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Estimation in Markov Models from Aggregate Data

J. D. Kalbfleisch, J. F. Lawless and W. M. Vollmer
Department of Statistics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

SUMMARY

In this paper, situations in which individuals move through a finite set of states according to a
continuous-time Markov process are considered. Only aggregate data are available: these consist of the
number of individuals in each state at specified observation times. We develop conditional least squares
and approximate maximum-likelihood-estimation procedures for time-homogeneous models, and ex-
tend the methods so that they can handle immigration of individuals into the system during observation.
Asymptotic covariance estimates are presented, and some problems for future study are noted.

1. Introduction

In many biological and sociological investigations, observations are made as individuals or
particles pass through a finite number of states or compartments. Examples in medicine
include studies of individuals who transit through a series of healthy and diseased states until
death is observed (Berlin, Brodsky and Clifford, 1979; Temkin, 1978; Fix and Neyman, 1951),
and investigations of the flow of tracer particles through parts of the body (Carter, Matrone
and Mendenhall, 1964; Shah, 1976). In entomology, the life cycles of insects are studied by
observing insect populations as they pass through developmental stages (Read and Ashford,
1968; Dempster, 1961). Investigations of social systems and processes also provide many
examples (Bartholomew, 1973; Tuma, Hannan and Groeneveld, 1979). Frequently, the
observations consist of the numbers of individuals in a population that occupy the various
states at specific time points. Such aggregate data are common in areas such as biomedicine
(Matis and Hartley, 1971; Kodell and Matis, 1976), animal ecology (Read and Ashford, 1968;
Manly, 1974) and the social sciences (Lee, Judge and Zellner, 1970; Bartholomew, 1973).
Bartholomew, 1973).

Markov models are used in many of these areas. If separate individuals are observed either
continuously or at discrete time points, it is straightforward to write down the likelihood and
develop efficient inference procedures (Bartlett, 1955; Basawa and Rao, 1980), but this is not
the case for aggregate data. This paper presents statistical methodology for handling aggregate
data in terms of continuous-time Markov models. Previous work in this area has been done
primarily in the context of compartmental-model analysis (see Matis and Hartley, 1971,
Faddy, 1976; Kodell and Matis, 1976). Computational and other difficulties have thus far
hindered a satisfactory general treatment: the main problems have been that the distributional
structure of aggregate data collected over time makes exact maximum likelihood methods
unfeasible, and that the least squares methods so far proposed have been computationally
cumbersome. By making use of the essential Markov structure of the data, we are able to
present greatly simplified procedures for least squares and approximate maximum likelihood
estimation.

Section 2 reviews some properties of continuous-time Markov processes, and §3 gives
estimation procedures for time-homogeneous processes. The methods are illustrated by
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application to data from a compartmental model. Section 4 describes simplifications that are
sometimes possible when observations are taken at equally spaced time points. The subsequent
sections deal briefly with a number of related problems and an additional example.

2. Markov Processes with Finite State Space

Markov processes are extensively discussed in many texts on stochastic processes; see, for
example, Cox and Miller (1965) for a thorough discussion of theory, and Bartholomew (1973)
and Chiang (1968, 1980) for many examples of applications. In this section we give a number
of pertinent results about continuous-time Markov processes with finite state space.

A Markov process { X(7): 0 < t < o} with state space {1, 2,..., k} can be specified in
terms of the k X k transition probability matrices P(s, #), 0 <s =<1, with (7, j)th element

Py(s,t) =pr{X(t)=j| X(s)=1i}, i, j=1,...,k
Alternatively, the process can be specified in terms of the instantaneous transition intensities
qij (1) = lima,_o Piy(t, t + At)/At, i ¥ ).
For convenience, we also define

qii(1) = = X qij(1)
Jti

= — limar_o{l — Pu(t, t + At)}/At, @.1)

and the k X k transition intensity matrix Q(¢) with (i, j)th element g;;(¢).

The time-homogeneous process, where ¢i;(t) = q.;, is a stationary process with P;;(s, t)
being a function of + — s only, and we write P(¢) = P(0, ¢). In this case, the forward
Kolmogorov equations

d
= PO =POQ,

where Q = (g;,), admit the unique solution

P(1) = exp(Q1?)
= i Q'r'/r, (22)
r=0

subject to the boundary condition P(0) = I (cf. Cox and Miller, 1965, p. 182). As is well-
known, P(¢) can be determined from Q by simple computational techniques. In particular, if
Q has distinct eigenvalues dy, ds, . . ., di, and A is a k X k matrix whose jth column is a right
eigenvector corresponding to d;, then Q = ADA™!, where D = diag(di, dz, ..., dr) is a
diagonal matrix with d,, ..., d; on the main diagonal. Substitution, term by term, in (2.2)
then shows that

P(r) = A diag{exp(dit), . .., exp(dit)} A" (2.3)

When Q has repeated eigenvalues, an analogous decomposition of Q into Jordan canonical
form can be used (see Cox and Miller, 1965). From a computational viewpoint, (2.3) is
particularly convenient; once A and d,, . . ., d; are determined, P(¢) can be quickly evaluated
for any ¢

Suppose now that the time-homogeneous intensities are differentiable functions of a vector
parameter § = (0, .. ., 6,)". Thus g;; = ¢;;(0) and Q = {g:;(0)}. In what follows, we require
the derivatives of the entries of P(¢) with respect to 61, . . ., 6.. As is shown in the Appendix,
these derivatives can be computed without obtaining explicit expressions for P;;(¢) in terms
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of 6. Provided Q has distinct eigenvalues di, . . ., di, the matrix with entries 9 P;;(¢)/96} is
aP(¢
PO _ AV, A7, h=1,...,r, 2.4
aeh

where V,, is a k X k matrix with (i, j)th element
g (exp(dit) — exp(d;t)}/(di — &), i+ ],
gPt exp(dit), i=,

and g!}’ is the (i, j)th element in A~'(8Q/86,)A. The derivatives 3Q/a0), are usually simple,
and calculation of (2.4) is straightforward once A and D are obtained. The restriction
requiring Q to have distinct eigenvalues is of little practical importance. Rare cases in which
the postulated models have repeated eigenvalues could be handled by developing a similar
algorithm based on the Jordan canonical decomposition.

3. Estimation with Aggregate Data
3.1 Aggregate Data

Suppose that observations are made on a group of individuals who act independently of one
another, with each individual passing through states according to a time-homogeneous
Markov process with state space {1, 2,..., k} and k£ X k transition intensity matrix
Q = {q:;(8)}. Suppose further that observations are made at Times f, < #; < --- < fy, and
that the data consist only of the total numbers of individuals, N;(z;), in State j at Time ¢,

j=1...,k [=0,1,..., m For the present, we suppose that the system is closed so
> }Ll Ni(t) =N, [=0,1,..., m and we also suppose that the numbers of individuals in
States 1, ..., k at Time o, are known. Let u;, = ¢, — t,_, for [ = 1, ..., m, and define vectors
Ni = {Nu(ts), ..., Ne(t1)},
M; = {Ni(t)), ..., Nr—1(t:))} 3.1
for/=0,1,..., m. In addition, let Y;;(/) be the number of individuals who occupy State i at

Time #;-, and State j at Time #. Note that only values of N;(#), and not of Y;;(/), are
observed.

The joint distribution of Ny, ..., Nn, given No, is easily derived. In particular, given
Ni(ti-1), {Y;1({),..., Yu(l)} has a k-class multinomial distribution with parameters
{N;(t:=1); Pi1(uz), . . ., Pir(u;)}, where the matrix P(u) is defined as in (2.2). Since

Nt)=Yi()+ -+ Y1), j=1,...k I=1,...,m, (3.2)

the conditional distribution of N;, given N;_1, is a convolution of multinomials. Because the
N; terms have the Markov property, the joint distribution of Ny, . . ., Ny, given N, is built up
as the product of these conditional distributions thus: pr(N; | No)pr(Nz | Ny) . . . pr(Nm | No-1).
Likelihood construction requires the probability function of the N;, and this is computa-
tionally intractable. However, conditional means and variances (and generating functions) of
N;, given N;_;, are easily obtained, and these can be used to develop least squares or
approximate maximum likelihood estimation procedures. From (3.2), it is apparent that

k
E{N;(t:)|Ni-1} = Y Ni(ti-1) Pij(uz), j=1...,k,
i=1

and similar calculations give the conditional variances and covariances. In matrix notation,
the results are

E(N[l N1~1) = P’(u;)Nl_l
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and
cov(N;|N;-) =
= diag{P’(u;)N;—1} — P’(u;)diag(N;—)P(u;),
where, for a vector X' = (xy, . . ., X), diag(x) = diag(xy, X3, . . ., X,). Further, the conditional

distribution of N;, given N;-;, is approximately (singular) k-variate normal. In terms of an
equivalent nonsingular distribution, given N;-,, M, is approximately (k — I)-variate normal
with

E(M;|N,—1) = Pi(u)N, (3.3)
and
cov(M;|N;—)) = 2y,
= diag{P1(u;)N;-1} — Pi(u;)diag(N;—1)P1(u;), (3.4)

where Pi(1;) is the k¥ X (k — 1) matrix obtained by deleting the last column of P(u;), and
X, is the (k — 1) X (k — 1) principal submatrix of X,.

3.2 Conditional Least Squares Estimation and Approximate Maximum Likelihood Estimation

We shall now present several methods of estimation, making use of (3.3) and (3.4). First,
conditional least squares estimates of the parameter # in {g;;(f)} may be obtained by
minimizing

S = lgl {M; — P1(u:)Ni—1} ' {M; — Py(u;)N;-1}. (3.5)

Some improvement in the estimates may be obtained by considering instead a weighted least
squares criterion,

m

S, = IZ {M; — Pi(u)N;—1} =i {M; — P’y(u;)N,;—1}. 3.6)

A third possibility arises through consideration of the approximate log likelihood of 4,
obtained from the normal approximation to the distribution of M;, given N;_;. Since
Ny, ..., Nn is a Markov process, the approximate negative log likelihood is proportional to

m

S;= Y logdet(Z1;) + S, 3.7
=1

which can be minimized with respect to 6.

Direct minimization of any of these equations could be accomplished by utilizing a search
or other minimization procedure that requires only functional evaluations. For specified 6,
P(u;) can virtually always be computed from (2.3). The restriction that Q = {g,;()} has
distinct eigenvalues in (2.3) is of little practical import since for most models Q will have
distinct eigenvalues at almost all 8 values.

Quasi-Newton procedures tend, however, to be computationally more efficient and auto-
matically provide variance estimates. A Gauss-Newton procedure for obtaining ordinary or
weighted conditional least squares estimates can be implemented by utilizing (2.4) for
dP(2)/d0;. Let 0, be a trial value of §. Consider S, with the X1, treated as fixed (S, is a special
case of this), and expand the other terms of (3.6) to first order about @,. This leads to the term
M, — Pi(u;)N;-1 in (3.6) being replaced with Z; — C;(60)(6 — 6,), where

Z,=M, - P’l(ul )Nl~1 Io:g" (3~8)

and C, (@) is the (k — 1) X r matrix whose jth column contains the vector
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(8/90,)P1(u1-1) N;-1. The resulting approximation to S, is minimized at
m “1rm
0.= 6, + { Y Ci(l0)ET} Cz(oo)} { Y Ci(00)=1] Zz}, (3.9)
=1 =1

where X1, is evaluated at @ = §y. This provides an updated estimate of #, and we now repeat
the procedure with 0, replacmg 0,. Upon convergence the algorithm provides an estimate,
0, of 8. An asymptotic covariance matrix estimate for 8, is

{12 Ci(0:)27/(8>) c,(éz)} , (3.10)
=1

which is a byproduct of the calculations. The ordinary conditional least squares
estimate, @), that minimizes S, is obtained from this algorithm by replacing ., with the
(k — 1) X (k — 1) identity matrix in (3.9). An asymptotic covariance matrix estimate for 6,
is

-1

{§ c;(él)cz(él)} {}%G(&)&;(éﬂ&(&)}{f CQ(él)c,(él)} . (3.11)
I=1 =1 =1

The computation of § or #, by the Gauss—Newton procedure embodied in (3.9) is
straightforward and easily programmed. Provided that Q has distinct eigenvalues at almost
all @ values, we can proceed as in the following way. Given the trial value 6, obtain the
eigenvalues dj, . . ., di. and the diagonalizing eigenvector matrix A for Q(6,). Matrices P(u;),
and thus Py(u;), can now be easily computed via (2.3). In addition, for each 05, h=1,...,r,
compute 0P(7)/d0x via (2.4), and obtain the matrices C;(6o) required by (3.9). This yields an
updated estimate of #, and the process is repeated until convergence. Note that with this
approach it is nowhere necessary to have explicit algebraic expressions for P(¢), or its
derivatives, in terms of 6, . . ., 8.. This is important, since with most models it is not feasible
to develop or work with such expressions. In addition, this approach allows for the develop-
ment of general computer programs to handle data from an arbitrary model.

It should be mentioned that although the above algorithm yields the estimate, b, that
minimizes S; when £, = I is used in (3.9), the estimate f; obtained from the general version
of (3.9) does not minimize S;. In situations where the number of individuals in the system is
large, reasonable parameter estimates can also be obtained by minimizing S,, though it is
preferable to minimize the approximate negative log likelihood S; given by (3.7). We shall
denote the estimate obtained by minimizing S; as , and that obtained by minimizing S; as
6. These can be found by qua51-Newton procedures or, more simply, by an optimization
procedure that does not require the calculation of exact first derivatives.

The determination of a good starting value, 6o, is, in general, difficult. A suitable choice
can usually be obtained by calculation of S, over a grid of @ values. In some special cases,
other methods may be available. See, for example, the discussion in §4.

Before presenting an example, we note that least squares estimation has been investigated
for continuous-time Markov models with aggregate data by several authors (for example,
Matis and Hartley, 1971; Kodell and Matis, 1976), and also for discrete Markov chain models
(Lee et al., 1970). Interestingly, the simple structure embodied in (3.3), (3.4), and (3.5) or (3.6)
has not been used in the previous studies. Instead, the joint distribution of (Ny, ..., N,) has
been studied without utilizing the conditional (Markov) structure of the N;. This has led to
enormous computational problems as, for example, in the paper by Kodell and Matis (1976)
where a Gauss—-Newton procedure is suggested that requires inversion of matrices of dimen-
sion m(k — 1) X m(k — 1). The earlier procedures, in addition, do not lend themselves to the
development of computer packages to handle arbitrary models. It should also be noted that
Kodell and Matis (1976) discussed somewhat different estimates than those glven here. Their
ordinary least squares estimate does not minimize S; as does §;, but rather minimizes S, with
Pi(u:)N;-1 replaced by the unconditional mean of M;. They did not consider the approximate
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maximum likelihood estimate s, nor the Gauss-Newton estimate 6. Finally, their weighted
least squares estimate is based on a quadratic form that uses the unconditional mean and
covariance structure of My, ..., M,,.

3.3 An Example

We consider what is sometimes referred to as a two-compartment open model. The model
has three states, with transition intensity matrix of the form

A= M1 Al M
Q= Az Az —pz s |.
0 0 0

The third state is absorbing. In compartmental-model work, States 1 and 2 represent the two
compartments of a system, and State 3 represents the exterior of the system. This model is
much discussed in biomedical work (see, for example, Kodell and Matis, 1976) and in other
areas such as sociology (see, for example, Tuma et al., 1979).

For this model, explicit forms for P(¢) are easily obtained. The eigenvalues of Q are
dy=0and

d2, d3 = - -%(01 + 02) + %{(01 - 02)2 + 4)\1)\2}%,
where 6; = Ay + y; and 62 = A2 + po. Thus, from (2.3),

P() =

1 6, + dz)CXp(dﬂ) — (6, + d1)CXp(d2t) —Al{exp(dlt) - exp(dzt)} pis(t)
7= a, | “helexp(dir) — exp(den)} —(61 + dijexp(dit) + (6: + doJexp(dat)  pus(t) |, (3.12)
' 0 0 1

where pi3(#) and pos(?) are obtained by using the fact that P(¢) is stochastic. Estimation
procedures that require only calculation of P(¢) can thus be implemented directly by means
of (3.12) or, more simply, (2.3). The Gauss—-Newton procedures, on the other hand, also
require first derivatives of the P;;(¢) with respect to 6y, 82, A; and A.. Even for this simple
model, these are most conveniently calculated via (2.4) since explicit differentiation of the
P;;(¢) in (3.12) is tedious.

As an illustration, we consider some data given by Kodell and Matis (1976) and reproduced
here in Table 1. In Table 2 four sets of estimates are shown: (i) ordinary least squares
estimates, f;, obtained by minimizing (3.5); (ii) estimates, #,, obtained by the Gauss-Newton
iteration procedure based on (3.9); (iii) the approximate MLE, f, obtained by minimizing
(3.7);_(iv) the estimate, 6., which minimizes S; of (3.6). Asymptotic variance estimates for 0,
and 6, can be obtained from (3 11) and (3.10), respectively. For example, estimated standard
deviations for }\1, a1, X and fi (2 from . are .047, .042, .104 and .085, respectively. When the

Table 1
Aggregate data from a two-compartment model

t N](ti) N;z(t,') t; N1(t,') Nz(t,‘) t; N1(t,') Ng(t,‘)

0 1000 0 1.75 217 156 3.50 58 76
0.25 772 103 2.00 183 152 3.75 45 70
0.50 606 169 2.25 159 126 4.00 42 58
0.75 477 191 2.50 142 107 4.25 36 49
1.00 386 198 2.75 124 98 4.50 35 39
1.25 317 181 3.00 106 79 4.75 26 27

1.50 278 162 3.25 78 80 5.00 21 24
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Table 2
Parameter estimates obtained by four methods
Method Noom N e

@) g 568 506 498  .683
(ii) G, 555 492 409 731
(iii) G, 561 495 425 730
(iv) 6, 589 501 485 732

number of individuals under observation is large, as here, (3.10) also provides asymptotic
variance estimates for §; and f..

There is generally good agreement among the four estimation procedures. We evaluated
6, and 0, by both the Gauss-Newton procedure and by general purpose optimization
programs not requiring derivatives. The same estimates were obtained by both methods.
The weighted unconditional least squares estimates found by Kodell and Matis (1976) are
close to @, and the estimated covariance matrices agree closely. The estimates of these
authors, however, are much more difficult to obtain.

4. Equally Spaced Observations

When the observations are equally spaced (#; = up = -+ + = u,, = u), the conditional means
E(M;|N;-1) can all be expressed as linear combinations of the P;;(u). If y is a vector of
parameters corresponding to the nonzero elements of Pi(u#) in some order, then there exist
matrices B,_; with entries from N;_;, such that Pi(#;)N,—; =B, _1y. The conditional weighted
least squares criterion (3.6) can now be rewritten as

S: =Y (M; — Bo1y)=21/(M; — Bioyy). 4.1
-1
This raises the possibility of using linear rather than nonlinear least squares.
If the 2, in (4.1) are known, then the vectory which minimizes S; is

m 1/ m
y= <[Z B§—121_11Bl—1) <IZ B;——IETI.IMI)- 4.2)
/=1 -1
If £,; = I, then ¥, from (4.2) is the ordinary least squares estimate. In the general case
where the X, depend on vy, an iterative scheme yields an estimate, ¥2, of y that is analogous
to @, in §3. The algorithm begins with an initial estimate yo, evaluates £1; aty, and then
calculates ¥ from (4.2). The process is then repeated with ¥ replacing y, until convergence is
reached. Estimates ¥s and ¥4, which are analogous to #; and ., could also be defined, though
for these the advantage of linear least squares calculation is lost.

An estimate, y, of y produced in this way gives an estimate, P(u) of P(u). It should be
noted, however, that unrestricted use of (4.2) sometimes yields a P(u) with negative entries.
In such cases a restricted least squares procedure has to be used to find the ¥ that gives a
stochastic matrix P(u). For this procedure to produce an estimate of #, there must also be
an intensity matrix Q= Q(0) such that

P(u) = exp(Qu). 4.3)

A necessary condition for this is that the dimensions of y and @ are the same. Even when
this holds, however, there are unfortunately no useable necessary and sufficient conditions
known that will ensure that (4.3) possesses a solution. This problem is often referred to as the
embeddability problem for finite continuous-time Markov chains; Singer and Spilerman
(1976) have reviewed this area.

For a k-state process, a unique Q with real entries satisfying (4.3) always exists when P(x)
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has real distinct nonnegative eigenvalues d¥, . . ., d¥: this matrix is
~ 1
Q= <—)A*diag(log d¥, ..., log diHA~,, 4.4

where A, is a k X k matrix whose jth column is the right eigenvector of P(u) corresponding
to d*. There is, however, no guarantee that Q will be an admissible intensity matrix, although
in the case k = 2, the condition d¥ + d¥ > 1 is necessary and sufficient for Q to be admis-
sible.

In practice a good procedure is to determine P(u) and its elgenvalues If these are real
distinct and nonnegative, calculate Q via (4.4). If Q is admissible, it is the desired estimate of
Q. Otherwise, the nonlinear least squares approach of §3 can be used. It should be noted that
even if P(u) does not yield the estimate of Q, it may be useful in determining an initial value,
by, for use in the nonlinear least squares algorithms.

In the example in §3.3, the estimates 6, and 6, can be obtained by finding P(x) and using
(4.4) to obtain Q. Details are omitted in the interest of brevity.

5. Immigration

Our discussion thus far has concerned closed systems in which the total population size, N,
remains fixed over time. We now consider the situation in which immigration into the system
is allowed. For convenience we suppose that all immigration is into State 1. The situation
where immigrants enter the system via two or more states is handled by a straightforward
extension of this case. We also assume that, once in the system, immigrants act independently
of other individuals in the system and move through the system according to the same
probability laws as other individuals already there.

Using the notation of §3.1, we let Y;;(/) denote the number of individuals who occupy
State i at Time #,; and State j at Time ¢, where i, j=1,...,kand /=1, ..., m. In addition,
we define R;(/) to be the number of individuals immigrating into the system during (#;-1, #)
and who are in State j at Time #,. If N;(#;) is the number of individuals in State j at Time 7,
thenforj=1,...,k,

k
N;(t) = '21 Yi;() + Ri(D). 5.1
As before, we consider the conditional distribution of N; = {N1(#;), . . ., Nr(t2)}', given N;;.
Let the mean and covariance of R; = {Ri(]), ..., Rx(l)}’ be denoted by p® and T,

respectively. Then from (3.3) and (3.4) and the cond1t1ona1 independence of the R;(/) and
Y;;(I) terms it follows that

E(N;[N;—1) = P'(u)N, 1 + p® (5.2)
and
COV(N[ | N1_1) =3+ EER).

The distribution of R;, and therefore its moments, will depend upon the process generating
the immigration. If this process depends upon parameters not already in the model, these
additional parameters can be estimated, along with those specifying the Markov process, by
employing least squares or approximate maximum likelihood procedures based on (5.2). In
many situations, however, computation of p{®’ and =®’ may not be particularly easy and
approximations may have to be considered.

We shall illustrate these remarks by considering two important immigration processes.

Model 1. At a known time 7; € (t;-1, t;), a known number, r;, of individuals enter the system.
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In this case, R; has a multinomial distribution with
p® =Pt — )i
and
2R = diag(p®) — P'(1, — 7)) diag ()P(t, — 71),

where i; = (r;, 0, ..., 0)'. In the special case in which 7, = #,_;, the conditional mean and
variance of N;—; in (5.2) reduce to those given in (3.3) and (3.4), with N;_; in the right-hand
sides of the latter expressions replaced by N;_;+i;. Under this model, no additional parameters
are introduced.

Model 2. Immigration into State 1 occurs according to a Poisson process with intensity a(f).
In this case it is easily shown (see, for example, McLean, 1976) that the R;(/) are independent
Poisson random variables with means and variances given by

f l a(r)Py(t, — 1) dr. (5.3)

-1

Consequently, p; and Z{®’ are, in principal, easily obtained, though computation of (5.3) may
be difficult.

6. An Additional Example

Table 3 gives data on the prevalence of the yellow lace birch bug in each of five developmental
instars and on recruitment to the adult stage, for a single (small) tree in northern Ontario.
The data were collected at intervals of three to 10 days during the summer of 1980. The adult
of this species is a flying insect and leaves the tree; the moult of the final instar, however,
provides evidence of its emergence. A key feature of the situation is that mortality occurs in
the various stages.

Table 3
Prevalence and recruitment data for the yellow lace birch bug
State
Day (tz) ur=1t—t- | 5 3 4 s Adult
(to date)

July 2 31
July 6 4 200
July 10 4 411 58
July 15 5 435 320 97 1
July 18 3 496 294 250 48
July 21 3 514 316 299 214 6
July 24 3 492 339 328 332 79
July 30 6 509 390 353 325 326 4
August 2 3 478 374 356 369 476 83
August 5 3 359 382 344 404 549 202
August 9 4 270 261 339 446 617 460
August 15 6 142 186 209 400 666 745
August 18 3 103 159 198 329 669 900
August 21 3 63 73 183 237 616 1095
August 25 4 28 40 66 196 451 1394
August 29 4 11 26 41 105 340 1581
September 8 10 0 1 6 26 97 1826
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Let N; = {Ni(t:), . .., Ne(t)}’ be the vector of aggregate totals for the instar and adult
states on Day #. On a microscopic level, a semi-Markov model for the developmental process
of an individual insect seems most reasonable; if, however, the age distribution in the various
instars is fairly stable over time, the process N; should have macroscopic properties approxi-
mating those of a Markov process. We therefore examined the utility of a homogeneous
Markov model in studying the system.

Consider a homogeneous Markov model for States 1, . . ., 7, where States 1, . . ., 5 represent
the five nymphal instars, 6 is the adult state, and 7 corresponds to death. Let y; represent the
mortality rate from State j, j=1, ..., 6, and let A, represent the intensity of transitions from
State jto State j+ 1, j=1,2,...,5. Since the data contain no information on adult mortality,
the adult state is treated as absorbing, with us = 0. In the analysis considered here we also
assume a constant mortality rate u = u;, i = 1, ..., 5, over the five nymphal instars. In the
full model with A; and p; left free, the estimates of A; and u; are highly correlated, which
indicates that these separate parameters are nearly nonidentifiable; this same problem is seen
in other estimation methods based on moments in a semi-Markov model.

The Markov model fitted thus has the 7 X 7 transition matrix Q = (g;) with entries
g, j+1=A;and gim=pu;, j=1,...,5,and g; = —A; — p; and g; = 0 otherwise. For estimation,
we consider the distribution of Nu(t;), . . ., Ne(#:), given Ni(#;-1), . . ., Ne(t;-1). In this situation
there is immigration present since new individuals are constantly recruited into the first instar
(State 1). We handle this by assuming that all immigration into State 1 during (-1, #;) occurs
at #;. There is a slight problem in that insects may actually enter State 1 and transfer out
to States 2 or 7, all during (7,1, ), but we are assuming that this cannot occur. This may
create a slight underestimation of A;.

The methods of §3 can be applied, with minor modification. Let P(¢) = exp(Q¢) as before
and let Py(¢) be the 6 X 5 submatrix composed of Rows 1 through 6 and Columns 2 through
6 of P(¢). The weighted least squares criterion is then given by (3.6) with X, given by (3.4).

A Gauss-Newton algorithm that utilizes the computational formulae for P(¢) and its
derivatives was applied and Table 4 presents the estimates obtained. The final column gives
the estimated mean live sojourn time, (& + A)7Y, in the j'th instar, j = 1, ..., 5. These
estimates turn out to be in quite good agreement with estimates obtained by an analysis based
on a semi-Markov model.

An examination of residuals M; — P}(u;)N;—, reveals some lack of fit of the Markov model
to these data. This may be due, in part, to the homogeneity assumption; sojourn times in
instars are known to depend on temperature, and this analysis makes no attempt to account
for this. In addition, the adequacy of the Markov model depends on stable age distributions
in the instars, but there may not be stability outside the central part of the data.

7. Discussion

It is possible to extend the methods of this paper to certain types of time-dependent Markov
processes. Essentially, immediate extension is possible to any nonhomogeneous model that

Table 4
Results of Markov analysis of the data in Table 3
using a Gauss—Newton algorithm

Mean sojourn time

Instar Ai I (days)
1 288 .016 3.29
2 200 .0l6 4.63
3 213 .0l6 4.37
4 164 .0l6 5.54
5 .091 .016 9.36
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facilitates computation of P(s, ¢) in convenient form. Such models include those for which an
operational time exists, so that the process can be made homogeneous by a monotone
transformation on the time scale. In addition, processes in which Q(f) is constant over
intervals (%, 1), (t1, t2), ... can be handled easily.

We have not carried out an extensive study of the asymptotic properties of the estimators
proposed here. It should be noted, however, that two different limits are conceivably of
interest, depending upon the application. On the one hand, a closed system may be observed
at a fixed number, m, of time points #, fo, ..., tn; then the limit arises as the number of
individuals N — o. On the other hand, if the system is ergodic, we may follow a fixed
population of N individuals over a large number of time points and consider the limit as
m — oo,

The case N — o is more appropriate for the examples of §§3 and 6, and simpler from
a theoretical standpoint. It is easily shown that, as N — o, S; is asymptotically chi square and
estimator §, obtained by minimizing S; is a minimum Chl square estimator. Properties of
such estimators have been considered by Chiang (1956), Wijsman (1959) and others. With
only very mild conditions, their results show that#; and d, are consistent and asymptotically
normal.

When a small number of individuals are observed at many points in time, the second limit
(i.e. m — o) may be more appropriate. The results of Klimko and Nelson (1978) and Nelson
(1980) are relevant in this case. These workers have discussed the consistency of conditional
ordinary and weighted least squares in a univariate setting. Extensions of their work would
be necessary in a thorough study of the estimators proposed in this paper.

Problems related to the estimability of, and information about, various parameters in these
models also deserve further study, as do other finite-sample properties of proposed estimators.
For example, if observations are made on a system which is fluctuating about a steady
equilibrium state, then precise estimation of those parameters characterizing the equilibrium
should be possible, but much less information will be available about parameters describing
other aspects of the model. The lengths of the intervals between observation times may also
substantially influence precision of estimation.

Finally, we note that, in certain instances, No may be known to have the multinomial
distribution associated with the equilibrium probabilities. If Mo = {Ni(t0), . . . , Nr-1(t0)} were
known to have expectation 9(#) and covariance matrix 2,(@), an additional term,

{No — n(8)) :@)"'(No —7 0 )},

could be incorporated into S; and more efficient estimators determined.
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RESUME

Cet article considere des situations dans lesquelles des individus se déplacent dans un ensemble fini
d’états selon un processus de Markov a temps continu. Seules les données aggrégées sont disponibles:
elles consistent en nombre d’individus dans chaque état, en des temps d’observation spécifiés. Nous
développons des procédures d’estimation de moindres carrés conditionnels et de maximum de vra-
isemblance approché, pour des modeles homogenes en fonction du temps, et nous étendons les méthodes
pour prendre en compte I'entrée de nouveaux individus dans le systtme pendant I'obsevation. On
présente des estimateurs pour les covariances asymptotiques, et quelques probléemes qui feront 'objet
d’études ultérieures.
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APPENDIX

Suppose that Q has distinct eigenvalues 4, .. ., d; for all@ in some open set. The matrix obtained by
differentiating each entry in P(z) with respect to 6y is, from (2.2) and the fact that Q = ADA™,

aP(r) 2 Qr*

60}7 _S§16_0h< S! )
% s—1 BQ e [

=1rQ 36, Q5

s=11=0

wo s—1
=3 Y AD'G,D* "~ ’A‘

s=11=0

9Q ,
60,,

Continuing, we find that

where G, = A™'

—6P(t)—A<§ \zl D'G,D* " )A‘

80 s=11=0
=AV,A7",
where V), is a k X k matrix with (i, j)th element
o s! dit) — exp(d;t)} )
gl i [dl _ o Lexp( ALL AR
szl [E:() g d d :Fj
o s—1 "
g’ L ¥ d —“gu Pt exp(dit), i=,

where g{’ is the (i, j)th element in G,. This establishes (2.4).



