance using multiple sequences with different 
initial states (Gelman and Rubin, 1992). Here is a brief outline of the calculation of R for each 
variable estimated using Gibbs sampling.  

First, we simulate S ≥ 2 sequences independently, each of length K . S  and K  are set up to10 
and 1000, respectively. This relatively short sequence is mainly used to check when the chains 
tart to converge.  

Second, after each round of sampling, i.e., k , for each variable ( , )v s k , we update the target 

mean, which is the mean of the S k´  sampled values, as v . 

Third, we calculate between variance B and the average value of within variance W as follows: 

/B k  = the variance between the K  sequence means, ( )v s , each based on k  values of ( , )v s k ,  

2
1
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W = the average of S  within-sequence variances, 2
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Fourth, we estimate the target variance by a weighted average of W and B as follows: 

2 1 1ˆ k W B
k k

s -
= + .                                                    (S-12) 

Fifth, we estimate what is now known about v . The result is an approximate Student’s t-

distribution for v  with center v , scale 2ˆ ˆ /V B Sks= +  and degrees of freedom 
2ˆ ˆ2 / var( )df V V= . 

Sixth, we monitor convergence of sampled Markov Chain by estimating the factor 𝑅, which 
the scale of the current distribution for x might be reduced if the simulations are continued in the 
limit 𝑛 ⟶ ∞. This potential scale reduction is estimated by  
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which declines to 1 as 𝑘 ⟶ ∞.   
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S4. Simulation study 

S4.1 Prior binding network simulation  

We simulated a regulatory network with 200 genes and 20 TFs as shown in Fig. S3(A). Each 
gene is regulated by a random number of TFs from 0 to 6 (on average 2), as shown in Fig. S3(B). 
The prior probability of each binding is a random value from 0.5 to 1 following a distribution as 
observed from ChIP-BIT2 results of analyzing ENCODE MCF-7 ChIP-seq data, as shown in Fig. 
S3(C).  

	 	

(A)     (B) 

 
(C) 

Fig. S3. Simulated prior binding network. (A) Network structure (‘red’ color denotes bindings); 
(B) a histogram of binding degree on each gene; (C) a histogram of binding prior probabilities on 
simulated bindings (following a distribution of ChIP-BIT2 results of ENCODE MCF-7 cell 
ChIP-seq data).  

 

 

 

-1 0 1 2 3 4 5 6 7
Number of bindings

0

10

20

30

40

50

60

N
um

be
r o

f g
en

es

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Prior probabilities

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r o

f p
rio

r b
in

di
ng

s



11	
	

S4.2 Gene expression data simulation 

According to the distribution assumption made on regulation strength by existing Bayesian 
methods like BNCA and COGRIM, we simulated the regulation strength (matrix A) on each 
binding connection by following a Gaussian distribution with zero mean and unit deviation. We 
simulated two different time course gene expression datasets: in Case 1, we simulated TFAs 
(matrix X) for individual TFs using Gaussian random process with zero mean and unit variance 
under 20 time points; gene expression (matrix Y) was then simulated based on the log-linear 
model introduced in Eq. (1) with X and A; in Case 2, we only generated 10 time course samples. 
Case 2 is more challenging because the number of TFs is larger than the number of gene 
expression samples. 

 

(A)     (B)     (C) 

Fig. S4. Simulated gene expression data. (A) Regulatory strength of prior binding events (matrix 
A); (B) a heatmap of simulated TFA (matrix X); (C) a heatmap of simulated gene expression 
data (matrix Y).  

 

S4.3 Definitions of Precision, Recall and F-measure  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑑𝑔𝑒𝑠	

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑒𝑑𝑔𝑒𝑠	𝑜𝑣𝑒𝑟	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑑𝑔𝑒𝑠	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ	𝑒𝑑𝑔𝑒𝑠

 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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S4.4 Convergence of Bayesian methods  

   

(A)                                                      (B) 

Fig. S5. Convergence of competing methods. (A) AUC at different rounds of sampling for Case 
1 with FPR = 15% and SNR = 3dB; (B) AUC performance at different rounds of sampling for 
Case 2 with FPR = 15% and SNR = 3dB. 
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S5. Large-scale FRN inference  

S5.1 Prior binding network and candidate target gene expression 

K562 cell: ChIP-seq data of 228 TFs generated from K562 cells was downloaded from 
ENCODE database. We used ChIP-BIT2 to process BAM files of each TF and its match input 
and further constructed a prior binding matrix at promoter region. A time-course gene expression 
dataset (GSE1036) of K562 cells was downloaded from GEO database. In this dataset, K562 
cells were treated with 50 mm hemin for 72 hours and at each time point (0h, 6h, 12h, 24h, 48h, 
72h) two replicates were generated using Affymetrix Human Genome U133A Array. We 
downloaded the normalized gene expression data as described in (Addya, et al., 2004) and 
estimated the Signal-to-Noise Ratio (SNR) of each gene expression sample relative to the basal 
expression at ‘0’ time point (control) using SNAGEE (Venet, et al., 2012), as shown in Table S1. 
On average the SNR of this gene expression dataset is 2.82dB. As shown in previous simulation 
studies, under this SNR range around 3dB CRNET can achieve a F-measure higher than 0.7. 
Following the gene selection procedure as described in (Addya, et al., 2004), 1,569 differentially 
expressed genes were selected. We selected genes with at least two binding observations from 
the prior binding matrix. Finally, 1,351 genes expression were selected. The prior binding matrix 
and normalized gene expression data can be found from Table S2. A heatmap of time-course 
gene expression is shown in Fig. S7(A).  

 

Table S1. Relative SNRs of individual samples in the GSE1036 dataset. 

Sample_ID Relative SNR 
0h_rep1 0 
0h_rep2 0.19 
6h_rep1 3.08 
6h_rep2 3.92 
12h_rep1 3.65 
12h_rep2 3.51 
24h_rep1 3.48 
24h_rep2 3.99 
48h_rep1 3.71 
48h_rep2 2.32 
72h_rep1 1.45 
72h_rep2 1.74 

 

Table S2. Prior binding matrix and normalized gene expression data of K562 cells. 

Table S2 can be found in the supplementary file: “Supplementary Material Table S2.xlsx”. 
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GM12878 cell: ChIP-seq data of 122 TFs generated from GM12878 cells was downloaded from 
ENCODE database. We used ChIP-BIT2 to process BAM files of each TF and its match input 
and construct a prior binding matrix at promoter region. A time-course gene expression dataset 
of GM12878 cells was downloaded from GEO data base with access number GSE51709. In this 
dataset, GM12878 cells were treated with 0.5 µM doxorubicin (Calbiochem) for 0h, 4h and 18h 
and at each time point three replicates were generated using Affymetrix Human Exon 1.0 ST 
arrays. We downloaded the gene expression data analyzed through Affymetrix Expression 
Console using gene-level RMA summarization and sketch-quantile normalization methods (Su, 
et al., 2015). The relative SNR of each gene expression sample is shown in Table S3. SNRs vary 
from 1.55dB to 2.97dB with an average value of 2.04dB. Differentially expressed genes were 
identified at each time point using t-test with corrected p-value <0.05 and absolute fold 
change >2. We refined gene list by selecting genes with at least two binding observations from 
the prior binding matrix. Finally, 925 genes were selected for FRN inference. The prior binding 
matrix and normalized gene expression data can be found in Table S4. A heatmap of time-course 
gene expression is shown in Fig. S7(B).  

 

Table S3. Relative SNRs of individual samples in the GSE51709 dataset. 

Sample_ID Relative SNR 
0h_rep1 0 
0h_rep2 -0.4051867   
0h_rep3 2.2919465   
4h_rep1 2.6966258   
4h_rep2 2.9733475   
4h_rep3 2.9664372   
18h_rep1 2.4840261   
18h_rep2 1.5534577   
18h_rep1 1.8033868 

 

Table S4. Prior binding matrix and normalized gene expression data of GM12878 cells. 

Table S4 can be found in the supplementary file: “Supplementary Material Table S4.xlsx”. 

Weighted binding matrix 
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                                       (A)                                                                                             (B) 

Fig. S7. Heatmaps of selected genes expression: (A) a heatmap of 1351 genes in the K562 
GSE1036 dataset; (B) a heatmap of 925 genes in the GM12878 GSE51709 dataset.  
	

 
(A)                                                                                (B) 

   
(C)                                                                                (D) 

Fig. S8. Posterior distributions of Gibbs samples (sampling frequency) generated by CRNET and 
COGRAM: (A) CRNET results for K562 cells; (B) COGRIM results for K562 cells; (C) CRNET 
results for GM12878 cells; (D) COGRIM results for GM12878 cells. 
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(A)     (B) 

Fig. S9. Correlation coefficient of CRNET estimated TFA and observed TF expression: (A) 173 
TFs in K562 cells; (B) 80 TF in GM12878 cells. 

  

-1 -0.5 0 0.5 1
Correlation coefficient

0

2

4

6

8

10

12

N
um

be
r o

f T
Fs

-1 -0.5 0 0.5 1
Correlation coefficient

0

1

2

3

4

5

6

Nu
m

be
r o

f T
Fs



17	
	

S5.2 Target gene validation for TFs (ATF3, EGR1 and SRF) in K562 cells 
	

We use the matched RNA-seq data generated before or after specific TF knockdown to validate 
genes identified by each method on each data set. The RNA-seq data is downloaded from GEO 
data base under access number GSE33816. For each TF, there are two replicates under control or 
treatment conditions (Vehicle vs. shRNA). We apply RSEM (https://deweylab.github.io/RSEM/) 
to the fastq files of each RNA-seq sample and estimate read counts and transcripts per million 
(TPM) values of genes across all samples. For each TF, we use DeSeq2 
(https://bioconductor.org/packages/release/bioc/html/DESeq2.html) to identify its target genes 
(differentially expressed genes with a q–value cutoff as 0.05). In total, we identified 1133 genes 
for ATF3, 893 genes for EGR1 and 1011 genes for SRF, whose expression patterns are shown in 
Fig. S10. Note that as a baseline for comparison, TIP (Cheng, et al., 2011) (a probabilistic 
method using binding data alone) was applied to each ChIP-seq data set for target gene 
prediction. 13.61%, 9.42% or 11.45% of its predicted target genes are also differentially 
expressed when ATF3, EGR1 or SRF is knocked down.  

 
 

   
                           (a) ATF3                                (b) EGR1                              (c) SRF 

Fig. S10. Heat map of differentially expressed target genes after knocking down each specific TF. 
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Table S5. Validation of ATF3, EGR1 and SRF’s target genes using shRNA knockdown 
experiments 

TF symbols ATF3 EGR1 SRF 
CRNET  
(ChIP-BIT2 
weighted 
prior) 

Number of predicted target genes  644 296 112 
Number of ‘true’ target genes  96 33 14 
Validation rate 14.9% 11.15% 12.5% 
Enrichment p-value 2.28e-4 5e-2 3.27e-2 

CRNET 
(confident 
binary 
prior) 

Number of predicted target genes  141 249 62 
Number of ‘true’ expressed target genes  20 26 7 
Validation rate 14.8% 10.44% 11.3% 
Enrichment p-value 2.92e-3 2.38e-2 3.25e-2 

COGRIM 

Number of predicted target genes  240 354 95 
Number of ‘true’ expressed target genes  20 26 7 
Validation rate 8.33% 7.34% 7.37% 
Enrichment p-value 0.35 0.528 0.197 

LASSO 

Number of predicted target genes  159 266 101 
Number of ‘true’ expressed target genes  20 27 7 
Validation rate 12.58% 10.15% 6.93% 
Enrichment p-value 1.19e-2 6.60e-2 0.242 

GENIE3 

Number of predicted target genes  426 427 154 
Number of ‘true’ expressed target genes  20 26 6 
Validation rate 4.69% 6.09% 3.90% 
Enrichment p-value 0.997 0.176 0.476 

 

Hypergeometric p-value calculation:  

In total, we have 1348 candidate target genes. They are bound by at least one TF in K562 cells. 
159 genes (96+63 in the middle) are validated as ATF3 target genes since they are significantly 
differentially expressed when ATF3 is knocked down. Using CRNET we finally identify 644 
target genes for ATF3, where 96 of them are validated. We calculate the p-value using 
hypergeometric test as follows: 

, 

where N is the number of candidate target genes, K is the number of all validated genes, n is the 
number of genes identified by CRNET, and k is the number of validated genes in the CRNET 
results. In this case, N = 1348, K = 159, n = 644 or k = 96. The significance p-value is 2.28e-4.  
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(A)       (B) 

  

(C)       (D) 

 

(E)       (F) 

Fig. S11. Venn diagrams of selected candidate genes, differentially expressed genes and CRNET 
predicted genes. (A), (C) and (E) represent gene validation for ATF3, EGR1 and SRF, 
respectively, where all ChIP-BIT2-detected binding events are used; (B), (D) and (F) represent 
gene validation for ATF3, EGR1 and SRF, respectively, where ChIP-BIT2-detected bindings 
events of high confidence (probability > 0.85) are used. The overlap area between ‘green’ and 
‘blue’ circles represents validated target genes for each study, while the overlap of three circles 
represents validated CRNET-predicted targets.   
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S6. Inference of FRNs in breast cancer MCF-7 cells  

S6.1 Candidate target gene selection 

A breast cancer MCF-7 RNA-seq dataset was downloaded from the GEO database (accession 
number: GSE62789). This is a time-course dataset including 10 samples generated within 24 
hours of 10nM 17b-estradiol (E2) treatment (one sample for 0min, 5min, 10min, 20min, 40min, 
80min, 160min, 320min, 640min or 1,280min). The transcripts per million (TPM) values of 
genes (see Supplementary Table S6) were estimated using RSEM 
(https://deweylab.github.io/RSEM/). Using the basal expression at 0min as control, the relative 
SNR of each sample is estimated by SNAGEE (Venet, et al., 2012), as shown in Table S7. The 
average SNR is 2.83dB. 
 

Table S6. RSEM estimated TPM values for genes from UCSC RefSeq hg19. 

Table S6 can be found in the supplementary file: “Supplementary Material Table S6.xlsx”. 
 

Table S7. Relative SNRs of individual samples in the GSE51709 dataset. 

Sample_ID Relative SNR 
0min 0 
5min 4.23   
10min 3.00   
20min 3.12   
40min 2.70   
80min 2.33   
160min 0.90   
320min 1.74   
640min 3.05 
1280min 4.38 

 
Following the RNA-seq processing pipeline described in the Methods section, we identified 
3,258 significantly up/down regulated genes. Breast cancer MCF-7 cells are E2 sensitive so 
under E2 stimulation, MCF-7 cells will grow very fast with cell cycle, cell proliferation and cell 
growth signaling pathway activated. Using this E2 treated MCF-7 cell line model, it is 
reasonable to associate TFs with up activity and their target genes with up-regulation pattern to 
those E2 stimulated functional pathways, which have been demonstrated to be involved in breast 
cancer development. Furthermore, if we knockdown a TF with up activity using siRNA, 
theoretically its direct target genes should show a down-regulated gene expression pattern, as 
opposite to their original up-regulated expression under E2 treatment. Specific for MCF-7 cells 
and the E2 treatment condition, we were only focused on 1,907 up-regulated target genes and 
aimed to infer the FRNs regulating those genes.  
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To narrow the search space and gain more confidence on gene selection, we downloaded another 
steady-state RNA-seq dataset from GEO database (accession number: GSE51403). In this dataset, 
there are seven RNA-seq replicates generated under vehicle (VEH) condition and another 7 
replicates generated after 24 hours of 10nM E2 treatment. Read counts of each gene under in 
total 14 samples were estimated using RSEM and differential expression analysis was performed 
using DeSeq2 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html) with a cut-off 
q-value 0.05 and fold change > 0.5 (higher expression after E2 treatment). Finally, we have 
identified 489 common target genes. Heatmaps of gene expression pattern in both datasets are 
shown in Fig. S12.  
  

 
                                (A)                                                                                         (B) 

Fig. S12. E2 upregulated candidate target gene expression pattern. (A) A heatmap of 489 
common genes in E2 treated MCF-7 cell time-course RNA-seq data (GSE62789); (B) a heatmap 
of 489 common genes in E2 treated MCF-7 cell steady-state RNA-seq data (GSE51403);  
 

S6.2 Prior binding matrix construction 

 
Table S8. 39 TF ChIP-seq profiles of breast cancer MCF-7 cells. 

Data source TF symbols 

ENCODE 
CEBPB, CTCF, E2F1, EGR1, ELF1, EP300, FOSL2, FOXM1, GABPA, 
GATA3, HDAC2, JUND, MAX, MYC, NR2F2, NRSF, PML, POLR2A, 
RAD21, SIN3AK20, SRF, TAF1, TCF7, TCF12, TEAD4, ZNF217 

GSE26831 c-FOS, c-JUN, FOXA1  
GSE41561 CREB1, ER-α, KLF4, RXRA, TLE3 
GSE38901 HSF1 
GSE44737 MBD3 
GSE28008 PBX1 
GSE22612 TDRD3 
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Promoter regions were extracted from human reference genome hg19 as ±10k bps around each 
TSS. In total, we obtained 25,802 promoter regions regardless of potential overlap. We 
downloaded breast cancer MCF7 enhancer like regions from ENCODE 
(https://www.encodeproject.org/data/annotations/ ). In total, we obtained non-overlap 33957 
enhancer regions. We extended or pruned enhancer regions as ±1k bps around the original 
middle points. Then, we used ChIP-BIT2 to call TFBSs at promoter and enhancer regions, 
respectively. MACS2 was also applied to the same ChIP-seq data with default setting for narrow 
peak detection and detected peaks were further mapped to promoter or enhancer regions. We 
selected target genes with promoter binding events first. 464 genes (among the genes in Fig. S12) 
having at least one TF binding event were selected. Prior bindings and gene expression for these 
464 genes can be found in Table S9, which were used for promoter FRN inference. We also 
presented MACS2 results together with ChIP-BIT2 in Fig. S13. We found that there were several 
TFs without many peaks predicted by MACS2. For example, TDRD3 had a very few MACS2-
detected peaks. However, after evaluating read intensities using ChIP-BIT2, most of them were 
significantly higher than the matched input data and weak peaks (probability >0.85) could be 
identified on 444 candidate gene promoters. For another transcription factor MBD3, using 
MACS2-detected peaks we could only obtain 170 candidate target genes, but using ChIP-BIT2 
we had obtained 398 genes whereas 268 of them were of a probability over 0.85. 

 

Table S9. Prior binding matrix (promoter) and normalized gene expression data of MCF7 cells. 

Table S9 can be found in the supplementary file: “Supplementary Material Table S9.xlsx”. 

 

To map distal binding events at enhancer regions with target genes, we downloaded all MCF7 
ChIA-PET data from ENCODE and used Mango (https://github.com/dphansti/mango) to extract 
significant 3D chromatin interactions with default setting. We annotated two ends of each 
interaction using enhancer or promoter regions (minimum 500 bps overlap). In total, 39,703 
interactions were annotated as enhancer-promoter interactions including 9,977 enhancer regions 
and 9,651 target genes. Among those genes in Fig. S12, 318 genes had at least one enhancer-
promoter interaction with 1,050 enhancers. In total, we obtained 1,122 enhancer-promoter 
interactions. Prior binding events at enhancer regions, enhancer-promoter interactions and target 
gene expression data can be found in Table S10, which were further used for enhancer FRN 
inference.  

 

Table S10. Prior binding matrix (enhancer), enhancer-promoter interactions and normalized 
gene expression data of MCF7 cells. 
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Table S10 can be found in the supplementary file: “Supplementary Material Table S10.xlsx”. 

 
                                       (A)                                                                     (B) 

 
(C) 

 

                                       (D)                                                                        (E) 

Fig. S13. Prior bindings at gene promoter regions. (A) ChIP-BIT2-generated prior binding 
matrix (weighted, 0~1); (B) MACS2-generated prior binding matrix (binary, 0 (white) or 1(red)); 
(C) Similarity between binding events detected by ChIP-BIT2 and MACS2; (D) a distribution of 
ChIP-BIT2 probabilities for common binding events; (E) a distribution of ChIP-BIT2 
probabilities for binding events detected by ChIP-BIT2 only. 
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                                       (A)                                                                     (B) 

 

(C) 

 

                                       (D)                                                                        (E) 

Fig. S14. Prior bindings at enhancer regions. (A) ChIP-BIT2-generated prior binding matrix 
(weighted, 0~1); (B) MACS2-generated prior binding matrix (binary, 0 (white) or 1 (red)); (C) 
Similarity between binding events detected by ChIP-BIT2 and MACS2; (D) a distribution of 
ChIP-BIT2 probabilities for common binding events; (E) a distribution of ChIP-BIT2 
probabilities for binding events detected by ChIP-BIT2 only. 

S6.3 Convergence check of CRNET 
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(A) 

 
(B) 

 
(C) 

Fig. S15. Boxplots of 𝑅 values (convergence) for the inferred FRNs at promoter regions. (A) 𝑅 
values of the regulatory strength sampled by CRNET; (B) 𝑅 values of the regulatory strength 
sampled by COGRIM; (C) 𝑅 values of TF activities sampled from time-course gene expression 
data using CRNET. 
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(A)           (B) 

Fig. S16. Boxplots of 𝑅 values (convergence) for the inferred FRN at enhancer regions. (A) 𝑅 
values of the regulatory strength sampled by CRNET; (B) 𝑅 values of TFAs sampled from time-
course gene expression data using CRNET. 
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S6.4 CRNET-estimated TFAs and their similarity to TF expression 

 

(A) 

 

(B) 

Fig. S17. CRNET-estimated TFAs for TFs functional at promoter regions and their similarity 
with original TF expression: (A) heatmap of TFAs; (B) histogram of Pearson correlation 
coefficients between TFAs and TF expression. 
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 (A) 

 

(B) 

Fig. S18. CRNET-estimated TFAs for TFs functional at enhancer regions and their similarity 
with original TF expression: (A) heatmap of TFAs; (B) histogram of Pearson correlation 
coefficients between TFAs and TF expression. 
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S6.5 Validation of MYC’s proximal or distal target genes  

Setting the threshold of fold change as 0.5, we obtained 2,720 differentially expressed genes 
among a total of 34,694 genes. A high proportion (2,271 genes, 83.5%) of them are down-
regulated (fold change < -0.5) under siMYC condition. This suggests MYC is regulating most 
target genes positively in breast cancer MCF-7 cells under E2-induced condition. This is 
consistent to our observations of CRNET TFA estimation since the activities of MYC become 
stronger when MCF-7 cells are stimulated by E2, as shown in Figs. S17 and S18.  

Previously we collected 464 E2 up-regulated genes for FRN prediction at gene promoter regions. 
Here, 119 of them are validated as MYC targets (significantly down regulated under siMYC 
condition). The success rate of validation is 25.7%. Also, among 317 genes used for enhancer 
FRN prediction, 85 are validated MYC’s target genes. The success rate of validation is 26.8%. 
Using CRNET or COGRIM, we integrated prior binding information with time-course gene 
expression data to predict functional bindings for a set of TFs. We calculate the success rate of 
validation on MYC’s target genes in promoter FRN predicted by CRNET (ChIP-BIT2), CRNET 
(MACS2) or COGRIM (ChIP-BIT2), and that of enhancer FRN predicted by CRNET (ChIP-
BIT2) or CRNET (MACS2) (as shown in Table S11). 

Table S11. Summary of validated genes in the FRNs predicted by competing methods.   

Region Promoter Enhancer 
Raw validation rate 25.7% (119/464) 26.8% (85/317) 
Method CRNET 

(ChIP-BIT2) 
CRNET 
(MACS2) 

COGRIM 
(ChIP-BIT2) 

CRNET  
(ChIP-BIT2) 

CRNET 
(MACS2) 

Predicted MYC targets 101 87 55 92 78 
Validated MYC targets 40 34 23 44 35 
p-value 1.3e-4 6.5e-4 1.5e-3 3.4e-8 2.9e-6 
 

A true (validated) target gene is a gene with predicted MYC’s functional binding and 
differentially expressed when MYC is knocked down. In the FRN of CRNET (ChIP-BIT2), we 
have validated 40 proximal genes (with proximal MYC bindings) and 44 distal genes (with distal 
MYC bindings).  

A false positive (non-validated) target gene is a gene with predicted MYC’s functional binding 
but non-differentially expressed when MYC is knocked down. In the FRN of CRNET (ChIP-
BIT2), we have 61 false positive proximal genes and 48 false positive distal genes. 

A false negative target gene is a gene with predicted non-functional binding but differentially 
expressed when MYC is knocked down. In the FRN of CRNET (ChIP-BIT2), we have 97 false 
negative proximal genes and 63 false negative distal genes. 

A negative target gene is a gene without a predicted non-functional binding and non-
differentially expressed when MYC is knocked down. In the FRN of CRNET (ChIP-BIT2), we 
have 212 negative proximal genes and 98 negative distal genes. 
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Heatmap of gene expression of validated true target genes and false positive genes, and Venn 
diagrams of false positive/false negative predictions are shown in Fig. S19. 

 
(A)        (B) 

 
 (C)        (D) 

      
 (E)        (F) 

Fig. S19. Target gene validation of MYC in the CRNET-predicted FRN: (A) and (B) validated 
and non-validated MYC’s target genes, respectively, in the CRNET (ChIP-BIT2)-predicted 
promoter FRN; (C) and (D) validated and non-validated MYC’s target genes, respectively, in the 
CRNET (ChIP-BIT2)-predicted enhancer FRN; (E) and (F): Venn diagrams showing false 
positive/negative MYC functional predictions in promoter and enhancer FRNs.  
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S7. Summary of data, tools and results  
 Data Competing Methods Results 

Robustness  
test 

Simulated regulatory network 
with weighted binding prior and 
time-course gene expression 

CRNET 
BNCA (Sabatti and 
James, 2006) 
COGRIM (Chen, et 
al., 2007) 
LASSO (Qin, et al., 
2014) 
NARROMI (Zhang, et 
al., 2013) 
GENIE3 (Huynh-Thu, 
et al., 2010) 

(a) CRNET is more 
robust against false 
positive bindings and 
noise in gene 
expression data than 
competing methods.  
 
(b) CRNET converges 
much faster than 
existing Gibbs 
sampling based 
methods.  

DREAM4 regulatory network 
with binary binding prior and 
time-course gene expression 

Large 
scale 
network 
inference 

ENCODE ChIP-seq data of 228 
TFs from K562 cells and time-
course gene expression data 
(GSE1036) 
 
RNA-seq data (GSE33816) from 
K562 cells with shRNA targeting 
to ATF3, EGR1 or SRF 

CRNET 
COGRIM 
LASSO 
NARROMI 
GENIE3 

(c) CRNET can be 
used to jointly analyze 
hundreds of TFs and is 
running much faster 
than COGRIM.  
 
(d) CRNET has higher 
validate rates on ‘true’ 
target genes of ATF3, 
EGR1 and SRF than 
competing methods.  

ENCODE ChIP-seq data of 122 
TFs from GM12878 cells and 
time-course gene expression data 
(GSE51709) 

Real 
application 

39 TFs ChIP-seq data from MCF-
7 cells and time-course gene 
expression data (GSE62789) 
 
ECNODE MCF-7 ChIA-PET data 
 
Gene expression data from MCF-7 
cells treated by siMYC 

ChIP-BIT2+CRNET 
MACS2+CRNET 
ChIP-
BIT2+COGRIM 
 

(e) CRNET can also 
be used to infer 
regulatory networks 
from enhancer regions.  
  
(f) CRNET has a 
better performance on 
predicting MYC target 
genes in both promoter 
and enhancer studies if 
ChIP-BIT2 results are 
used as binding prior. 
 
(g) CRNET is better 
than COGRIM even if 
ChIP-BIT2 results are 
given to COGRIM as 
binding prior.  
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S8. Glossary of variables and parameters 
 
B prior TF-gene binding network (weighted (0~1) or binary [0,1]) 

T  the total number of TFs 

J  the total number of genes (or enhancer-gene loops) 

M  the total number of gene expression samples (or conditions) 

,j tz  a binary binding event of t-th on j-th gene  

,j tb  a prior probability for physical binding event ,j tz =1 

,j ts  read intensity of t-th TF at j-th gene promoter region  

TFBSµ  mean of the global Gaussian distribution component of ChIP-BIT 
2
TFBSs  variance of the global Gaussian distribution component of ChIP-BIT 

,j inputs  read intensity of input ChIP-seq data at j-th gene promoter region; 

which is also the mean of the local Gaussian distribution component 
2
inputs  variance of the local Gaussian distribution component 

,j td  relative distance of binding site of t-th TF to j-th gene TSS 

tl  binding distance exponential distribution parameter for j-th TF 

pd  length of one side gene promoter region 

Y  a J x M matrix of all J genes expression under all M conditions (time points) 

jy  a gene expression vector of j-th gene under M conditions 

,j my  gene expression of j-th gene under m-th condition 

n  gene expression data noise 
2s  variance of noise 

X  a T x M matrix of all T TFs’ activities under M conditions 

tx  a TFA vector of t-th TF under M conditions 

,t mx  a TFA variable of t-th TF under m-th condition 

xµ ¢  mean of sampled TFA 
2
xs ¢  variance of sampled TFA 

jh  base line gene expression of j-th gene 
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A  a J x T matrix of regulation strength of T TFs on J genes 

,j ta  regulation strength of t-TF on j-th gene 

Z  functional TF-gene binding network 

b0 logistic regression parameter 

b1 logistic regression parameter 
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