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SUMMARY. A Serial Analysis of Gene Expression (SAGE) library is a collection of thou-

sands of small DNA “tags”, each of which represents a distinct mRNA transcript. Existing

methods have been proposed for analyzing single library data (i.e., one library per group)

or one tag at a time. The practice of lumping all libraries together (in a multi-library set-

ting) to form a “mega” library for each group is obviously unsatisfactory, but nonetheless

performed frequently due to the lack of alternative methods. Since the tag counts within

each library are inter-related as they are drawn from a multinomial distribution, analyzing

thousands of tags one at a time is undoubtedly inadequate. Not only does such a practice

ignore the dependency, but it also faces the multiple testing adjustment issue. This article

is an attempt to address both of these issues so that all tags from multi-library groups can

be analyzed together. The methods proposed also gears toward multi-group data. Focusing

on the problem of identifying genes that are differentially expressed, a Bayesian formulation

is established. Under this formulation, the problem of separating the differentially expressed

genes from the majority of similarly expressed ones is treated as a model selection problem,

and the reversible jump Markov chain Monte Carlo method is adapted for this purpose. The

method is applied to a set of mouse libraries to uncover genes that are associated with the

process of aging in the cerebellum. Our Gene Ontology (GO) analysis of the genes selected

classifies them into several GO categories, which appear to be functionally relevant to aging.
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1 INTRODUCTION

The characteristics of an organism are determined by the genes expressed within it. Serial

Analysis of Gene Expression (SAGE) has been introduced as a tool for quantifying expres-

sions of tens of thousands of genes simultaneously (Velculescu et al. 1995, Madden et al.

1997). This is a method for multiplex gene expression screening that depends on short se-

quences (“tags”; 10 to 14 bp) located at specific sites. The basis is that these short tags

are sufficiently long to enable the gene that codes for the mRNA to be uniquely identified

with extremely high probability. Therefore SAGE provides a quantification of the mRNA

population in a cell without prior selection of the genes to be studied. It has been used to

study a wide range of biological systems (Zhang et al. 1997, Blackshaw et al. 2001, Abba

et al. 2004, etc.).

Different from microarray technology (Schena et al. 1995), SAGE does not require prior

knowledge of the transcripts. Instead, it provides estimates of the absolute abundance of the

transcripts in the entire genome. In a nutshell, SAGE can be regarded as an “open” system

since it can potentially reveal expression levels of all genes, whereas microarrays are “closed”

because they can only track the expressions of the genes spotted on the array. Furthermore,

SAGE is a much more accessible method since it does not require any sophisticated equip-

ment to track gene expressions, although it can be more difficult to perform, which requires

excellent skills of a technician.

A SAGE library is a collection of thousands of tags and their corresponding counts, each

of which represents a distinct mRNA transcript. However, due to sequencing and/or PCR

errors, a small proportion of the tags may not represent real genes, which alters the estimates
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of the numbers of transcripts observed. Thus it is of importance to perform statistical

modeling and corrections of errors due to the sequencing step in SAGE (Beißbarth et al.

2004) prior to any statistical analysis to provide answers to questions of scientific interest.

One type of scientific problems that SAGE has been used to address is the identification

of genes with differential expression levels under different conditions through comparing the

numbers of tags found in libraries generated under these conditions. Our specific problem

as described next falls into this category.

1.1 Study of mouse cerebellum and SAGE data

Age related changes, such as cytological alterations and neuronal losses, have been well doc-

umented in the cerebellum. The cerebellum is essential for the control of balance (equilib-

rium), posture, and motor coordination. During normal aging, the cerebellum can become

progressively dysfunctional, which may be attributed to alterations of specific molecular

components. Since progressive dysfunction of the cerebellum can lead to life-threatening

accidents, it is of importance to use mouse as an animal model to study its cerebellum to

identify genes whose expression levels change during aging by comparing adult and aged

mice.

In our data set, we have six SAGE libraries from the cerebella of six male mice. These

libraries were constructed by Dr. Magdalena Popesco in Professor Andrej Rotter’s laboratory

at the Ohio State University. They were divided into the adult and the aged groups. The

three mice in the adult group were sacrificed at postnatal days of 92, 150, and 300, and will

be referred to, respectively, as the P92, P150, and P300 mice. A similar naming scheme was

applied to a group of three aged mice, P810(1), P810(2), and P840, in which two were both

sacrificed at postnatal day of 810, and the third was at day 840. The total number of tags

(unique tags) in each of these six libraries is, in the order given above, 16,430 (7,144), 18,103

(8,420), 10,578 (6,416), 18,581 (10,544), 8,528 (4,989), and 7,630 (3,716), respectively. The
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total number of unique tags across all six libraries is more than 26,000, but the majority

of the tag counts in each of the libraries is less than three. Since “high abundance” tags

are of greatest interest, we pre-process the data to extract the most relevant ones. The tags

that are included in our analysis must be present in two of the libraries, each with counts

greater than five after normalization (that is, after bringing the total number of tags up to

that (18581) of the largest library, P810(1)). This filtering step reduces the number of tags

to 596.

1.2 Analysis methods

A popular method among experimental scientists for comparing two-group SAGE library

data is that of P-chance from the SAGE2000 software suite (Velculescu et al. 1995; Zhang

et al. 1997). This method is simulation based, which provides Monte Carlo estimates of

the p-values for each tag based on normalized summed tag counts of the two groups. The

most attractive feature of this method is its conceptual simplicity, but since such an analysis

is based on combined libraries, it ignores normal variations between libraries within the

same group. Furthermore, the method is only applicable to the two-group setting. Several

other methods have also been developed for comparing the relative abundance of mRNAs

between two single-library groups. Examples include the eSAGE program (Margulies and

Innis 2000) and those discussed in Madden (1997), Michiels et al. (1999) and Man et al.

(2000). The usual Z-test for comparing two population proportions (with pooled data) is

such an example. In fact, the P-chance method is a Z-test but with Monte Carlo p-values.

Recognizing the problems associated with data pooling in multi-library/group situations,

such as potentially overstating the significance of a difference, methods have been proposed

to take into account of within group inter-library variability. For example, Ryu et al. (2002)

used a series of filters to deal with groups of multiple pancreatic libraries. Baggerly et al.

(2003) and Vencio et al. (2004) both used a beta-binomial model and suggested the use of a
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modified t-statistic or a Bayesian error rate, respectively, to select genes that are differentially

expressed. Whereas in Baggerly et al. (2004), the authors used an overdispersed logistic

regression approach to model groups of multi-libraries. However, despite their ability of

accounting for between library variations, tags are still being analyzed one at a time, which

ignores dependencies among tags within a library and also leads to the issue of adjusting for

multiple testing.

In this paper, we develop a statistical method that is amenable to analyzing multi-library,

multi-group SAGE data as well as all tags simultaneously. Under a Bayesian hierarchical

modeling framework, we cast the issue of separating tags that are differentially expressed

(DE) from those that are similarly expressed (SE) as a model selection problem. The re-

versible jump Markov chain Monte Carlo (MCMC) method is used for this purpose. The

posterior probability of each tag being differentially expressed is calculated at the end of the

MCMC process, and a criterion based on the Bayes Factor (BF) is used to classify tags into

the DE or SE sets.

The rest of this paper is organized as follows. Section 2 presents a hierarchical Bayesian

modeling framework and the associated parameter distributions, the MCMC samplers and

algorithms, and simple diagnostics and decision rules. This is followed in Section 3 by a

simulation study to evaluate the proposed method under two different settings and sensitivity

analyses. Section 4 reports the analysis and results of our mouse data, while a few concluding

remarks are given in Section 5. Technical details are available from Web Appendix A. The

Matlab code that implements the algorithms with instructions are available from our website

provided in the Supplementary Materials Section.
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2 METHODS

2.1 Hierarchical Bayesian Modeling

Let X = {Xkig, k = 1, · · · , K; i = 1, · · · , nk; g = 1, · · · , G} denote the gene expression data

from SAGE experiments. Here K is the number of groups (conditions) of SAGE libraries,

nk is the number of SAGE libraries in group k, and G is the total number of unique tags

across all libraries. So the total number of libraries is n =
∑K

k=1 nk. The goal is to identify

tags whose expression levels are not all equal among all the K groups, where K > 2 and

nk > 1 correspond to the multi-group, multi-library scenario, the focus of the current paper,

but the method is applicable to situation where K = 2 and/or nk = 1 for some of the k′s.

For a gene g whose expression levels are different among the groups, we assume that

the tag count Xkig follows a distribution (yet to be defined) with parameter pkg, which

represents the abundance of the tag in population (condition) k, i = 1, · · · , nk. On the

other hand, for a gene whose expression levels are the same among all K populations, the

abundance parameters are assumed to be equal, i.e. p1g = p2g = · · · = pKg := pg. Under

this parametrization, the tag count of a gene, without a priori knowledge of whether its

expression levels are different among different conditions, can be regarded as following a

two-component mixture distribution:

Xkig ∼

2∑

j=1

wjfj(·|θjg),

where fj(·|θjg) is a given parametric family of densities indexed by a vector parameter θjg, and

wj, j = 1, 2, denote the mixing proportions of the genes being differentially expressed or not,

and sum to 1. The parameter vector in the two component densities are θ1g = {p1g, · · · , pKg},

and θ2g = {pg}, respectively, which are independent of the w′s and are the main parameters

of interest.

Under this formulation, each tag is postulated to be drawn from a heterogeneous pop-

ulation consisting of two sets, the DE set S1 and the SE set S2. Each potential division
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of the genes into the two sets is a possible model in the total model space M, that is,

M = {S1, S2} ∈ M. Note that the size of the model space is ‖M‖ = 2G. All tags in S1

have differential expression levels among the groups, i.e., pk1g 6= pk2g for at least two different

groups k1 and k2. The remaining tags that fall into S2 have the same abundance for all the

groups.

Our purpose can then be regarded as choosing an appropriate model M from the space

M given data X. Given a model M ∈ M and its associated parameter vector θM = θ1∪θ2 =

(∪g∈S1
{p1g, · · · , pKg}) ∪ (∪g∈S2

{pg}), the likelihood function can be simply written as

L(θM , M) =
∏

g∈S1

K∏

k=1

nk∏

i=1

f1(Xkig|pkg) ×
∏

g∈S2

K∏

k=1

nk∏

i=1

f2(Xkig|pg),

assuming that the tag counts are independent conditional on the specific model M and the

individual group parameters.

To facilitate learning about the model M and its associated parameters, we cast the

problem into a hierarchical modeling framework. We introduce prior distributions for θM

under hyperparameter vector δM , which is in turn specified by a hyperprior with known

parameters. The joint posterior distribution for all the parameters is then factored into

P (M, θM , δM |X) ∝ L(θM , M | X)P (θM |δM , M)P (δM |M)P (M). (1)

It remains to specify the distribution for the data and the prior distributions for the

parameters. The process of SAGE experiments naturally leads to the assumption that the

tag counts of a library follow a multinomial distribution. Thus each tag count can be modeled

as coming from a binomial distribution, which is well approximated by a Poisson distribution

for SAGE data (Cai et al. 2004). Therefore, we assume that Xkig ∼ Poisson(Nkipkg) or

Xkig ∼ Poisson(Nkipg), depending on whether g ∈ S1 or g ∈ S2, where Nki =
∑G

g=1 Xkig

is the total number of tags in library i within group k. The prior distributions for the
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parameters in θM = (∪g∈S1
{p1g, · · · , pKg}) ∪ (∪g∈S2

{pg}) are assumed to be independent:

pkg ∼ β(αkg, N̄k − αkg), for g ∈ S1, k = 1, · · · , K;

pg ∼ β(αg, N̄ − αg), for g ∈ S2,

where N̄k = n−1
k

∑nk

i=1 Nki and N̄ = n−1
∑K

k=1

∑nk

i=1 Nki. One may note that the above

modeling is similar to that of beta-binomial of Baggerly et al. (2003) and Vencio et al. (2004)

if conditioning on only the hyperparameter. The hyperparameter vector δM = {αkg, k =

1, · · · , K, g ∈ S1; αg, g ∈ S2} are themselves assumed to be independently distributed as

truncated Gamma’s:

αkg ∼ Γ(akg, bk)1[0,N̄k] with akg =

nk∑

i=1

Xkig and bk = nk;

αg ∼ Γ(ag, bk)1[0,N̄ ] with ag =

K∑

k=1

nk∑

i=1

Xkig and b = n.

Finally, the prior distribution for M ∈ M is set such that the expected number of genes in

S1 can be controlled by investigators. Specifically, let ‖S1‖ denote the number of genes in

S1 under model M . Then

P (M | ‖S1‖ = s) = λs(1 − λ)G−s, (2)

and we may control the parameter λ by setting E‖M‖ = Gλ = c for a pre-determined

constant c, which may be set by the scientist based on information from prior knowledge or

budgetary consideration. Equivalently, we may obtain the value of parameter λ by controlling

the prior odds, λ/(1 + λ), for each tag to be in S1.

2.2 MCMC Samplers and Algorithms

The MCMC methods used for sampling from the posterior distribution (1) include a mixture

of Metropolis-Hastings (M-H) algorithms for updating the parameters under model M and

the reversible jump MCMC method of Green (1995) for updating the model M itself (that
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is, for tag movement between the DE and the SE sets). More specifically, we use the M-H

algorithms to update the parameters in θM and δM for a given model M , whereas reversible

jump MCMC is used to add tags to S1 (i.e., delete tags from S2) or vice versa. These

two types of MCMC updates are combined to identify tags that are differentially expressed.

Details of the M-H and the reversible jump MCMC algorithms, as adapted for our analysis,

are given in Web Appendix A. In what follows, we present an algorithm for combining these

two types of MCMC updates in which one tag is selected for adding/deleting from the DE

set in each iteration (cycle) of parameter updating.

Algorithm: One-Tag (OT)

• Step 1. Initialization: Create an initial model for M (e.g., by randomly separating all

tags into two sets, S1 and S2, of equal sizes), and initialize all the other parameters

under the initial model M = {S1, S2}.

• Step 2. Update the parameters in θM under model M : The parameters in θ1 and θ2 will

be updated in parallel according to the M-H algorithms described in Web Appendix

A.2.

• Step 3. Update model M :

(a). Choose one tag, g, randomly from the entire gene set. If g ∈ S2 (S1), calculate the

acceptance probability of adding (deleting) it to (from) the DE set S1. Note that this

updating step involves changes in the parameter space and consequently its dimension,

and thus a reversible jump MCMC algorithm is used (Web Appendix A.3) to guarantee

dimension matching.

(b). If the proposed move is accepted, then update the model M to reflect the successful

move.

• Repeat the two updating steps (2 and 3) as many times as needed until convergence.
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Note that in the above algorithm, only one tag is randomly selected for potential switch

of set membership. This results in a small change in the model, M , even if the move

is successfully accepted. Larger steps in the model space can be taken with an alternative

updating scheme. For instance, several tags may be selected for potential movement between

S1 and S2 during each cycle. To this end, we have also explored an algorithm that considers

all tags (AT algorithm) in each iteration to ascertain their potential switch of memberships in

the two complementary sets. It is anticipated that, with respect to the number of iterations,

the AT algorithm, which has larger movement in the model space M, will lead to faster

convergence compared to the OT algorithm. However, the computational time for the former

is expected to be longer than the latter for each iteration. Thus, it is important to take

computational time into account when assessing their relative performances. Since these

two algorithms performed similarly with the same amount of computational time from our

experience, only results from the OT algorithm are reported in the simulation study below.

2.3 Convergence diagnostics and decision making

Three types of simple diagnostic plots are utilized for evaluating the performance of the

algorithm. The first is based on the correlation between two lag L estimates of the posterior

probability vector. The second type of plots is based on the number of tags selected to be in

the DE set S1 in each iteration. In other words, they are trace plots of the sizes of the the

DE set against iterations. The third provides convergence diagnostics for each gene. They

are again trace plots of the posterior probabilities of a gene being classified as differentially

expressed against the number of iterations.

One way to identify tags as from S1 is via the Bayes Factor (BF), which is the posterior

odds over the prior odds. Theoretically, BF is independent of the chosen priors (Richardson

and Green, 1998), and according to Raftery (1996), a BF between 10 and 100 is considered

as strong evidence for H1 : g ∈ S1 against H0 : g ∈ S2. In our simulation study and
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application, we use BF > 10+100
2

= 55 as our decision rule for declaring a tag to be in S1.

This corresponds to a posterior probability of 0.846 or grater with a prior odds of 0.1. Other

cutoff values for BF are also explored in our sensitivity analysis.

3 SIMULATION STUDIES

3.1 Two groups

In order to test our method, we simulated two groups of data as follows so that their charac-

teristics resemble those of the real SAGE data as described in the Introduction Section. For

each (g) of the 596 tags in our pre-filtered mouse data set, we computed the between group to

within group variations ratio (BWg) as well as the average proportions of tag counts in each

of the two groups {p̄1g, p̄2g}, where p̄kg = (
∑nk

i=1(Xkig/Nki))/nk, k = 1, 2, using the notation

defined in Section 2. Among the set of tags for which p̄1g > p̄2g (the up-regulated group),

those corresponding to the largest 25 BW ratios were selected as belonging to the DE set

S1. Similarly, 25 tags among the down-regulated set (p̄1g < p̄2g) were selected to be included

in S1. The remaining 546 tags were treated as coming from the SE set S2. To complete

our simulation setting, we assume the underlying common parameter for each tag g in S2

to be pg = (p̄1g + p̄2g)/2. For each tag in S1, on the other hand, the underlying parameters

in the two groups are set to be {p1g = p̄1g, p2g = p̄2g} up to a scale. The common scale

parameter for those in the up-regulated group and that among the down-regulated genes

were set to satisfy the constraints that the probability vector in each group adds up to 1.

Based on these parameter values, we simulated each library according to the multinomial

distribution, mimicking the experimental process of generating a real SAGE library. The

number of libraries in each group was set to match our real data, while the size of each

library was 10 times of that of our data so that they are more in line with typical SAGE

library sizes as reported in the literature (Ruijter et al. 2002).
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The results for this simulated data set are shown in the left panel of segment I of Table

1. With the prior odds set to be 0.1, we ran the OT algorithm for 80,000 iterations, which

took 24 minutes on a Pentium 4, 2.4GH PC with 512MB of RAM. As can be seen from the

table, the algorithm performs reasonably well, with over 95% power for identifying tags that

are in the DE set (49/50) and a small false positive rate (3/546). The left plot of Figure 1

shows the estimated posterior probabilities in S1 (dark gray) and S2 (light gray) for each of

the 596 tags, arranged in descending order according to their posterior probabilities in S1.

The posterior probabilities for the single false negative (dashed vertical line) and the false

positives (solid vertical lines) are indicated in the plot. We can see from it that the false

positives are among the positives with the smallest probabilities while the false negative is

also closer to the boundary compared to the majority of the negatives.

To compare the results from our method with those from traditional methods, we applied

the two-sample t-test and Z-test suggested by Kal et al. (1999) to the same simulated dataset.

The results with a per-comparison error rate of 0.01 are reported in segment II of Table 1. As

can be seen from these results, the t-test has a lower power (86%) and both tests have higher

numbers of false positives (7 and 10 for the t- and Z-test respectively) when compared to

results from the OT algorithm. After adjusting for multiple testing based on a false discovery

rate of 0.05, the numbers of false positives fall down to about the same levels as ours (3 for

both of the tests), but the power for the t-test drops down to only 74%, although that for

Z-test remains the same.

Lag L (L=800) correlations between two posterior probability (PP) vector estimates were

calculated as a way of monitoring convergence. In other words, we calculated the correlation

between every two consecutive estimates of the posterior probability vector, estimated after

every L iterations, and showed them in the top left plot of Figure 2. The algorithm seemed

to have provided consistent posterior probability estimates after 20*L iterations. In terms

of the number of tags declared positive, the algorithm again converged rather fast, as shown
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in the middle left plot of Figure 2. Using a representative tag from S1 and one from S2,

we show on the left of the last row of Figure 2 the trace plot of the respective posterior

probabilities. Trace plots for all the other tags show similar patterns and are thus omitted

here. Overall, the monitored estimates all appeared to have converged; the diagnostic plots

do not reveal any feature that may cause serious concerns.

3.2 Three Groups

For testing our approach with more than two groups of libraries, we simulated a third group

with three libraries. For the 50 tags in S1 in our earlier simulation setting, we assumed

the parameter for the third group to be p3g = p1g + p2g (p1g 6= p2g 6= p3g). In addition,

we selected another 50 tags from S2 (in which p1g = p2g) in the two-group setting and let

p3g = p1g/2 (= p2g/2). These 50 tags are the first 50 of the remaining 549 tags arranged

in alphabetical order of the tags. Under this new simulation setting, we have 100 tags

belonging to the DE set S1 and 496 in the SE set S2. All libraries were again simulated

from the multinomial distributions. Note that the probabilities for the tags in S1 were again

scaled to make the multinomial probability vectors each summing to 1.

We ran the OT algorithm for 80,000 iterations, which took 28 minutes to complete using

the same computer as described above. The same prior odds of 0.1 as in the two-group

setting was used. The outcomes are given in the right panel of segment I of Table 1. They

are comparable to those from the two group data, with a high power and a low false positive

rate. The posterior probabilities of each tag being in S1 are given in the right plot of

Figure 1, with the two false positives and the single false negative identified by solid and

dashed vertical lines, respectively. As can be seen from the figure, the false positives and

the false negatives are all close to the boundary for declaration of significance, similar to the

results from the two-group setting. Diagnostic plots as those in the left panel of Figure 2

were shown in the right panel of the same figure. Again, none of the plots reveal any unusual
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feature that requires further investigation.

3.3 Sensitivity Analysis

Since results from our Bayesian formulation are dependent on the choice of priors for the

model parameter vector θM = (∪g∈S1
{p1g, · · · , pKg}) ∪ (∪g∈S2

{pg}), and the model M itself,

we studied the degree of sensitivity of our method to the specifications by considering a class

of beta priors for the θM and various prior odds (through the λ parameter as in Section 2.1)

for M . In addition, we also studied the sensitivity of the method to the pre-processing step

(normalization and filtering as described in 1.1). Since this step is only applied to the mouse

data, we defer discussion on it until the Results Section of the data analysis.

For studying the potential influence of prior odds on the resulting tags labeled as differ-

entially expressed, in addition to setting λ/(1 + λ) = 0.1, as in our simulation study for the

two-group setting, we also considered the following prior odds: 0.01, 0.05, 0.15, and 0.5. The

results are given in segment I of Table 2, with those based on the prior odds of 0.1 included

in the same table for ease of comparisons. As can be seen from the table, the powers are

high and the Type I error rates are low regardless of the wide range of prior odds. This is

indicative of the robustness of the method to the choice of the prior for M . Results from

the three-group setting would be similar, as setting the prior odds equal to 0.1 in that case

already constitutes a marked deviation from the expected number of differentially expressed

tags.

With regard to θM , the pkg and pg parameters are assumed to follow β(tαkg, t(N̄k −αkg))

and β(tαg, t(N̄ − αg)), respectively. In addition to t = 1, the value used in our simulation

study in the previous two subsections, we also considered t = 0.5 and 1.5 for both simulated

datasets (K = 2 and K = 3) using the OT algorithm. The results for the two-group setting

is given in segment II of Table 2, in which the “Common” column gives the numbers of

tags commonly selected by using all three different priors. Using a BF cutoff of 55 as in
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the simulation study, the number of tags identified under the different t values deviates by

at most two, with around 95% of the tags being common. Using a much bigger cutoff of

BF=100, the results stay very much the same, as can be seen from the table, leading to the

conclusion that the method is robust to the specification of the priors for the θM parameters.

For the three-group setting, the number of tags selected as differentially expressed ranges

from 100 to 102 (with 100 of them in common) for the different t values and BF cutoffs. Since

conclusion drawn from these results does not deviate from that for the two-group setting

qualitatively, the detailed results are omitted.

In summary, the above results indicating insensitivity of the methods to the priors are

not surprising, and are largely due to the choice of the BF for inference. As pointed out

by Richardson and Green (1998), an attractive feature of BF is that it is theoretically

independent of the priors; inference under BF does not need to reference the priors used and

thus should be insensitive to the specific choices.

4 RESULTS

We now return to the real SAGE libraries in the mouse cerebellum study described in Section

1.1. We ran the OT algorithm for 80,000 iterations to identify tags that are differentially

expressed in the aged group versus the adult group. Using a prior odds of 0.1 and a BF

cutoff value of 55, 20 tags were selected. For this real data analysis, we also ran the AT

algorithm for 1,000 iterations (since OT is roughly 80 times faster than AT for each iteration),

which resulted in the identification of 19 DE tags, of which 17 were in common with those

selected by the OT algorithm. This largely consistent findings instill initial confidence in

the tags identified, especially in those that are commonly predicted. Nine of these tags,

displayed in the first half of Table 3, are up-regulated (that is, more highly expressed) in the

aged cerebella. Furthermore, seven of them correspond to known unigene-IDs, whose gene

symbols/names are also listed in the table. The remaining eight of the common genes, shown
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in the second half of Table 3, were down-regulated in the aged cerebella, whose corresponding

unigene IDs and gene symbols/names are given in the table as well. As can be seen from the

table, six of the tags correspond to two unigene IDs each, reflecting in part the imperfect

system of gene naming convention and repository of data. Diagnostic plots (not shown) as

those in Figure 2 did not reveal any unusual feature to require any further investigation.

As described in Section 1.1, all the libraries were pre-processed by normalizing the counts

and filtering out low abundance tags. To study whether the tag identification method is

robust to this pre-processing step, in addition to normalizing to the size of the largest library

(18,581 tags) as done in the above analysis, we also considered normalizing all the libraries

to 50,000 tags. With this new normalizing count and the same original filtering step (count

of 5 in two of the libraries), the number of tags surviving jumped to 3,237, which is 443%

over 596 tags. The use of this new dataset and the OT algorithm led to the identification of

27 DE tags. Given that this is only 35% over 20 with a dataset that is more than five times

larger, the result is encouraging. When the threshold in the filtering step is raised to 10, the

number of remaining tags is 1,030, which still almost doubles that of 596 tags, but the number

labeled as DE this time remained the same at 20. These results suggest that the method is

not overly sensitive to the preprocessing method, especially when comparable combinations

of the normalizing and filtering steps are chosen. We note that the requirement of at least

two libraries passing the threshold for the tag to be filtered through is most appropriate

for the multi-library per group setting, which has the effect of guarding against outlying

observations. In the case that there is a single library in some of the groups, a different

filtering scheme is warranted.

To discern whether the genes selected as differentially expressed are meaningful biologi-

cally, the 21 unigene IDs were used for further analysis using the Gene Ontology (GO) Tree

Machine (GOTM; http://genereg.ornl.gov/gotm) to annotate their functions and classify

them into functional categories. Using all genes in the mouse genome as our reference gene
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set, we were interested in identifying GO categories that are being enriched in our set of 21

genes. In other words, we wanted to identify functional categories in which there are more

genes in our list belonging to them than expected if the genes were randomly selected from

the mouse genome. For a given category, under the null hypothesis of random selection, the

number of genes from our list falling into that particular category follows a hypergeometric

distribution, leading to a simple test for the hypothesis. In Figure 3, all GO categories that

were identified to be significantly enriched (raw p < 0.01; with category names in black,

boxes shaded or not), together with their ancestral categories (with category names in gray;

up to the top level with three main categories: biological process, molecular function, and

cellular component), were displayed as a directed acyclic graph (bottom panel). The num-

bers below or next to a category are the observed/expected gene numbers for that category.

Also displayed in the figure (top panel) are the genes involved in each GO category shown

in the bottom panel. The GO categories pointed to by arrows correspond to those identified

as enriched.

From the raw p-values of GOTM, we calculated the adjusted p-values to correct for

multiple testing using the FDR method (Benjamini and Hochberg, 1995) implemented in

SAS (www.sas.com). A cutoff of 0.05 for the adjusted p-values led to a number of enriched

categories no longer being enriched (non-shaded with names in black in Figure 3). If we

would use either the step-down Bonferroni method of Holm (1979) or the step-up Bonferroni

method of Hochberg (1988), both of which control for family wise error rate, then two

additional categories, “cellular physiological process” and “cytoplasm” would be dropped

out from the multiplicity adjusted enriched list.

As can be seen from Figure 3, several of the enriched categories were “oxygen” related.

This observation lends itself to further annotation of the genes involved. Oxygen binding

heme proteins (neuroglobin, hemoglobin and myoglobin) may protect neurons from hypoxic-

ischemic injury in vitro and in vivo (Sun et al, 2005). While neuroglobin expression in the
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cerebellum decreases with age, our finding suggests that this process may be counteracted by

an increased expression of hemoglobin mRNA (Hbb-b1 and Hbb-b2). An elevated presence

of this oxygen-binding transporter protein may serve to protect cerebellar cells from age-

dependent neurodegeneration.

The two genes involved in the “hormone activity” category are decreasingly expressed

(down-regulated) in the cerebella of the aged mice. We note that this category would have

been labeled as FDR enriched (FDR p=0.076; raw p=0.006) had we used a less strin-

gent cutoff. These two genes are Prl (prolactin) and Ttr (transthyretin). The function of

transthyretin, a lipophilic molecule binding protein, is to transport thyroid hormones, such

as thyroxine and retinoids; it also acts as a chelation agent for the neurotoxic beta-amyloid

peptide, thus preventing its deposition in the brain (Schwarzman et al, 1994). Within the

brain, transthyretin is synthesized exclusively in the choroid plexus (including that associ-

ated with the cerebellum) and is secreted into the cerebrospinal fluid (Chen et al., 2005).

It has been suggested that thyroxine contributes to age-related cognitive decline (Hulbert,

2000), and it is plausible that the decrease in transthyretin synthesis observed in the present

study reflects a decreased capacity to protect the cerebellum against neurodegenerative in-

sults. The presence of prolactin-like immunoreactivity (Emanuele et al., 1987) and prolactin

mRNA in the cerebellum (Emanuele et al, 1992) is well established. Mice lacking prolactin

live longer than their normal siblings and exhibit many symptoms of delayed aging (Bartke

and Brown-Borg, 2004). The observed decrease in prolactin message in aged cerebellum may

reflect a mechanism that optimizes cell survival.

5 DISCUSSION

In this paper, we propose a statistical method for analyzing multi-library, multi-group SAGE

data with all tags considered simultaneously. The results from our simulation studies indicate

that the method is able to identify tags (genes) that do not have the same expression levels
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across all groups while keeping the false positive rates low. Compared to standard analysis

methods in situations where such methods are applicable, our proposed approach is certainly

competitive. For the three-group simulated data, our methods also performed satisfactorily.

This represents a step forward in enriching the tools capable of analyzing more complex

SAGE library data. More importantly, application of the method to the mouse cerebellum

data yields biologically interesting and meaningful results. Together with results from other

studies, this may help uncover the specific molecular changes during normal aging.

Throughout our simulation study and analysis of the SAGE mouse data, we used, re-

spectively, 80,000 and 1,000 MCMC iterations for the OT and the AT algorithms, which

took less than 30 minutes to compute on a typical PC, although we presented results for the

OT algorithm only in the simulation study since they were comparable and would lead to

the same conclusion. Our simple diagnostic plots indicate that similar results would have

been achieved had we executed much shorter runs. For all the analysis carried out in the

current paper, since the algorithms converged rather quickly while our runs were fairly long,

our results were based on all iterations without entertaining a burn-in period. However, in

general, it is advisable to delete the initial portion (say 10%) before the additional itera-

tions are used for making inferences. Our exploration reveals that the AT algorithm that

considers all tags for switching their set membership in each iteration appears to be slightly

more efficient with the same amount of computational time, although both algorithms lead

to satisfactory results. Therefore, either one should be a reasonable choice. One possibility

is to run both algorithms and use either the intersection of the two lists (as we have done

for the mouse data to be conservative) or their union for further analysis.

Finally, we note that although our method was motivated by the SAGE mouse data, the

general scheme of the methodology is applicable to other types of biological data from a num-

ber of platforms, such as the DHM (differential hypermethylation) 12K CpG islands arrays.

The differences in handling the different types of data lie in the distributional assumptions,
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which affect the likelihood component as well as the choice of appropriate priors.

Supplementary Materials

Web Appendix A referenced in Sections 1.2 and 2.2 are available under the Paper Informa-

tion link at the Biometrics website http://www.tibs.org/biometrics. The mouse cerebellum

data analyzed in Section 4 are available at http://www.ncbi.nlm.nih.gov/geo/query

/acc.cgi?acc=GSE1090. The Matlab code implementing the OT an AT algorithms is avail-

able at http://www.stat.ohio-state.edu/∼statgen/SOFTWARE/DE-SAGE/.
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Table 1: Results for simulated data. Segment I gives the results from the OT algorithm,

with those for the two-group setting on the left and the three-group setting on the right; the

positive tags are those with BF > 55. Segment II shows the results from the t-test (left)

and the Z-test (right) by Kal et al. (1999) under the two-group setting; the positive tags are

those with p < 0.01.

I Two Group (OT) Three Group (OT)

simulated S1 S2 Total S1 S2 Total

Positive 49(98%) 3(0.55%) 52 99(99%) 2(0.4%) 101

Negative 1(2%) 543(99.45%) 544 1(1%) 494(99.6%) 495

Total 50 546 596 50 546 596

II Two Group (t-test) Two Group (Z-test)

simulated S1 S2 Total S1 S2 Total

Positive 43(86%) 7(1.28%) 50 49(98%) 10(1.83%) 59

Negative 7(14%) 539(98.72%) 546 1(2%) 536(98.17%) 537

Total 50 546 596 50 546 596
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Table 2: Results from sensitivity analysis based on the two-group simulated data. Segment I

gives the powers and type I error rates (%) with five different prior odds (λ/(1+λ)). Segment

II gives the numbers of tags individually and commonly (“Common” column) identified as

differentially expressed using three different t parameter values in the priors for θM . Two

different BF thresholds with the corresponding posterior probabilities (PP) were entertained.

I Prior Odds 0.01 0.05 0.1 0.15 0.5

Power 98 96 98 96 98

Type I Error 0.55 0.55 0.55 0.92 0.92

II BF PP t=0.5 t=1.0 t=1.5 Common

100 0.909 49 51 49 49

55 0.846 50 52 50 49
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Table 3: Selected tags and the corresponding unigene IDs and gene symbols. The top half

gives tags up-regulated in the aged mice while the bottom half shows those down-regulated.

The genes with an * are those not involved in any of the displayed GO categories in Figure

3.

Tag Unigene-ID Gene symbol (or name)

GGCATCTCTT 314 / 319830∗ Galnt4 / -Transcript sequence∗

TGTATAAAAA 87773 / 246377 Tra1 / Tubb2

ATAATACATA 200362 Cybb

AAAAAAAAAA 292145∗ / 272120 Gypc∗ / Gad1

TAAAAAAAAA 286177∗ / 299512∗ Serf1∗ / Igh-1a∗

ATTTTCAGTT unknown unknown

TCCCTATTAA unknown unknown

TGGATCCTGA 288567 Hbb-b1/b2

GAAAATGCAT 40059∗ A030001O10Rik∗

CTTGGGTGCA 1270 Prl

TACAATGTGA 45058 Camk4

TAAAGAGGCC 324741∗ / 261679 -Transcript sequence∗ / Rps26/Wwp2

AGCAAAAGCC 217311∗ -Transcript sequence∗

TGTGTGAGGA 258927 / 334078∗ Eef1d / Agpat3∗

TGTGTTGTGT 220038 Ddx5

AATTCGCGGA 2108 Ttr

ACCAATGAAC 218473 Tde1
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Figure 1: Estimated posterior probabilities (PP) of being DE (dark gray) or SE (light gray)

for each tag using the OT algorithm. The tags are arranged in descending order according to

PP of DE. The horizontal line segment in each plot is the threshold (BF=55, or equivalently,

PP=0.846 for prior odds of 0.1) used to determine whether a tag should be flagged as

differentially expressed. The number in the parentheses gives the number of positive tags.

False positive (solid line) or false negative (dashed line) tags are identified by the vertical

line segments. The left and right plots are for the two-group and the three-group simulated

data, respectively.
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Figure 2: Three types of diagnostic plots with respect to every L (800) MCMC iterations

using the OT algorithm. Top row: correlation between consecutive posterior probability

estimates; middle row: number of tags in DE set S1; bottom row: trace plots of posterior

probabilities in S1 or S2 of two representative tags. The left column shows the results for

the two-group simulated data while the right column gives the corresponding ones for the

three-group data.
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Figure 3: Top panel: Gene list for each category in the bottom panel. Each row represents

one gene, with a black square denoting the involvement of the gene in the corresponding

column (category). Each column stands for one category ordered first by levels. Within each

level, the categories are ordered from left to right according to the display in the bottom

panel. The black arrows point to the categories being enriched even after the multiplicity

adjustment, while the light gray ones indicate those enriched only with the raw p-values.

Bottom panel: A directed acyclic graph view of the enriched GO categories in our list of

selected genes. The GO categories in black and with shading are enriched GO categories

(with raw p-value < 0.01 an FDR p < 0.05) while those in black but without shading are

enriched GO categories meeting only the raw p-value criterion. The gray categories are

their non-enriched ancestors up to the top level. The numbers around each category are the

observed/expected gene numbers for that category. The number of categories within each

level is in the parentheses.
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