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INTRODUCTION

The transmission disequilibrium test (TDT)
based on case-parents trios, introduced originally
by Spielman et al. [1993], is a powerful approach
to search for genes underlying human complex/
common diseases. It tests directly for linkage
between the marker locus and a disease suscept-
ibility locus (DSL), when association due to
linkage disequilibrium (LD) is present. Although
designed as a test for linkage, the TDT is also valid
as a test of association in simplex families, even
if population structure is present [Spielman and
Ewens, 1996]. The TDT essentially tests for the
equality of the expected numbers of transmissions
and nontransmissions of a marker allele of interest
from heterozygous parents to their affected off-
spring. The TDT requires marker genotypes of
affected individuals and their parents. When only

one of the parents was available, Sun et al. [1999]
proposed the 1-TDT to detect linkage/association
between the marker locus and a DSL using
genotypes of the affected individual and his/her
parent. When both parents’ marker genotypes
were unavailable, Spielman and Ewens [1998]
proposed the S-TDT for use in sibship with at
least one affected individual and one unaffected
sibling.

Genomic imprinting, also known as ‘‘parent-of-
origin effects,’’ is an important epigenetic factor.
There are more and more genes found to be
imprinted. Morison et al. [2001] had constructed
an imprinted-gene database which contained 488
records at the time of submission (http://igc.otago.
ac.nz). For example, parent-of-origin effects have
been demonstrated in Beckwith-Wiedemann,
Prader-Willi, and Angleman syndromes [Falls et al.,
1999]. In genetic studies of case-parents trios,
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Weinberg et al. [1998] established a versatile
log-linear model for candidate gene to test/
estimate LD, maternal effects, and parent-of-
origin effects. In testing for LD, the likelihood
ratio test outperformed the TDT if the proper
genetic model was dominant or recessive, and
the reverse was true if a gene–dose effect was the
proper model. In the absence of imprinting
effects, Weinberg [1999a] considered testing for
LD based on the log-linear model allowing for
missing parents by employing the EM algorithm.
Weinberg [1999b] considered testing for imprint-
ing using the log-linear model with more parsi-
monious parameters, based on case-parents trios.
As pointed out in Weinberg et al. [1998] and
Weinberg [1999a,b], their methods were applied
to a disease gene. If it is the marker instead of
the disease gene itself that is under study, the
recombination fraction between the marker locus
and the disease gene locus would have to be taken
into account in the analysis.

The recombination fractions between the marker
locus and a DSL in the meiosis of females and
males are often sex-specific. The recombination
fraction for human females is on the average 60%
higher than that for human males [Fann and Ott,
1995; Broman et al., 1998]. In linkage analysis,
imprinting is confounded with differences in
recombination fractions for two sexes, and Smal-
ley [1993] suggested the utilization of this infor-
mation for possible identification of traits under-
going imprinting. The parental-asymmetric test
(PAT) Weinberg [1999b] proposed to test for
imprinting is applicable to equal recombination
fractions for males and females. Recently, Zhou
et al. [2006] proposed the parent-of-origin effects
test (POET) to test for imprinting based on the
marker genotypes of case-parents trios, allowing
for sex-specific recombination fractions.

It is likely that researchers obtain genotyping
information from families with both parents and
families with only one parent. When both parents
of the affected child are available, the TDT
[Spielman et al., 1993] is applicable to imprinted
genes. When only one parent is available, how-
ever, we shall show in the later section that the
1-TDT is not applicable to imprinted genes. Hence
in this paper we will construct a statistic based on
case-mother pairs and case-father pairs to test for
linkage when association is present, as well as to
test for association when linkage is present for
imprinted genes. Meanwhile, a statistic based on
families with only one parent is proposed to detect
parent-of-origin effects. We also address how to

combine case-parents trios, case-mother pairs,
and case-father pairs jointly to test for linkage,
association or imprinting. The validity of the
proposed test statistics is checked through simula-
tion. The effects of different ratios of the numbers
of case-mother pairs and case-father pairs on the
powers of the proposed tests are investigated. The
optimal ratio is found to be 1:1. The tests are also
extended to deal with the situation that the parent
has more than one affected child.

METHODS

BACKGROUND

Suppose D and d are the mutant and normal
alleles with population frequencies p and q 5 1�p
at a DSL, and M1 and M2 are the two alleles with
population frequencies g and g05 1�g at the
diallelic marker locus. The four ordered genotypes
at the DSL are D/D, D/d, d/D, and d/d,
respectively. The allele before / is paternal and
the allele after / is maternal. The four associated
risks are denoted by fD=D, fD=d, fd=D, and fd=d,
respectively. We assume that the risk with only
one mutant D is between the risk with no mutant
and the risk with two mutants. The genotype
relative risks [Risch and Merikangas, 1996] are
denoted by g2 ¼ fD=D=fd=d, g1p ¼ fD=d=fd=d, and
g1m ¼ fd=D=fd=d. Let g1 ¼ ðg1p þ g1mÞ=2 be the
average of two heterozygote relative risks. We
have 1rg1p, g1mrg2 and 1rg1rg2. The degree of
imprinting is denoted as I ¼ ðfD=d � fd=DÞ=2
[Strauch et al., 2000]. Thus I40 indicates the
maternal imprinting or equivalently paternal
expression, Io0 indicates the paternal imprinting
or equivalently maternal expression, and I 5 0
indicates no imprinting or no effect of the gene on
risk. In the case of no imprinting for a disease-
related gene, g1 5 1 means that the mode of
inheritance is recessive, g1 5 g2 means dominant,
g1 ¼ ð1þ g2Þ=2 means additive [Knapp, 1999], and
g1 ¼

ffiffiffiffiffi
g2
p

means multiplicative.
The coefficient of LD is denoted as

d ¼ PM1D � gp, where PM1D is the haplotype
frequency of M1D. Notice that the frequencies of
the four haplotypes can be expressed respectively
as PM1D ¼ gpþ d, PM1d ¼ gq� d, PM2D ¼ g0p� d,
and PM2d ¼ g0qþ d. The marker locus and the DSL
are taken to be in LD, i.e., d6¼0, in testing for
linkage/imprinting. Notice that the replacement
of D and d, or of M1 and M2 will change the sign
of d but not its absolute value. Let yf and ym be
the female and male recombination fractions and
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y ¼ ðyf þ ymÞ=2 be the sex-average recombination
fraction.

It is convenient to use 0, 1, and 2 to represent the
marker genotypes M2M2, M1M2, and M1M1,
respectively. Let F, M, and C denote the genotypes
of the father, mother, and child, respectively, and
so F, M, and C take possible values of 0, 1, or 2.
Now, we collect nm pairs of case-mother each with
known marker genotype pair MC for the mother
and affected child, and np pairs of case-father each
with known marker genotypes FC for the father
and affected child. It is easy to compare the value
of M and C, F and C for each case-parent pair. Let
NMoC ¼ �IMoC and NM4C ¼ �IM4C denote the
numbers of case-mother pairs in which the mother
carries fewer and more copies of marker allele M1

than the affected child, respectively, where
Ifcomparison statementg ¼ 1 when the comparison state-
ment holds and is 0 otherwise; let NFoC ¼ �IFoC

and NF4C ¼ �IF4C denote the numbers of case-
father pairs in which the father carries fewer and
more copies of marker allele M1 than the affected
child, respectively.

We assume throughout this paper that the
conditional distribution of the underlying marker
genotype trio FMC given the child is a case
corresponding to case-mother pairs and that
corresponding to case-father pairs are the same,
and the probability of a parent being missing is
unrelated to that parent’s genotype. In other
words, we assume that there is nondifferential
availability or ignorable missingness of parental
genotype data. The issue of nonignorable miss-
ingness was addressed in Allen et al. [2003] and
deserves more attention in the future study.
Further, we assume that there are no maternally
mediated genetic effects in this study.

In the case of no imprinting and no sex-specific
recombination fractions, the 1-TDT [Sun et al.,
1999] can be expressed as

1-TDT ¼
NMoC �NM4C þNFoC �NF4Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NMoC þNM4C þNFoC þNF4C

p

¼
NMoC �NM4C þNFoC �NF4Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM 6¼C þNF 6¼C

p ;

where NM6¼C ¼ NMoC þNM4C and NF6¼C ¼ NFoCþ

NF4C. In Appendix B, the 1-TDT is shown to
be asymptotically normally distributed. When the
population is in Hardy-Weinberg equilibrium,
the asymptotic distribution of the 1-TDT under
the null hypothesis of no LD (i.e., d(y�0.5) 5 0) is
N(0,1). It is also proved in Appendix B that the

1-TDT attains the highest power among the tests
in the following class:

Tw ¼
wðNMoC �NM4CÞ þ ð1� wÞðNFoC �NF4CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2NM6¼C þ ð1� wÞ2NF6¼C

q ;

w 2 ½0; 1�: ð1Þ

Note that the 1-TDT is just the Tw with the
particular weight w 5 0.5. It is shown in
Appendix B that the Tw is asymptotically normally
distributed.

However, in the case of imprinting, for example,
complete paternal imprinting, even under the
null hypothesis of no linkage, the mean of the
1-TDT is unknown and could be biased from zero.
In fact, it is derived from the results shown
in Appendix B, under the null hypothesis of no
linkage, that EðNMoC �NM4CÞ ¼ nmdI=f and
EðNFoC �NF4CÞ ¼ �npdI=f, where f ¼ p2fD=D þ

pqfD=d þ pqfd=D þ q2fd=d is the population disease
prevalence. When dI6¼0, both the expected
values EðNMoC �NM4CÞ and EðNFoC �NF4CÞ are
nonzero and further EðNMoC �NM4Cþ

NFoC �NF4CÞ ¼ ðnm � npÞdI=f is proportional to
I, unless nm 5 np. Also observed is that NM 6¼C þ

NF6¼C is no longer an unbiased estimator of the
variance of NMoC �NM4C þNFoC �NF4C under
the null hypothesis of no linkage, when dI 6¼0 with
nm6¼np. So the applicability of the 1-TDT as a test
of linkage in the presence of association is
restricted to the case of no imprinting. Note
from the results in Appendix B that the 1-TDT
as a test of association in the presence of linkage i
s applicable to the population in Hardy-Weinberg
equilibrium when there are imprinting effects.
But this would not be true for the population
not in Hardy-Weinberg equilibrium, even in
the absence of imprinting effects [Sun et al.,
1999]. Simulation results show that the type I
error rates of the 1-TDT as a test of linkage in
the presence of association as well as a test
of association in the presence of linkage could
be inflated (see online supplementary tables).
Thus, we are confronted with two issues: one is
to develop a statistic to test for LD in the
presence of imprinting and the other is to detect
imprinting effects, based on case-mother and
case-father pairs.

In what follows, we turn to seek a suitable
weight w in wðNMoC �NM4CÞ þ ð1� wÞðNFoC �

NF4CÞ to construct the required statistic for testing
for linkage/association in the presence of imprint-
ing. It is also needed to test if there exist
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imprinting effects based on those nm case-mother
and np case-father pairs.

TEST FOR LINKAGE/ASSOCIATION

Taking w0 ¼ np=ðnm þ npÞ, it is shown in
Appendix C that E½w0ðNMoC �NM4CÞ þ ð1� w0Þ

ðNFoC �NF4CÞ� ¼ 0 under the null hypothesis
of no linkage (i.e., y5 0.5). When the Hardy-
Weinberg law holds among parents in the source
population, it is also shown in Appendix C that
E½w0ðNMoC �NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ� ¼

0 under the null hypothesis of no association
(i.e., d5 0). Furthermore, it is verified in
Appendix C that w2

0NM 6¼C þ ð1� w0Þ
2NF 6¼C þ

ðnm þ npÞ
�1
ðNMoC �NM4CÞðNFoC �NF4CÞ is an

unbiased estimator of the variance of w0ðNMoC �

NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ under the null
hypothesis of no linkage/association. So the
1-TDT incorporating imprinting can be con-
structed as follows:

1-TDTI ¼

w0ðNMoC �NM4CÞ

þð1� w0ÞðNFoC �NF4CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0NM 6¼C þ ð1� w0Þ
2NF6¼C

þðnm þ npÞ
�1
ðNMoC �NM4CÞðNFoC �NF4CÞ

s :

ð2Þ

Note that the null hypothesis for the 1-TDTI is no
linkage or no association, i.e., d(y�0.5) 5 0. The
statistic 1-TDTI is asymptotically normally dis-
tributed. The region of rejection for testing for
linkage/association is as follows: j1-TDTIj4za=2,
where za=2 is the upper a/2 point of a standard
normal distribution and a is the significance level.
It is to be noticed that, like the TDT and 1-TDT, the
1-TDTI can also be used to test for linkage under
association, as well as to test for association under
linkage. Both issues are considered in the simula-
tion studies given below.

TESTING FOR IMPRINTING

As the 1-TDT [Sun et al., 1999] is not applicable
in the presence of imprinting effects, it is desirable
to have a test of imprinting. When the population
mating is symmetric and the female and male
recombination fractions are the same, it is derived
in Appendix C that, under the null hypothesis
of no imprinting, E½w0ðNMoC �NM4CÞ � ð1� w0Þ

ðNFoC �NF4CÞ� ¼ 0 and w2
0NM 6¼C þ ð1� w0Þ

2

NF6¼C � ðnm þ npÞ
�1
ðNMoC �NM4CÞðNFoC �NF4CÞ

is an unbiased estimator of the variance of
w0ðNMoC�NM4CÞ�ð1�w0ÞðNFoC�NF4CÞ. So we
suggest the POET when only one parent is

available as follows:

1-POET ¼

w0ðNMoC �NM4CÞ � ð1� w0Þ

ðNFoC �NF4CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0NM 6¼C þ ð1� w0Þ
2NF6¼C

�ðnm þ npÞ
�1
ðNMoC �NM4CÞðNFoC �NF4CÞ

s :

ð3Þ

The statistic follows asymptotically a normal
distribution and the region of rejection for testing
for imprinting is as follows: j1-POETj4za=2.

PARENT WITH MORE THAN ONE CHILD

When some mothers/fathers have more than
one affected child, the statistics (2) and (3) should
be adjusted accordingly to test for LD and
imprinting, respectively. In this situation, the term
NMoC �NM4C or equivalently �ðIMoC � IM4CÞ in
the numerators of equations (2) and (3) is replaced
by �M�CðIMoC � IM4CÞ, where the first summation
sums over all mothers M and the second summa-
tion is for all possible children C with the same
mother M. Similarly, the term NFoC �NF4C is
replaced by �F�CðIFoC � IF4CÞ. It is verified in
Appendix C that the unbiased estimator of the
variance of

T ¼ w0

X
M

X
C

ðIMoC � IM4CÞ

� ð1� w0Þ
X

F

X
C

ðIFoC � IF4CÞ

under the null hypothesis of no LD/imprinting
is

Var0ðTÞ ¼w2
0

X
M

X
C

IM 6¼C þ
X

M

X
Ca ;Cb

ðIMoCa � IM4Ca Þ

 

� ðIMoCb
� IM4Cb

Þ

!

þ ð1� w0Þ
2
X

F

X
C

IF 6¼C þ
X

F

X
Ca ;Cb

ðIFoCa � IF4Ca Þ

 

� ðIFoCb
� IF4Cb

Þ

!

�
n2

p

P
i i2nm;i þ n2

m

P
i i2np;i

nmnpðnm þ npÞ
2

X
M

X
C

ðIMoC � IM4CÞ

�
X

F

X
C

ðIFoC � IF4CÞ; ð4Þ

where nm;i is the number of families in which the
mother has i affected children, np;i is the number
of families in which the father has i affected
children, i ¼ 1; 2; . . ., nm ¼ �inm;i, np ¼ �inp;i, and
the summation �Ca;Cb

sums over all combinations
of children Ca and Cb with the same parent. So the
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required test statistics can be derived accordingly
as T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var0ðTÞ

p
.

SIMULATION RESULTS

Since a number of parameters are involved, we
fix the following parameter values throughout
the simulation study for illustration purpose:
fD=D ¼ 0:6;fd=d ¼ 0:2, and g1p and g1m are fixed
at some values between 1 and g2 5 3. The other
parameter values will be specified later. For each
set of parameter values, we run the simulation
20,000 times and the actual sizes/powers are
estimated as the proportions of replicates in which
the null hypothesis is rejected at significance
level a when the simulation is performed under
the null/alternative hypothesis. Two significance
levels 5 and 0.5% are used to evaluate the sizes
and the significance level of 5% is used to evaluate
the powers.

MODEL FOR TESTING FOR LINKAGE

The population stratification demographic model
[Sun et al., 1999] is used to assess the 1-TDTI as a
test of linkage and the 1-POET. The population
under study is composed of two subpopulations.
The frequencies of haplotypes M2d, M2D, M1d,
and M1D in the first (second) population are set to
0.47, 0.03, 0.03, and 0.47 (0.4, 0.1, 0.1, and 0.4),
respectively. The first subpopulation is 70% of
the total population and the second one is 30%.
For simplicity, each of the two subpopulations is
assumed to be in Hardy-Weinberg equilibrium,
even though the resulting mixed population is
not and mating is not random in the mixed
population. In each subpopulation, we first
generate haplotypes at the marker locus and a
DSL for the father and mother according to those
four haplotype frequencies. The paternal
haplotype of the child is generated from the
father’s haplotypes with the male recombina-
tion fraction ym. Similarly, the maternal haplo-
type of the child is generated. The affection status
of the child is determined by the child’s geno-
type at the disease locus and the associated
four risks fD=D;fD=d;fd=D, and fd=d. The proper-
ties of the 1-TDTI as a test of linkage in terms
of the powers and type I error rates are explored
in a number of situations, including moderate
sample sizes and different combinations of the
numbers of case-mother pairs and case-father
pairs.

MODEL FOR TESTING FOR ASSOCIATION

To investigate the properties of the 1-TDTI as a
test of association, we adopt the following
assortative mating demographic model [Sun
et al., 2000] in which Hardy-Weinberg equilibrium
again does not hold. In this population, 70% of the
families were formed through random mating and
30% of the families were formed through assorta-
tive mating where the mother carries more copies
of marker allele M1 than the father, both the
disease allele frequency and the marker allele
frequency are 0.5, and both the female and male
recombination fractions are 0.001, while the other
parameter values are taken the same as before.
The mechanism of data generating is similar to
that described above. The properties of the 1-TDTI
as a test of association in terms of the powers
and type I error rates are explored for various
g1 values, imprinting degrees, and different
combinations of the numbers of case-mother and
case-father pairs.

MODEL FOR TESTING FOR IMPRINTING

The population stratification demographic mod-
el described above is also used to assess the
1-POET as a test of imprinting. The properties of
the 1-POET in terms of the type I error rates are
investigated for various g1 values, female and
male recombination fractions, and different sam-
ple sizes. The properties of the 1-POET in terms
of the powers are investigated in the cases
of complete paternal imprinting, incomplete
paternal imprinting, incomplete maternal imprint-
ing, and complete maternal imprinting.

In the case of the parent having more than one
affected child, we choose the following sample
sizes for the simulation models given above: for
case-mother pairs, there are 90 families with one
affected child and 40 families with two affected
children; for case-father pairs, there are 70 families
with one affected child and 30 families with two
affected children.

SIZES OF THE 1-TDTI AS A TEST OF LINKAGE/
ASSOCIATION

We are going to investigate the actual type I
error rates of the test. For the completeness of the
investigation, we choose 13 representative pairs
of values for g1p and g1m (which are equivalently
expressed as g1 and I in Tables I and II), which are
scattered uniformly in the square [Strauch et al.,
2000] composed of fðg1p; g1mÞj1 � g1p; g1m � g2g

(see Tables I and II for details). It is noted that
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ðg1p; g1mÞ ¼ ðg2; g2Þ corresponds to the common
dominant mode of inheritance, ðg1p; g1mÞ¼ðð1þg2Þ=2;
ð1þ g2Þ=2Þ corresponds to the additive mode of
inheritance [Knapp, 1999], and ðg1p; g1mÞ ¼ ð1; 1Þ
corresponds to the common recessive mode of
inheritance, ðg1p; g1mÞ ¼ ðg2; 1Þ indicates complete
maternal imprinting, and ðg1p; g1mÞ ¼ ð1; g2Þ indi-
cates complete paternal imprinting. Furthermore,
we choose the numbers of case-mother and case-
father pairs as ðnm; npÞ ¼ ð100; 100Þ, (100, 200), and
(200, 100).

Table I reports the actual sizes of the 1-TDTI as
a test of linkage obtained by simulation in the
population stratification demographic model,
where both the female and male recombination
fractions are taken to be 0.5. Table II reports the
actual sizes of the 1-TDTI as a test of association in
the assortative mating demographic model with
yf ¼ ym ¼ 0:001, where the coefficient of LD is
taken to be 0. Most of the entries in Tables I and II
show that the sizes of 1-TDTI are close to but
marginally lower than the nominal 5 and 0.5%
levels, respectively, which indicates a slight con-
servativeness of the 1-TDTI for the sample sizes
that we study here. In fact, we have conducted
some simulation for sample sizes with nm þ np in
the range of 500–1,000. The actual sizes of the
1-TDTI approach more closely to the nominal ones
when the sample size increases. Owing to the

uniform distribution of those 13 pairs of g1p and
g1m, the simulated sizes of the 1-TDTI listed in
Tables I and II suggest that the 1-TDTI can be used
to test for LD in the presence of imprinting effects.

When the parent has more than one affected
child, the sizes of the 1-TDTI as a test of linkage
in the population stratification demographic
model when I ¼ ð1� g2Þfd=d=2, ð1� g2Þfd=d=4, 0,
ðg2 � 1Þfd=d=4, ðg2 � 1Þfd=d=2 while g1 ¼ ð1þ g2Þ=2
are, respectively, 4.93, 4.82, 4.67, 4.54, and 4.74%
for the nominal 5% level, and 0.34, 0.36, 0.39, 0.35,
0.37% for the nominal 0.5% level. The sizes of the
1-TDTI as a test of association in the assortative
mating demographic model when I ¼ ð1� g2Þ

fd=d=2, ð1� g2Þfd=d=4, 0, ðg2 � 1Þfd=d=4, ðg2 � 1Þ
fd=d=2 while g1 ¼ ð1þ g2Þ=2 are, respectively, 4.62,
4.68, 4.50, 4.69, and 4.70% for the nominal 5%
level, and 0.33, 0.37, 0.34, 0.45, and 0.40% for the
nominal 0.5% level. Again, the 1-TDTI is slightly
conservative for the case that the parent has more
than one affected child.

SIZES OF THE 1-POET

In the evaluation of the sizes of the 1-POET, for a
given g2, g1 is taken as the following five values
which are equally spaced in the range of 1 and
g2: 1, ð3þ g2Þ=4, ð1þ g2Þ=2, ð1þ 3g2Þ=4, and g2.
Table III shows that the actual sizes are close to but

TABLE I. Type I error rates (%) of the 1-TDTI as a test of linkage in the presence of association at significance level a 5 5
and 0.5% for simulation with 20,000 replicates in the population stratification demographic model having hf 5 hm 5 0.5
and d 5 0.22

g1 I

Sample size pair (nm, np) and a

(100, 100) (100, 200) (200, 100)

5% 0.5% 5% 0.5% 5% 0.5%

g2 0 4.78 0.47 4.44 0.39 4.68 0.51
1þ3g2

4

1�g2

4 fd=d 4.83 0.43 5.18 0.48 4.75 0.49
1þ3g2

4 0 4.72 0.41 5.08 0.42 4.86 0.41
1þ3g2

4

g2�1

4 fd=d 4.89 0.45 5.08 0.44 4.68 0.43
1þg2

2

1�g2

2 fd=d 5.12 0.40 4.93 0.42 4.88 0.43
1þg2

2

1�g2

4 fd=d 4.68 0.36 4.69 0.45 4.72 0.37
1þg2

2 0 4.57 0.35 4.93 0.40 4.86 0.49
1þg2

2

g2�1

4 fd=d 4.78 0.37 4.98 0.43 4.85 0.39
1þg2

2

g2�1

2 fd=d 4.47 0.38 4.83 0.43 4.96 0.46
3þg2

4

1�g2

4 fd=d 4.90 0.38 4.84 0.37 4.75 0.37
3þg2

4 0 4.60 0.38 5.01 0.42 4.92 0.41
3þg2

4

g2�1

4 fd=d 4.52 0.36 4.60 0.49 4.77 0.42

1 0 4.65 0.34 5.08 0.46 4.92 0.43
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slightly lower than the nominal ones under the
situation when yf 5 ym 5 0.001, and that when
yf 5 0.01 and ym 5 0.001, where the degree of
imprinting is taken to be 0. Most of the entries
show that the 1-POET, like the 1-TDTI, is slightly
conservative. Furthermore, we evaluate the sizes

when yf 5 0.03, 0.05, 0.1, and 0.3 while ym 5 0.01 or
0.1, respectively, and the actual sizes range from
4.68 to 5.16% for the nominal 5% level, and from
0.34 to 0.51% for the nominal 0.5% level. So it
is illustrated in our simulation studies that the
1-POET seems still applicable to detect parent-

TABLE II. Type I error rates (%) of the 1-TDTI as a test of association in the presence of linkage at significance level
a 5 5 and 0.5% for simulation with 20,000 replicates in the assortative mating demographic model having hf 5 hm 5 0.001
and d 5 0

g1 I

Sample size pair (nm, np) and a

(100, 100) (100, 200) (200, 100)

5% 0.5% 5% 0.5% 5% 0.5%

g2 0 5.19 0.48 4.66 0.46 5.05 0.37
1þ3g2

4

1�g2

4 fd=d 4.97 0.53 4.94 0.47 4.92 0.45
1þ3g2

4 0 5.13 0.43 4.74 0.34 4.83 0.41
1þ3g2

4

g2�1

4 fd=d 4.98 0.36 4.95 0.40 4.76 0.42
1þg2

2

1�g2

2 fd=d 5.03 0.51 4.95 0.47 4.73 0.48
1þg2

2

1�g2

4 fd=d 4.94 0.46 5.05 0.42 4.76 0.39
1þg2

2 0 4.91 0.43 4.85 0.44 5.10 0.48
1þg2

2

g2�1

4 fd=d 4.81 0.45 5.20 0.43 4.75 0.43
1þg2

2

g2�1

2 fd=d 4.60 0.38 4.83 0.39 4.75 0.45
3þg2

4

1�g2

4 fd=d 4.66 0.37 4.92 0.38 4.95 0.53
3þg2

4 0 5.08 0.48 4.82 0.46 4.97 0.35
3þg2

4

g2�1

4 fd=d 4.84 0.47 5.01 0.42 4.93 0.50

1 0 5.04 0.42 5.04 0.45 4.64 0.44

TABLE III. Type I error rates (%) of the 1-POET at significance level a 5 5 and 0.5% for simulation with 20,000 replicates
with no imprinting in the population stratification demographic model

g1

Sample size pair (nm, np) and a

(100, 100) (100, 200) (200, 100)

5% 0.5% 5% 0.5% 5% 0.5%

yf 5 0.001, ym 5 0.001

1 4.92 0.39 4.76 0.44 4.91 0.45
3þg2

4 5.02 0.33 4.91 0.43 5.05 0.49
1þg2

2 4.90 0.46 4.73 0.40 4.91 0.49
1þ3g2

4 4.66 0.44 4.97 0.36 4.90 0.45

g2 4.79 0.48 4.95 0.45 4.82 0.44

yf 5 0.01, ym 5 0.001

1 4.72 0.42 4.98 0.52 4.79 0.42
3þg2

4 4.86 0.44 4.86 0.41 4.77 0.41
1þg2

2 4.97 0.47 4.92 0.44 4.83 0.46
1þ3g2

4 5.20 0.44 4.94 0.54 5.04 0.46

g2 4.82 0.46 4.58 0.36 5.23 0.45
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of-origin effects when the female and male
recombination fractions are different.

When the mother/father has more than one
affected child, the sizes of the 1-POET are 4.82%
when yf 5 ym 5 0.001 and are 4.88% when yf 5 0.01
and ym 5 0.001, compared with the nominal 5%
level. If the nominal level is set with 0.5%, then the
corresponding sizes are 0.42 and 0.37%, respec-
tively. This illustrates that we can also use the
1-POET to deal with the case of parent having
more than one affected child.

POWERS OF THE 1-TDTI WITH DIFFERENT
nm:np

The objective of this section is to investigate the
effects of different sample sizes ratio nm:np on the
performance of the proposed 1-TDTI as a test of
linkage/association when the sum nm1np is fixed.
The findings can provide some guidelines in
collecting such data in conducting linkage/asso-
ciation analysis. For illustration purpose, we fix g1

at ð1þ g2Þ=2 and the sum nm1np at 200, to
calculate the powers of the 1-TDTI when the

number of case-mother pairs nm takes values from
50 to 150 in increments of 10.

First, we simulate the powers of the 1-TDTI as a
test of linkage when yf 5 ym 5 0.001 and that as a
test of association when d5 0.22 in the cases of (a)
I ¼ ð1� g2Þfd=d=2 (complete paternal imprinting),
(b) I ¼ 7ð1� g2Þfd=d=16 (incomplete paternal im-
printing), (c) I ¼ 7ðg2 � 1Þfd=d=16 (incomplete
maternal imprinting), (d) I ¼ ðg2 � 1Þfd=d=2 (com-
plete maternal imprinting). Figure 1 depicts the
power of the 1-TDTI as a test of linkage against the
number of case-mother pairs nm in the population
stratification demographic model, and Figure 2
depicts the power of the 1-TDTI as a test of
association against nm in the assortative mating
demographic model. The effects of different
sample size ratio nm:np on the power of the 1-
TDTI could be substantial, though the sum nm1np

is the same. The optimal choice of nm:np is 1:1,
which signifies that case-father and case-mother
pairs are equally important in testing for LD.
Figure 1 shows that the difference among the
powers of the 1-TDTI as a test of linkage
with complete paternal imprinting, incomplete
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Fig. 1. The actual powers of the 1-TDTI as a test of linkage are plotted against the number of case-mother pairs nm2 ½50; 150� in

increments of 10 under (a) complete paternal imprinting (fD=d ¼ 0:2, fd=D ¼ 0:6); (b) incomplete paternal imprinting (fD=d ¼ 0:175,
fd=D ¼ 0:575); (c) incomplete maternal imprinting (fD=d ¼ 0:575, fd=D ¼ 0:175); (d) complete maternal imprinting (fD=d ¼ 0:6, fd=D ¼ 0:2),

having fD=D ¼ 0:6, fd=d ¼ 0:2, g1 ¼ ð1þ g2Þ=2, yf ¼ ym ¼ 0:001, and nm þ np ¼ 200 in the population stratification demographic model.

Powers are based on 20,000 replicates and assessed at the 5% level.
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paternal imprinting, incomplete maternal imprint-
ing and complete maternal imprinting is very
small. Figure 2 shows that the difference between
the powers of the 1-TDTI as a test of association
with complete paternal imprinting and incom-
plete paternal imprinting is very small, that with
complete maternal imprinting and incomplete
maternal imprinting is also very small, and that
with complete paternal imprinting and complete
maternal imprinting is about 3%.

POWERS OF THE 1-POET WITH DIFFERENT
nm:np

We evaluate the powers of the 1-POET in the
population stratification demographic model in
the cases of (a) complete paternal imprinting, (b)
incomplete paternal imprinting, (c) incomplete
maternal imprinting, and (d) complete maternal
imprinting as described in the previous section,
where both the female and male recombination
fractions are taken as 0.001. Figure 3 plots the
corresponding power of the 1-POET against the
number of case-mother pairs nm. It shows that

the effects of the sample size ratio nm:np on the
power of the 1-POET could be substantial. The
case-mother and case-father pairs are equally
important in testing for imprinting using the
1-POET and the optimal ratio of nm:np is again
1:1. The difference between the powers of the
1-POET in the cases of complete paternal imprint-
ing and complete maternal imprinting is very
small, and that in the cases of incomplete paternal
imprinting and incomplete maternal imprinting
is also very small. However, there is about 10%
difference between the powers of the 1-POET in
the cases of complete imprinting and incomplete
imprinting.

DISCUSSION

In principle, we can choose different w in
wðNMoC �NM4CÞ þ ð1� wÞðNFoC �NF4CÞ to con-
struct a test statistic to test for LD. But if we do so,
we have to estimate the mean of the statistic under
the null hypothesis of no LD and this estimation
is usually difficult to deal with. In view of this,
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Fig. 2. The actual powers of the 1-TDTI as a test of association are plotted against the number of case-mother pairs nm 2 ½50; 150� in
increments of 10 under (a) complete paternal imprinting (fD=d ¼ 0:2, fd=D ¼ 0:6); (b) incomplete paternal imprinting (fD=d ¼ 0:175,

fd=D ¼ 0:575); (c) incomplete maternal imprinting (fD=d ¼ 0:575, fd=D ¼ 0:175); (d) complete maternal imprinting (fD=d ¼ 0:6, fd=D ¼ 0:2),

having fD=D ¼ 0:6, fd=d ¼ 0:2, g1 ¼ ð1þ g2Þ=2, yf ¼ ym ¼ 0:001, and nm þ np ¼ 200 in the assortative mating demographic model with
d ¼ 0:22. Powers are based on 20,000 replicates and assessed at the 5% level.
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we choose a suitable weight w0 ¼ np=ðnm þ npÞ

such that the mean of w0ðNMoC �NM4CÞþ

ð1� w0ÞðNFoC �NF4CÞ under the null hypothesis
is zero and thus we only need to give an unbiased
estimator of the variance. From the simulation
results, the simulated sizes are somehow a bit
lower than the nominal ones, which is probably
due to the nonasymptotic behavior when the
sample sizes nm and np are not large enough.
We also have done further simulations with
larger sample sizes that have better asymptotic
behavior.

In theory, we require yf 5 ym to guarantee the
expectation of w0ðNMoC �NM4CÞ � ð1� w0Þ

ðNFoC �NF4CÞ being 0 under the null hypothesis
of no imprinting. In the presence of association
between the marker locus and a DSL, it is
plausible to assume that both the female and
male recombination fractions are small, say less
than 0.01, and the difference between the
sex-specific recombination fractions is conse-
quently small. So in practice, the 1-POET could
still be applicable. In fact, our simulation studies
show that the 1-POET may still be used even

when the difference between the recombination
fractions is larger than 0.01.

It is noted that the weight w0 ¼ np=ðnm þ npÞ is
employed in constructing the 1-TDTI and 1-POET.
Notice that there are nm case-mother and np case-
father pairs. So in testing for LD/imprinting the
weight w0 ¼ np=ðnm þ npÞ makes the contribution
of case-mother pairs the same as that of case-
father pairs. It would be expected that a balanced
design of case-father and case-mother pairs would
provide the most efficient information in testing
for LD/imprinting. It is also observed in our
simulation studies that the power of the 1-TDTI/
1-POET attains the highest value in the case of
equal numbers of case-mother and case-father
pairs.

In practice, it is common to have two kinds
of data, one from families with both parents
and the other from families with only one parent.
When the parents of the affected child are
available, the conventional TDT [Spielman et al.,
1993] can be expressed as ðT �NTÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þNT
p

,
where T and NT denote the numbers of transmis-
sions and nontransmissions of marker allele
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Fig. 3. The actual powers of the 1-POET are plotted against the number of case-mother pairs nm 2 ½50; 150� in increments of 10 under (a)

complete paternal imprinting (fD=d ¼ 0:2, fd=D ¼ 0:6); (b) incomplete paternal imprinting (fD=d ¼ 0:175, fd=D ¼ 0:575); (c) incomplete

maternal imprinting (fD=d ¼ 0:575, fd=D ¼ 0:175); (d) complete maternal imprinting (fD=d ¼ 0:6, fd=D ¼ 0:2), having fD=D ¼ 0:6,
fd=d ¼ 0:2, g1 ¼ ð1þ g2Þ=2, yf ¼ ym ¼ 0:001, and nm þ np ¼ 200 in the population stratification demographic model. Powers are based

on 20,000 replicates and assessed at the 5% level.
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M1 from the heterozygous parents to the
affected offspring, respectively. Thus, one way
of combining both kinds of data for linkage/
association analysis may be given as follows:

T �NT þ w0ðNMoC �NM4CÞ

þð1� w0ÞðNFoC �NF4CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þNT þ w2

0NM6¼C þ ð1� w0Þ
2NF6¼C

þðnm þ npÞ
�1
ðNMoC �NM4CÞðNFoC �NF4CÞ

s :

It is noted from the combined test statistic that
the contribution of families with both parents
and that of families with only one parent are
the same [Allen et al., 2003]. Similarly, we may
also construct a combined test statistic to test
for imprinting on the basis of the families
with two parents and the families with only one
parent as follows:

NF4M �NFoM þ w0ðNMoC �NM4CÞ

�ð1� w0ÞðNFoC �NF4CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NF4M þNFoM þ w2

0NM 6¼C þ ð1� w0Þ
2NF 6¼C

�ðnm þ npÞ
�1
ðNMoC �NM4CÞðNFoC �NF4CÞ

s ;

ð5Þ

where NF4M and NFoM are the numbers of case-
parents trios in which the father carries more and
fewer copies of marker allele M1 than the mother,
respectively. Notice that the PAT statistic Weinberg
[1999b] proposed to test for imprinting essentially
tests for the equality of numbers of case-parents
trios NF4M;C¼1 and NFoM;C¼1, where NF4M;C¼1 and
NFoM;C¼1 are, respectively, the numbers of trios in
which the father carries more and fewer copies of
marker allele M1 than the mother where the
affected child is heterozygous. Weinberg’s
[1999b] method is a very powerful one when the
marker locus under study is a candidate DSL. In
this situation, the terms NF4M and NFoM in
equation (5) can be replaced respectively by
NF4M;C¼1 and NFoM;C¼1. When the marker locus
under study is not a DSL, Weinberg’s [1999b]
method is also applicable under no maternal
effects, population mating symmetry and equal
recombination fractions for males and females.

In this paper, we consider the detection of
parent-of-origin effects and the test for LD for
imprinted disease genes. In fact, there have been
increasing interests in maternal genotype effects.
For example, Weinberg et al. [1998] established a
log-linear model to estimate/detect the maternal
genotype effects and incorporate the maternal
genotype effects into analysis. How to differenti-
ate these different effects and take account of

these effects into linkage analysis and association
studies deserve future investigation.
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APPENDIX A

PRELIMINARY

Let ðN1; . . . ;Nk;n�
Pk

i¼1 NiÞ be the multinomial

distribution Mðr1; . . . ; rk; 1�
Pk

i¼1 ri;nÞ [Lehmann,

1983], r ¼ ðrjÞ
k
j¼1, and N ¼ ðNjÞ

k
j¼1. Then N/n is the

maximum likelihood estimator of the parameter
vector r. So we have [Rao, 1973]

N

n
!r in probability;

N � nrffiffiffi
n
p !Nð0;diagðrÞ � rrTÞ in law:

For any two constant vectors u and v of the same
length as vector r, we have

ðuþ vÞTN

n
! ðuþ vÞTr in probability; ð6Þ

ðu� vÞTN � nðu� vÞTrffiffiffi
n
p !Nð0; ðu� vÞTðdiagðrÞ � rrTÞ

� ðu� vÞÞ in law

: ð7Þ

APPENDIX B

ASYMPTOTIC DISTRIBUTION AND
OPTIMALITY: Tw

Based on the marker genotypes FMC, the
case-parents trios are classified into 15 categories
(refer to the first two columns in Table IV).
For the jth (1rjr15) category, let sj denote
the conditional probability that a family falls
into this category, given the child is a case.
For example, s1 ¼ PðF ¼ 2;M ¼ 1;C ¼ 2j
child is affectedÞ and s2 ¼ PðF ¼ 1;M ¼ 2;

C ¼ 2jchild is affectedÞ. Moreover, for each family
in the jth category (1rjr15), let umj be 1 if the
mother has fewer copies of marker allele M1 than
the affected child and 0 otherwise, and let vmj be 1
if the mother has more copies of marker allele M1

than the affected child and 0 otherwise. Similarly,
we define upj and vpj for the father and affected
child. See Table IV for details. Denote
s ¼ ðsjÞ

14
j¼1; um ¼ ðumjÞ

14
j¼1; vm ¼ ðvmjÞ

14
j¼1; up ¼ ðupjÞ

14
j¼1,

and vp ¼ ðvpjÞ
14
j¼1.

Notice that every case-mother pair is deduced
from a case-parents trio when the father is
missing. For the nm case-mother pairs, there are
nm underlying case-parents trios. Let Nm ¼

ðNm;jÞ
14
j¼1, where Nmj is the number of families

falling into the jth category (see Table IV for
details) among those nm case-parents trios,

TABLE IV. Classification of nuclear families based on
the marker genotype trio FMC of the father, the mother,
and the affected child

j FMC umj vmj upj vpj

1 212 1 0 0 0
2 122 0 0 1 0
3 211 0 0 0 1
4 121 0 1 0 0
5 112 1 0 1 0
6 111 0 0 0 0
7 110 0 1 0 1
8 101 1 0 0 0
9 011 0 0 1 0

10 100 0 0 0 1
11 010 0 1 0 0
12 222 0 0 0 0
13 201 1 0 0 1
14 021 0 1 1 0
15 000 0 0 0 0

umj 5 IMoC, vmj 5 IM4C, upj 5 IFoC, and vpj 5 IF4C, 1rjr15.
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1rjr14. Similarly, define Np ¼ ðNp;jÞ
14
j¼1 for the np

case-parents trios. So ðNm;1; . . . ;Nm;14; nm �P14
j¼1 Nm;jÞ follows the multinomial distribution

Mðs1; . . . ; s14; 1�
P14

i¼1 sj; nmÞ, ðNp;1; . . . ;Np;14; np �P14
j¼1 Np;jÞ follows the multinomial distribution

Mðs1; . . . ; s14; 1�
P14

i¼1 sj; npÞ, and Nm and Np are
independent.

Based on um, vm, up, vp, Nm, and Np, we have
�IMoC ¼ uT

mNm, �IM4C ¼ vT
mNm, �IFoC ¼ uT

p Np,
and �IF4C ¼ vT

p Np. Applying equations (6) and

(7) to Nm �Mðs; nmÞ and the constant vectors um

and vm and observing ðum � vmÞ
T diagðsÞ

ðum � vmÞ ¼
P14

j¼1ðumj � vmjÞ
2sj ¼

P14
j¼1ðumj þ vmjÞsj

¼ ðum þ vmÞ
Ts, we have

ðum þ vmÞ
TNm

nm
! ðum þ vmÞ

T s

in probability;

ðum�vmÞ
TNm � nmðum � vmÞ

Tsffiffiffiffiffiffi
nm
p ! Nð0; ðum þ vmÞ

Ts

� ððum � vmÞ
TsÞ2Þ in law:

Similarly, we have

ðup þ vpÞ
TNp

np
! ðup þ vpÞ

T s

in probability;

ðup � vpÞ
TNp � npðup � vpÞ

Tsffiffiffiffiffi
np
p ! Nð0; ðup þ vpÞ

Ts

� ððup � vpÞ
TsÞ2Þ in law:

So

w2ðum þ vmÞ
TNm þ ð1� wÞ2ðup þ vpÞ

TNp

� ½nmw2ðum þ vmÞ
Tsþ npð1� wÞ2ðup þ vpÞ

Ts�

! 0 in probability;

wðum � vmÞ
TNm � ð1� wÞðup � vpÞ

TNp

�½nmwðum � vmÞ
Ts� npð1� wÞðup � vpÞ

Ts�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmw2½ðum þ vmÞ

Ts� ððum � vmÞ
TsÞ2�

þnpð1� wÞ2½ðup þ vpÞ
Ts� ððup � vpÞ

TsÞ2�

s

! Nð0; 1Þ in law:

Hence for arbitrary wA[0,1], we have

wðum � vmÞ
TNm � ð1� wÞðup � vpÞ

TNpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðum þ vmÞ

TNm þ ð1� wÞ2ðup þ vpÞ
TNp

q

�
nmwðum � vmÞ

Ts� npð1� wÞðup � vpÞ
Tsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nmw2ðum þ vmÞ
Tsþ npð1� wÞ2ðup þ vpÞ

Ts
q

! N 0;

nmw2½ðum þ vmÞ
Ts� ððum � vmÞ

TsÞ2�

þnpð1� wÞ2½ðup þ vpÞ
Ts� ððup � vpÞ

TsÞ2�

nmw2ðum þ vmÞ
Tsþ npð1� wÞ2ðup þ vpÞ

Ts

0
BBB@

1
CCCA:
ð8ÞIn the remainder of this section, the population is

assumed to be in Hardy-Weinberg equilibrium.
From the detailed expressions of s1; . . . ; s15 in
Zhou et al. [2006], we have

ðum þ vmÞ
Ts ¼2gg0 þ dDð1� 2gÞð1þ yf � ymÞ

þ
2yf Rd

2
ðym�1Þ þ dIð1�2gÞð1�2yÞ

f
;

ðum � vmÞ
Ts ¼d Dð1� 2yÞ þ

Ið1þ yf � ymÞ

f

� �
;

ðup þ vpÞ
Ts ¼2gg0 þ dDð1� 2gÞð1þ ym � yf Þ

þ
2ymRd2

ðyf�1Þ�dIð1� 2gÞð1� 2yÞ
f

;

ðup � vpÞ
Ts ¼d Dð1� 2yÞ þ

Iðyf � 1� ymÞ

f

� �
;

where R ¼ fD=D � fD=d � fd=D þ fd=d is the differ-
ence between two homozygote risks and two
heterozygote risks, D ¼ ðpð2fD=D � fD=d � fd=DÞþ

qðfD=d þ fd=D � 2fd=dÞÞ=ð2fÞ. In fact, D is the
difference between two ratios P(D|affected
child)/P(D) and P(d|affected child)/P(d), where
P(D|affected child) represents the probability that
a chromosome of an affected child has a disease
allele D at a DSL, and the other probability
P(d|affected child) is similarly defined. The ratio
difference D is a positive quantity according to the
relative magnitude of the four risk parameters.

Particularly, when I 5 0 and yf 5 ym, we have
from equation (8)

Tw �
nmwþ npð1� wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnm þ npÞðnmw2 þ npð1� wÞ2Þ
q m! Nð0; s2Þ;

ð9Þ
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where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm þ np

p dD
ffiffiffiffi
f

p
ð1� 2yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gg0fþ dfDð1� 2gÞ þ 2yRd2
ðy� 1Þ

q ;

s2 ¼1�
fd2D2

ð1� 2yÞ2

2gg0fþ dfDð1� 2gÞ þ 2yRd2
ðy� 1Þ

:

When yf 5 ym 5 0.5 and I 5 0, we have
Tw ! Nð0; 1Þ. It implies that Tw with any wA[0,1]
can be used to test for linkage in the case of I 5 0.
When yf 5 ym, I 5 0, and w 5 0.5, we have
1-TDT� m! Nð0;s2Þ.

In the case of I 5 0 and yf 5 ym, notice from
equation (9) that the asymptotic mean of Tw

depends on the numbers of case-mother and
case-father pairs, but the asymptotic variance
of Tw is independent of these two numbers.
To maximize the power of Tw, we choose a
suitable weight w maximizing the square of
the mean of Tw. Actually, it is sufficient to
choose a weight w such that it maximizes

ðnmwþ npð1� wÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmw2 þ npð1� wÞ2

q
. The solu-

tion can be found as w 5 0.5. So the maximum
power of Tw for testing for yf 5 ym 5 0.5 is reached
at w 5 0.5. Equivalently speaking, the 1-TDT has
the maximum power in testing for linkage in the
class of test statistics Tw, wA[0,1], in the situation
of yf 5 ym and I 5 0.

In the case of I6¼0 and yf 5 ym 5 0.5, we have

Eð1-TDTÞ

¼

ffiffiffi
2
p

dIðnm � npÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnm þ npÞð4gg0f2

þ 2dDf2
ð1� 2gÞ � Rfd2

Þ

q :

So the mean of 1-TDT under the null hypothesis of
no linkage could be biased from zero, unless
nm 5 np or d5 0.

APPENDIX C

UNBIASED ESTIMATOR OF THE VARIANCE

First, we have

E½w0ðNMoC �NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ�

¼
nmnp

nm þ np
E½ðIMoC � IM4CÞ þ ðIFoC � IF4CÞ�

and

E½w0ðNMoC �NM4CÞ � ð1� w0ÞðNFoC �NF4CÞ�

¼
nmnp

nm þ np
E½ðIMoC � IM4CÞ � ðIFoC � IF4CÞ�

for a general population that does not require the
assumption of Hardy-Weinberg equilibrium.
Furthermore, we have

EðIMoCÞ ¼PðM ¼ 1;C ¼ 2jchild is affectedÞ

þ PðM ¼ 0;C ¼ 1jchild is affectedÞ

¼PðF ¼ 2;M ¼ 1;C ¼ 2jchild is affectedÞ

þ PðF ¼ 1;M ¼ 1;C ¼ 2jchild is affectedÞ

þ PðF ¼ 2;M ¼ 0;C ¼ 1jchild is affectedÞ

þ PðF ¼ 1;M ¼ 0;C ¼ 1jchild is affectedÞ

¼s1 þ s5 þ s8 þ s13:

Similarly, we have EðIM4CÞ ¼ s4 þ s7 þ s11 þ s14,
EðIFoCÞ ¼ s2 þ s5 þ s9 þ s14, and EðIF4CÞ ¼ s3 þ s7þ

s10 þ s13. So we have

E½ðIMoC � IM4CÞ þ ðIFoC � IF4CÞ� ¼ s1 � s3 þ s2

� s4 þ 2ðs5 � s7Þ þ s8 � s10 þ s9 � s11;

E½ðIMoC � IM4CÞ � ðIFoC � IF4CÞ� ¼ s1 � s2 þ s3

� s4 þ s8 � s9 þ s10 � s11 þ 2ðs13 � s14Þ:

Under the null hypothesis of no linkage, we
have s1 ¼ s3; s2 ¼ s4; s5 ¼ s7; s8 ¼ s10; s9 ¼ s11.
When the Hardy–Weinberg law holds among the
parents in the source population, we have s1 ¼

s3; s2 ¼ s4; s5 ¼ s7; s8 ¼ s10; s9 ¼ s11 under the null
hypothesis of no association. So under the
null hypothesis of no linkage/association, we
have

E½w0ðNMoC �NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ� ¼ 0:

Under the null hypothesis of no LD, ½w0ðNMoC �

NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ�
2 is shown to be

an unbiased estimator of the variance of w0ðNMoC�

NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ. Let A¼EðIMoC�

IM4Cjno LDÞ¼�EðIFoC�IF4Cjno LDÞ, then

E½w0ðNMoC �NM4CÞ þ ð1� w0ÞðNFoC �NF4CÞ�
2

¼ E½w2
0NM 6¼C þ ð1� w0Þ

2NF 6¼C�

þ w2
0ðn

2
m � nmÞA

2 þ ð1� w0Þ
2
ðn2

p � npÞA
2

� 2w0ð1� w0ÞnmnpA2

¼ E½w2
0NM 6¼C þ ð1�w0Þ

2NF 6¼C��nmnpðnm þ npÞ
�1A2

¼ E½w2
0NM 6¼C þ ð1� w0Þ

2NF 6¼C þ ðnm þ npÞ
�1

ðNMoC �NM4CÞðNFoC �NF4CÞ�:

So w2
0NM6¼C þ ð1� w0Þ

2NF6¼C þ ðnm þ npÞ
�1
ðNMoC�

NM4CÞðNFoC �NF4CÞ is an unbiased estimator of
the variance of w0ðNMoC �NM4CÞ þ ð1� w0Þ

ðNFoC �NF4CÞ under the null hypothesis of no
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linkage where Hardy–Weinberg equilibrium
needs not to be assumed, or under the null
hypothesis of no association where the Hard-
y–Weinberg law is taken among the parents in the
source population.

When yf ¼ ym and the population mating is
symmetry, we have s1 ¼ s2; s3 ¼ s4; s8 ¼ s9; s10 ¼

s11; s13 ¼ s14 under the null hypothesis of no
imprinting. So under the null hypothesis, we have

E½w0ðNMoC�NM4CÞ�ð1�w0ÞðNFoC �NF4CÞ� ¼ 0:

Similarly, we can verify that w2
0NM 6¼Cþ

ð1�w0Þ
2NF6¼C�ðnmþnpÞ

�1
ðNMoC �NM4CÞðNFoC�

NF4CÞ is an unbiased estimator of the variance of
w0ðNMoC �NM4CÞ � ð1� w0ÞðNFoC �NF4CÞ un-
der the null hypothesis of no imprinting. Note
that Hardy–Weinberg equilibrium needs not to be
assumed here.

Employing the same principle, we can also
verify that the Var0(T) in equation (4) is an
unbiased estimator of the variance of T under
the null hypothesis of no LD/imprinting.
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