
Biometrics 000, 000–000 DOI: 000

000 0000

Web-based supplementary materials for “Computation of ancestry scores with

mixed families and unrelated individuals”

Yi-Hui Zhou∗

Bioinformatics Research Center

Department of Statistics and Biological Sciences

North Carolina State University, Raleigh, North Carolina, U.S.A.

J.S. Marron

Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, USA.

Fred A. Wright

Bioinformatics Research Center, Department of Statistics and Biological Sciences,

North Carolina State University, Raleigh, USA.

*email: yihui zhou@ncsu.edu

1



Web-based supplementary materials for “Computation of ancestry scores with mixed families and unrelated individuals” 1

1. Family member identification

Standard results for shared genotype probabilities for related individuals are expressed in

terms of kinship coefficients and identity-by-descent probabilities. Here we clarify, as is

needed for this paper, the correlation of genotypes between (say first-degree) relatives. We

focus on siblings, although a slight modification of the argument applies to parent-child

relationships. Let q denote the minor allele frequency, and a pair of siblings have random

genotypes g1 and g2, with means 2q and variances 2q(1− q). We have

corr(g1, g2) =
E(g1g2)− E(g1)E(g2)

SD(g1)SD(g2)
=
E(g1g2)− (2q)2

2q(1− q)
.

The identity-by-descent (IBD) outcomes determine E(g1g2). For IBD=0, E(g1g2|IBD =

0) = (2q)2. Also, E(g1g2|IBD = 2) = E(g2
1) = 2(var(g1) + E(g1)2) = 2q(1 − q) + (2q)2.

If IBD=1, without loss of generality, we assume the shared allele comes from the mother.

We use am to denote the allele from the mother and af from the father. Then E(g1g2) =

E((am1 + af1)(am1 + af2)) = E(a2
m1 + af1am1 + am1af2 + af1af2) = q + 3q2. Therefore

E(g1g2) = E(E(g1g2|IBD))

=
1

4
E(g1g2|IBD = 0) +

1

2
E(g1g2|IBD = 1) +

1

2
E(g1g2|IBD = 2)

=
1

4
(2q)2 +

1

2
(2q(1− q) + (2q)2) +

1

4
(q + 3q2)

and plugging in to the correlation gives 1/2, regardless of q. A similar approach can be used

to show that the corrrelation between second-degree relatives is 1/4.

All of our proposed methods can use families identified by external software such as KING

(Manichaikul et al., 2010), but we found it convenient to utilize a method within our same

R environment. For row-scaled genotype matrix X, we expect family members to have high

correlation. However, population stratification distorts interpretation, so we first compute

the n × n correlation matrix of X, then forcing the maximum off-diagonal value to be

1/8. The spacing of successive eigenvalues from the resulting clipped correlation matrix are
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examined on the log-scale, identifying the matrix P of the top k eigenvectors that exceed 4

standard deviations from the mean spacing. The matrix Xresid = X −XPP T is residualized

for gross population stratification, and then Xresid is again row-scaled to obtain X ′, and

families identified using entries for which the n×n correlation matrix of X ′ exceed η. We use

η = 0.1 in this paper, effectively identifying first- and second-degree relatives. More careful

investigation of higher-degree or cryptic relationships can use software for this purpose,

beyond our intended scope.

2. Covariance-Preserving Whitening (CPW)

Here we describe an approach to modify the genotypes within families so that the final

covariance matrix equals the modified covariance matrix M̃ used for the matrix substitution

approach, and families are orthogonalized while retaining their covariance with the remaining

sample. The goal here is to find an n × n matrix B such that Y = XBT and 1
p−1

Y TY =

1
p−1

BX̄T X̄BT = M̃ , where the entire sample, including all families, is handled at once. There

are multiple possible solutions, but it is appealing to add the constraint that only family

members be modified, as singletons do not contribute to the problem of “spurious” ancestry

scores. We assume that the columns of X are arranged with singletons S followed by families

F . We then divide M (defined above) and BT into submatrices as follows,

M
n×n

=

 M11
(n−nF )×(n−nF )

M12
(n−nF )×nF

M21
nF×(n−nF )

M22
nF×nF

 , B
n×n

T =

 In−nF
(n−nF )×(n−nF )

C
(n−nF )×nF

0
nF×(n−nF )

D
nF×nF

 ,
where nF individuals belong to the all-families set F , and In−nF denotes an (n−nF)×(n−nF)

identity matrix. Note that M̃ differs from M in only the co-family pairs of the lower right

submatrix, and we will use M̃22 to denote the corresponding nF × nF lower right submatrix

of M̃ . The form of BT , with the identity submatrix operating on the singletons in Y = XBT ,

achieves the desired constraint that singletons be unchanged. C and D are unknown matrices,
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to be solved for. We show below that the solution for full-rank X is

C = M−1
11 M12(In−nF −D), D = (M22 − S)−1/2(M̃22 − S)1/2,

where S = MT
12(M−1

11 )TM12 = M21M
−1
11 M12, with a slight modification to account for our

situation that X has rank n − 1. For Y = XBT , ancestry scores are obtained as ṼCPW in

the SVD Y = ŨD̃Ṽ T
CPW . Figure S1 (right panel) shows the result of applying covariance-

preserving whitening to the CF data. The plot shows that, for the new matrix Y , cross-

correlations of families F to singletons S have indeed been preserved from the original X.

In fact even the correlations between members of different families have been preserved (not

shown).

2.1 The Covariance-Preserving Whitening Solution

We have

AMAT =

In−nF 0T

CT DT


M11 M12

M21 M22


In−nF C

0 D



=

 M11 M11C +M12D

CTM11 +DTM21 CTM11C︸ ︷︷ ︸
a

+CTM12D︸ ︷︷ ︸
b

+DTM21C︸ ︷︷ ︸
c

+DTM22D︸ ︷︷ ︸
d



=

M11 M12

M21 M̃22

 .
Comparing the last two expressions provides two equations in the two unknowns C and D.

From the upper right, we have M11C + M12D = M12, which implies C = M−1
11 M12(I2 −D)

(the lower left is the same equation written in transpose form). The lower right requires a

bit more effort. We consider each of the four terms separately, plugging in the solution for

C from above, giving

a = CTM11C = (M−1
11 M12(I2 −D))TM11M

−1
11 M12(I2 −D)

= (I2 −D)TMT
12(M−1

11 )TM12(I2 −D) = (I2 −D)TS(I2 −D),
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where S = MT
12(M−1

11 )TM12 = M21M
−1
11 M12.

b = CTM12D = (I2 −D)TMT
12(M−1

11 )TM12D = (I2 −D)TSD

c = DTM21C = DTM21M
−1
11 M12(I2 −D) = DTS(I2 −D),

and d does not simplify. We have

a+ b+ c+ d = (I2 −D)TS(I2 −D) + (I2 −D)TSD +DTS(I2 −D) +DTM22D = M̃22,

and the expression reduces to DT (M22−S)D = M̃22−S. Thus, finally, we have our solution

C = M−1
11 M12(I2 −D), D = (M22 − S)−1/2(M̃22 − S)1/2.

The final expression is as desired, preserving singletons while rotating only the family

members. The solution is unique if XTX is of full rank n. However, in our treatment, X has

been row-centered, so no exact solution exists. To prove this by contradiction, suppose A

exists such that AMAT = M̃. When X is row-centered, M has rank n− 1, and the rank of

the left-hand side cannot exceed n − 1. However, when matrix substitution is implemented

in practice, the resulting M̃ typically has rank n, creating a contradiction. In practice, when

X has been row-centered, we add a small value δ = 0.001 to the diagonal of M before

proceeding, which provides similar results to using a Moore-Penrose generalized inverse

when solving C and D. Either approach results in 1
p−1

Y TY as a close approximation to

M̃ in simulations and for the real CF data.

3. Geometric Rotation / Family Whitening (FW)

We first describe the problem in geometric terms, to gain an understanding of the nature of

the modification, and follow with the simple matrix operation analogue. Our solution is to

rotate the data to make individuals within a family orthogonal, performed within a plane such

that the impact of the data rotation is otherwise minimal. The approach is easiest to explain

for a family of size 2, and the data for each individual is the scaled genotype p-vector. Data

vectors for first-degree relatives are expected to have a 60◦ angle, corresponding to a genotype
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correlation of 0.5 (Appendix A). We first find the mean vector of the two members, and then

rotate each member away from the mean vector to a target angle of 45◦. This operation

makes the new vectors orthogonal, which is approximately true for unrelated individuals.

In general, a family f consists of nf individuals indexed by the set Ff . The target rotation

angle θf is the same as the angle in Rnf between each coordinate unit vector and the

direction vector ( 1√
nf
, ..., 1√

nf
)T , which is θf = arccos( 1√

nf
). For example, when nf = 2,

θf = arccos 1√
2

= π/4. Let x.j denote the data vector for individual j, with unit-length

vector zj =
x.j

||x.j || , where ||x.j|| is the length
√∑

i x
2
ij. The mean vector x̄Ff

is obtained by

computing for each SNP i x̄iFf
=

∑
j∈Ff

xij/nf , with unit vector z̄Ff
=

x̄Ff

||x̄Ff
|| . The unit

length component of zj which is orthogonal to z̄F is

z̃j =
zj − (zTj z̄Ff

)z̄Ff

||zj − (zTj z̄Ff
)z̄Ff
||
.

In the plane determined by z̄F and z̃j, the unit vector with angle θf to z̃j is µ̃j = cos(θf )z̃j +

sin(θnf
)z̃j. The vector x̃.j = µ̃j||x.j|| is the natural rescaling of µ̃j, and used as a replacement

data vector for x.j. Finally the data vector for each family member is centered and rescaled

to match the mean and variance of the original data. This rotation operation is conducted in

succession for each family f = 1, ..., F , and SVD is applied to the new whitened data matrix.

Geometric rotation has a matrix operation interpretation, de-correlating the members of

a family f by an operation similar to classical multivariate sphering. Let ZFf
be the p× nf

submatrix of scaled family genotype data, and RFf
the corresponding (positive definite)

nf × nf matrix of sample correlations. Then Z̃Ff
= R

−1/2
Ff

ZFf
is a whitened matrix with

identity correlation, and a final X̃Ff
is obtained by recentering and scaling the columns of

Z̃Ff
to match the mean and variance of the original XFf

. Finally, the columns of singletons

and newly whitened family data are combined into X̃
p×n

= [ XS
p×nS

, X̃F
p×nF

], and the ancestry scores

are ṼFW from the SVD X̃ = ŨD̃Ṽ T
FW .

In practice, geometric rotation and matrix whitening of the family are nearly identical,
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with slight differences due to handling of column centering, and the matrix approach is used

subsequently. Figure S1 (left panel) shows the result of family whitening in the CF dataset,

in terms of the correlation of columns of X̃F compared to those of XS . This shows that the

family whitening operation introduces some perturbation of the correlation structure. We

will return to this issue below.

[Figure S1 about here.]

4. Rationale for predicting true ancestry from ancestry scores for association

covariate control

We suppose Z is an n × p contains the genotype data at a SNP, as well as any important

covariates, such as age, sex, etc., for a total of p covariates including the intercept. Let

A be the (unobserved) true ancestry matrix for q strata, with each entry representing the

proportion of each individual’s genome from each of the q strata. In the special case of no

admixture, then A has binary entries. A standard linear model would be

Y
n×1

= Z
n×p

β
p×1

+ A
n×q

α
q×1

+ E
n×1

where β and α are coefficients and E are random errors. Now, A is unobserved, but we

believe is represented by the q-d subspace generated by the ancestry scores V , then

A
n×q

= V
n×q

C
q×q

(5.1)

where C is a coefficient matrix representing “regression” of each of the q strata on the q

ancestry scores. Following this assumption,

Y
n×1

= Z
n×p

β
p×1

+ V
n×q

C
q×q

α
q×1

+ E
n×1

= Z
n×p

β
p×1

+ V
n×q

δ
q×1

+ E
n×1

,

where δ = Cα is a coefficient vector. An investigator has access to observed Z and V , and
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fits the final model. As long as (5.1) holds, then the regression is valid, even though we don’t

observe A directly.

The rationale above holds for generalized linear models, and thus includes logistic modeling,

for example for case-control modeling. In practice, the mapping of V to A is not perfect,

and even a relatively small error in prediction of A from V can degrade the covariate control

effectiveness. However, (5.1) does serve as a rationale that the ability to linearly A from V is

key, which can be summarized by multiple regression R2 for each column of A from matrix

V .

5. Individual scree plot illustration

The individual scree plots use loess smoothing of the individual scree values. Figure S2 shows

the individual scree values for representative members of the singleton set (upper left panel),

a member of a family of size 2 (upper right), a member of a family of size 3 (lower left), and

a member of a family of size 4 (lower right). Although the individual scree values are noisy,

after smoothing they produce curves that are characteristic of the family size as shown in

Figure 6 of the main manuscript.

[Figure S2 about here.]

6. Gaussian simulations

We first illustrate the principles for our procedures using simple Gaussian simulations, so

that the pure effect of individual-individual covariance structures can be demonstrated.

Each simulated dataset consists of p = 10, 000 markers and n = 800 individuals, including

nS = 200 singletons, and nF = 600 individuals arising from 300 family pairs. An initial

p × n error matrix E was first generated, reflecting family correlation structure but not

population structure. For each singleton, the corresponding length-p column was generated as
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independent N(0, 1) entries. For the (arbitrary) first member of a family, the corresponding

column e.1 was generated in the same manner, for each marker i as ei1 ∼ N(0, 1). Then

the second member of the same family was generated for each i as ei2 = 0.5ei1 + εi,

where εi ∼ N(0, .75). Thus finally all entries were marginally N(0, 1) and family pairs had

correlation 0.5, corresponding to “first-degree” relatives.

Population structure was generated by simulating p-vectors Pk ∼ N(0, .01), where k =

1, 2, 3, and randomly assigning each singleton and each family to a subpopulation with prob-

ability 1/3. A final matrix X was generated by adding, for each individual, the corresponding

column of E to the appropriate subpopulation column vector from P , and X was again row-

scaled.

We divided the family pairs into an arbitrary partition (set 1 vs. set 2), such that no

members were related within a set. The various methods were represented as follows, and

shown in Figure S3 (singletons in black, set 1 in gold, set 2 in cyan). Methods with good

performance should show similar behavior for singletons and family members. (a) Singleton-

based projection, with left singular vectors (loadings) based on the singletons only, shows

extreme shrinkage of family members. (b) Using singletons plus family set 1 to obtain loadings

shows modest shrinkage for set 2. For simple clustered stratification, there is no conceptual

advantage to optimizing the choice of maximal unrelated set, and thus the results here are

analogous to the PCAiR method. (c) Per-family whitening, which uses eigenvectors of the

resulting covariance matrix, shows shrinkage of families. (d) The family-average approach

performs SVD of the augmented data matrix consisting of singletons and the family averages,

and shows good performance. (e) The covariance-preserving whitening approach also shows

good performance, and is nearly identical to (f), the result from matrix substitution using

zero as the replacement values.

Similar results can be observed for an unbalanced simulation, in which the total sample
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size is fixed at 800, but 100 families all belong to a single population stratum (Figure S4).

Here the shrinkage is not as strong, as the number of family members is a smaller proportion

of the total sample size.

[Figure S3 about here.]

[Figure S4 about here.]

7. Simulation of genotypes

7.1 Idealized simulations

We simulated genotype data in a manner that respected local correlation structure, which is

present but typically modest in SNPs used for stratification control, and reflected population

ancestry. A SNP “block size” of 20 was chosen. An autoregressive normal model was used

to simulate a set of modestly underlying correlated values, e.g. for one individual the value

for the ith SNP is Zi = ρZi−1 + ε, where ε ∼ N(0, 1 − ρ2), followed by reversal of sign

of ρ with probability 0.5. Marginally, each Zi ∼ N(0, 1), and a modest ρ = 0.2 was used

within each block and ρ = 0 at block boundaries, so that values across different blocks were

uncorrelated. To convert the values to genotypes, we first generated random minor allele

frequencies by drawing “ancestral” allele frequencies from the half-triangular distribution

f(x) = 2(x−a)/(a−b)2, where a = 0.38, b = 0.50, which corresponded closely to the observed

minor allele frequency in the thinned CF dataset. For ancestral minor allele frequency q, the

Balding-Nichols model was used for fixation index FST by drawing K subpopulation allele

frequencies from the beta distribution with parameters q(1 − FST )/FST ), and (1 − q)(1 −

FST )/FST . Conversion of the latent Z values to genotypes was performed by applying, for

each SNP and individuals in subpopulation k with allele frequency qk, an inverse quantile of

ranked z-values such that the lowest z values were converted to genotype 0, the largest to
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genotype 2, and genotypes 0, 1, and 2 occurred with frequencies (1− qk)2, 2qk(1− qk), and

q2
k (i.e. Hardy-Weinberg equilibrium within each subpopulation k).

[Figure S5 about here.]

[Figure S6 about here.]

7.2 Sampling from 1000 Genomes data

Phased haplotype data were obtained from 1000 Genomes Phase3 v5, with 81.2 million

markers (http://www.internationalgenome.org). In order to mimic a SNP array platform, we

selected the subset of 2.1 million markers that overlapped with the HumanOmni2.5-8 v1.2

BeadChip. Using PLINK (Chang et al., 2015), we applied a filter of minor allele frequency

(MAF)> 0.25 and pairwise-LD r2 < 0.02 (PLINK parameters: –maf 0.25 –indep-pairwise 50

5 0.02), which further narrowed the result to 19,681 ancestry-informative markers.

From the original 2504 individuals, inspection of the data revealed that subpopulations

ACB, ASW, and AMR demonstrated high admixture. Thus we excluded these subpopula-

tions, leaving 2000 individuals with 4000 phased autosomal haploid genomes as a haploid

“pool,” for 20 subpopulations: BEB (86 individuals), CDX (93), CEU (99), CHB (99), CHS

(105), ESN (99), FIN (99), GBR (91), GIH (103), GWD (113), IBS (107), ITU (102), JPT

(104), KHV (99), LWK (99), MSL (85), PJL (96), STU (102), TSI (107), and YRI (108).

For each subpopulation the number of haploid genomes is twice the number if individuals.

To create realistic “pure” subpopulations, we followed the basic approach of HAP-SAMPLE

Wright et al. (2007), in which phased autosomal haplotypes were selected from the pool of

4000 haploid genomes, and subjected to an artificial recombination process to create new

haploid genomes. The new haploid genomes were then used as unrelated individuals, or as

founder individuals in each 7-individual family as described in the main text.

The artificial recombination process followed a simple 1Mb=1cM assumption, for an ap-

proximately 30 Morgan genome. In any one “meiosis” and for any interval between succ-



Web-based supplementary materials for “Computation of ancestry scores with mixed families and unrelated individuals” 11

cessive SNPs, crossover events are rare enough that this simple genetic map approach was

effective and preserved the linkage disequilibrium structure, while adding novelty in terms of

the genomes that could be generated. For each genome to be simulated, a target probability

profile was selected, representing the proportion of the genome to be selected from each of the

K = 20 subpopulations. For each simulated crossover event, the appropriate subpopulation

for that portion of a simulated chromosome was chosen as a multinomial outcome, according

to the target probability profile. Once the subpopulation was chosen, the particular haploid

segment was chosen at random from among all haploids in the corresponding subpopulation

pool.

For the pure subpopulation scenario, each unrelated individual and family founder was

given a target probability of 1 for once of the K = 20 subpopulations, with a probability

of 1/K for each subpopulation. The original individuals in the pool show some within-

subpopulation variation, to varying degrees depending on each subpopulation. However,

the simulation process produces individuals with no such variation, except for stochastic

sampling variability due to the haploid segments.

For the admixture scenario, a single subpopulation was chosen for each individual as

above, and then a secondary subpopulation at random from among the remaining K − 1

subpopulations. The proportion of the genome from the first and second subpopulations was

then assigned as 1 − p, p, respectively, where p was chosen from a beta(1,10) density (i.e.

mean admixture =1/11, and about 10% of the individuals showed admixture greater than

20%).

The above approach was used to simulate all unrelated individuals, as well as the three

founders in each 7-individual family. The remaining members of each family were simulated

using the same artificial recombination process, but based on the haplotypes of their parents.
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Figure S1: Cross-correlations between genotype vectors of set S vs. F for the cystic fibrosis
data. On each axis, a point represents a correlation between an individual in S to an
individual in F , for a total of 2546× 898 points. Left panel: Cross correlations of XS × X̃F
vs. cross correlations of XS × XF show modest deviation. Right panel: Cross correlations
of XS × YF vs. cross correlations of XS × XF show that the goal of covariance-preserving
whitening is achieved.
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Figure S2: Several representative individuals, with noisy individual scree curves (grey), and
corresponding loess fits with colors following the same scheme as in Figure 6 of the main
manuscript.
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Figure S3: Illustration of family shrinkage for various methods, idealized normal data with
200 singletons (black) and 300 family pairs, divided into set 1 (gold) and set 2 (cyan).
The first two eigenvectors are shown, with empirical 95% normal confidence ellipses for
each subpopulation. (a) Singleton-based projection. (b) Using singletons plus family set 1 to
obtain loadings. (c) Per-family whitening. (d) The family-average approach. (e) Covariance-
preserving whitening. (e) Matrix substitution.
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Figure S4: Illustration of family shrinkage for unbalanced data, with 600 singletons (black)
and 100 family pairs residing in a single population stratum, divided into set 1 (gold) and
set 2 (cyan). The first two eigenvectors are shown, with empirical 95% normal confidence
ellipses for each subpopulation. (a) Singleton-based projection. (b) Using singletons plus
family set 1 to obtain loadings. (c) Per-family whitening. (d) The family-average approach.
(e) Covariance-preserving whitening. (e) Matrix substitution.



Web-based supplementary materials for “Computation of ancestry scores with mixed families and unrelated individuals” 17

Figure S5: Heatmap for 1-R2 and RSE performance, for the balanced simulations with the
same proportion of family members in each of K = 5 subpopulation strata.
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Figure S6: Heatmap for 1-R2 and RSE performance, for the unbalanced simulations with
20% of the sample consisting of family members in a single stratum.


