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Summary. Time course microarray data consist of mRNA expression from a common set of genes collected
at different time points. Such data are thought to reflect underlying biological processes developing over
time. In this article, we propose a model that allows us to examine differential expression and gene net-
work relationships using time course microarray data. We model each gene-expression profile as a random
functional transformation of the scale, amplitude, and phase of a common curve. Inferences about the gene-
specific amplitude parameters allow us to examine differential gene expression. Inferences about measures of
functional similarity based on estimated time-transformation functions allow us to examine gene networks
while accounting for features of the gene-expression profiles. We discuss applications to simulated data as
well as to microarray data on prostate cancer progression.
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1. Introduction

Current research in molecular biology focuses on improving
our understanding of gene regulation. Time course microar-
ray data, consisting of mRNA expression from a common set
of genes collected at different time points, provide new oppor-
tunities into the understanding of the gene regulation because
it is believed that such data reflect underlying biological pro-
cesses developing over time.

Graphical models and, in particular, Bayesian networks
have been largely utilized to study gene regulation using cross-
sectional microarray data (see, e.g., Markowetz and Spang
[2007] and the references therein). Dynamic Bayesian net-
works have been applied to time course microarray data as
they extend Bayesian networks by allowing cyclic temporal
relationships between genes. Although appealing, dynamic
Bayesian networks have computational limitations because
complexity grows quickly with the number of genes. More-
over, time delays and/or dynamic changes of the network
have mostly been addressed within a simplified view to re-
duce the computational burden. Some authors, for example,
analyzed gene networks assuming that relationships were lin-
ear and time homogeneous (see, e.g., Beal et al., 2005; Inoue
et al., 2007). Opgen-Rhein and Strimmer (2006a) proposed
an extension of the graphical models to the dynamic setting
by treating the observed time course expression data as func-
tional data and proposing a partial correlation measure of
dependence between any pair of coexpressed gene-expression
profiles.

There is a large body of evidence supporting the idea that
coexpressed genes are more likely to be coregulated (Allocco,
Kohane, and Butte, 2004; Michalak, 2008). This idea has been
expanded to allow for time delays. Time-delayed expression
profiles are associated with a series of biological events such
as the cell cycle, circadian clock, cell differentiation, and de-
velopment (Weber, Kramer, and Fussenegger, 2007). In fact,
Bratsun et al. (2005) observe that the modeling of time delays
provides an approximation to modeling a complex sequence
of biochemical events underlying transcription and translation
of any gene.

Some authors have explored the temporal structure of the
expression profiles. Qian et al. (2001) use dynamic program-
ming to obtain alignment of the expression profiles of any pair
of genes and identify time-delayed activation or inhibitory re-
lationships. This approach is, however, based on alignment
scores obtained from the raw data, which may be problem-
atic with microarray data because the signal-to-noise ratio
is often very small. In the context of time ordering, Leng
and Müller (2006) use a model-based approach, estimating
the time shift for gene profiles to obtain an optimal pairwise
alignment. While this procedure accounts for variability in the
observed mRNA intensity, the assumption of a strictly linear
time shift may be inappropriate when the mRNA abundance
signal exhibits multiple features in its profile over time.

We propose a model that allows us to investigate the dy-
namics of gene relationships. Our method relies on the extrac-
tion of information about the timing of features, such as peaks
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and valleys, in each gene-expression profile. Specifically, gene-
expression profiles are modeled as realizations of a compound
process involving a random transformation of a common pro-
file and a transformation of the timing of the features of the
profile. Unlike previous approaches, our model allows for a
broader class of relationships with possible nonlinear time
transformations and does not require equally spaced sampling
or presmoothed trajectories. The model builds on Telesca and
Inoue (2008) who extended the classical self-modeling regres-
sion models (Ramsay and Li, 1998; Brumback and Lindstrom,
2004; Gervini and Gasser, 2004) by using a Bayesian hierar-
chical modeling approach. In this article, we discuss model-
based selection of differentially expressed genes and describe
a probabilistic framework for the investigation of regulatory
relationships between genes. We propose measures of associ-
ation, in particular, assessing dynamic network relationships
using timing maps. We show through a case study that our
method validates many relationships currently supported by
the literature.

The remainder of this article is organized as follows. In
Section 2, we describe our model and inferences about differ-
ential expression and gene network. In Section 3, we apply our
model to simulated data and to a time course gene-expression
microarray dataset from animal experiments on the progres-
sion of prostate cancer. Finally, in Section 4, we provide a
discussion.

2. Model Formulation
2.1 Model Description
Let yi (t) denote the observed expression level of gene i at time
t where i = 1, 2, . . . , N and t ∈ T = [t1, tn ]. We introduce
the following three-stage hierarchical model.

Stage One: The observed value of the trajectory of gene i
at time t is:

yi (t) = ci + aim{ui (t, φi ), β} + εi , i = 1, . . . , N, t ∈ T,

(1)

where εi
iid∼ N (0, σ2

ε ).

In the above, ui (· , ·) denotes the gene-specific time-
transformation function and m(· , ·) denotes a common shape
function generating the individual trajectories. We use
flexible representations of both functions using B-splines
(de Boor, 1978). Specifically, the curve-specific random time-
transformation functions characterizing the timing features of
each curve are defined as ui (t, φi ) = B′

u (t)φi , where Bu (t) is
a set of B-spline basis and φi is a Q−dimensional vector of
basis coefficients. We define ui as a smooth monotone map
over the design interval T with values on a compact inter-
val T = [t1 − Δ, tn + Δ] where Δ ≥ 0. To ensure monotonic-
ity and a boundary on the image of these functions, we im-
pose constraints on the time-transformation coefficients φi ,
namely,

(t1 − Δ) < φi1 < · · · < φiq < φi(q+1) < · · · < φiQ < (tn + Δ),
(2)

φi1 ∈ [(t1 − Δ), (t1 + Δ)], φiQ = tn + φi1, (3)

for all genes i = 1, . . . , N.

Similarly, we represent m{ui (t, φi ), β} = B′
m {ui (t, φi )}β,

where Bm {ui (t, φi )} is a set of B-spline basis functions and
β is a K−dimensional vector of basis coefficients. To ensure
that Bm {ui (t, φi )} spans a functional space over the extended
design interval T , the common shape function is defined so
that m(· , ·) : T −→ R.

Stage Two: Given a common shape function m(· , ·), in-
dividual curves may exhibit different levels and amplitudes
of response. We assume that the gene-specific level ci

iid∼
N (c0, σ

2
c ). Parameter ai describes the amplitude of the mRNA

signal for gene i. We formalize our statistical definition of dif-
ferentially expressed genes via a mixture approach. Our ap-
proach is similar to that presented by Parmigiani et al. (2002).
For each gene, we specify the following prior for the amplitude
of the expression signal,

ai = π−N
(
a−

0 , σ2
a−

)
I(ai < 0) + π+N

(
a+

0 , σ2
a+

)
I(ai > 0)

+ π0N
(
0, σ2

a 0

)
, i = 1, . . . , N, (4)

with (π− + π0 + π+) = 1. Here π0 identifies the overall pro-
portion of genes in their normal range of variation, while
(π− + π+) identifies the proportion of overly active genes. The
mixture characterization with two truncated normals (i.e.,
N−(· , ·) I(ai < 0) and N+(· , ·) I(ai > 0)) allows us to account
for genes with a synchronous expression signal of opposite sign
(negative dependence).

We model the time-transformation function coefficients as
following a multivariate normal distribution φi

iid∼ N (Υ,Σφ ),
where Υ is the vector associated with the identity time-
transformation function so that ui (t,Υ) = t.

Stage Three: We assume that a+
0 ∼ N (1, σ2

a0), a
−
0 ∼ N (−1,

σ2
a0), and c0 ∼ N (0, σ2

c0). Moreover, 1/σ2
a+, 1/σ2

a−, 1/σ2
a 0 ∼

G(aa , ba ). In particular, to accommodate heavy tails in the
genomic distribution of mRNA abundance we require σ2

a 0 <
min(σ2

a− , σ2
a+). Finally, we assume that 1/σ2

c ∼ G(ac , bc ), and
1/σ2

ε ∼ G(aε , bε ). (In our formulation, X ∼ G(a, b) indicates
a Gamma distribution, parameterized so that E(X) = a/b).
The mixture proportions π = (π+, π−, π0)′ have a conjugate
Dirichlet prior D(α).

Additionally, we assume that the shape function coefficients
β = (β1, . . . , βK )′ follow a second-order shrinkage process
(Eilers and Marx, 1996). Thus, we model βκ = 2βκ−1 −
βκ−2 + ηκ , with ηκ ∼ N (0, λ) and 1/λ ∼ G(aλ , bλ ). Similarly,
for the time-transformation parameters we use a first-order
shrinkage process so that (φiq − Υq ) = (φiq−1 − Υq−1) + ν iq ,
with νiq ∼ N (0, σ2

φ ) and 1/σ2
φ ∼ G(aφ , bφ ).

2.1.1 Choosing priors. For practical implementation of the
model, using normalized mRNA data, we assume that the
prior distribution of ci is concentrated between min (Y) and
max (Y). Similarly, the absolute amplitude of expression |ai |,
is centered around 1 and may range between 0 and 10. Given
the above domains of ci and ai , then assuming a G(0.1, 1) for
the precision parameters 1/σ2

a and 1/σ2
c implies relatively dif-

fuse priors. When choosing a prior for the time-transformation
coefficients, we note that the natural domain of the param-
eters φi is constrained to the interval (t1 − Δ, tn + Δ).
Rescaling the above interval to the (0, 1) interval, we assume
that 1/σ2

φ ∼ G(0.01, 100) which is also relatively diffuse on
the rescaled interval. Finally, the choice of Δ depends on the
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application. In our simulation study, we used Δ < 5 with the
upper bound reflecting approximately the periodicity in the
simulated curves. In the case study we used Δ = 7, which
biologically corresponds to the time period when the tumor
starts to regrow.

Sensitivity analysis to our prior choices is presented in the
Web Supplementary Materials, Section 1. Our analysis indi-
cate that the above priors are fairly noninformative.

2.1.2 Choosing spline basis, location, and number of knots.
Our model depends on specific choices for the spline basis,
the location and the number of spline knots modeling the
common shape function m(t, β), and the individual time-
transformation functions μi (t, φi ).

We consider B-spline basis of order 4, because of their nu-
merical stability (Peña, 1997). Also they allow for a simple
translation of functional constraints (monotonicity and im-
age) into constraints over the basis coefficients as represented
by equations (2) and (3).

There are some practical considerations regarding the num-
ber of spline knots used to model the shape and the time-
transformation functions. When modeling the common shape
function, we borrow information from the entire set of pro-
files. In our applications, using the number of knots equal
to the number of sampling time points provides great mod-
eling flexibility. Moreover, the shrinkage process on the ba-
sis coefficients (as described in Section 2.1) allows for adap-
tive smoothing and makes our inferences less dependent on
the chosen number of knots (see Supplementary Materials,
Section 3). Different considerations apply when we model
the individual time-transformation functions. These functions
carry structural smoothness as they are constrained to be
monotone. This requirement counterbalances the small num-
ber of observations associated with each gene profile and sug-
gests parsimony in the choice of the number of knots. In
our applications a number of knots between 3 and 6 allowed
for enough flexibility (see Web Supplementary Materials,
Section 2). Finally, because in our formulation the time scale
is stochastic, the knots are equally spaced.

2.2 Estimation and Inference
Let θ denote the full parameter vector, that is, θ =
(c′, a′, β′, φ′, π ′, c0, a0, σ

2
ε , σ

2
c , σ

2
a0, σ

2
a−, σ2

a+, λ, σ2
φ )′, where c =

(c1, . . . , cN )′, a = (a1, . . . , aN )′ and φ = (φ′
1, . . . , φ

′
N )′ is an

N × Q vector of individual time-transformation parameters.
We fully specify the Bayesian model with priors on the pa-
rameter vector θ as discussed in Section 2.1.

The joint posterior density of θ conditional on data Y is an-
alytically intractable, and so we implemented a Markov chain
Monte Carlo (MCMC) algorithm to sample from the poste-
rior distribution. Specifically, we use Metropolis–Hastings to
sample the time-transformation parameters φ and Gibbs sam-
pling steps to sample the remaining parameters for which the
full conditionals are available in closed form. Updating of the
amplitude parameters a is based on augmented data with
the set of mixture class indicators z = (z 1, . . . , zN )′ for all
genes.

Our inferences are based on examining and postprocess-
ing the MCMC samples from the posterior distribution of θ.
Next, we discuss inferential analysis from our model. The goal
is to make inferences about interactions among a set of differ-

entially expressed genes. We can address this problem in two
steps. First, we select differentially expressed genes, which in
our applications we define as genes that do not have a con-
stant level of mRNA over time. Second, we proceed with the
analysis of interactions between differentially expressed genes
using timing maps.

2.2.1 Differential expression. Assessment of differential ex-
pression using time course data has been studied under the
frequentist or the Bayesian paradigm. Specifically, expression
profiles are usually modeled using linear combinations of or-
thonormal basis (Angelini et al., 2007; Storey, 2007) and dif-
ferential expression is defined as a significant variation of the
mRNA abundance signal over time. The issue of multiple test-
ing is addressed considering adjustments for familywise error
rates, either via resampling techniques (Storey, 2007) or via
Bayesian hierarchical adjustments (Angelini et al., 2007; Chi
et al., 2007).

In the context of the model described in Section 2.1, we
start by observing that the amplitude parameter vector a =
(a1, . . . , aN )′ is informative about the strength of the mRNA
signal. Thus, we can use it to identify differentially expressed
genes. Specifically, we address this question using the follow-
ing set of hypotheses:

H0i : ai ∼ N
(
0, σ2

a 0

)
versus

H1i : ai ∼ N
(
a+

0 , σ2
a+

)
or ai ∼ N

(
a−

0 , σ2
a−

)
;

i = 1, . . . , N. (5)

When testing a large number of hypotheses it is desirable
to control for some predefined error rate. A popular choice
is to control the false discovery rate (FDR; Benjamini and
Hochberg, 1995). Following Müller, Parmigiani, and Rice
(2006), for a given null hypothesis H0i , let δi = I(Reject H0i )
be the indicator for the decision about H0i , D =

∑
i
δi de-

note the total number of rejections, and ri = I(H0i False)
denote the indicator of the unknown truth. The FDR is
FDR =

∑
i
δi (1 − ri )/D. Under the Bayesian approach, be-

cause ri is unknown, we could control the expected posterior
FDR. Defining vi = P (ri = 1 |Y), the expected posterior
FDR is given by:

E(FDR | Y) =
∑

i

(1 − vi )δi/D. (6)

Newton et al. (2004) and Morris et al. (2006) apply this idea
considering rules that reject H0i if vi > γ∗, where γ∗ is selected
so that the expected posterior FDR is controlled at a given
level α.

The choice of a decision rule can be formalized with the
specification of loss functions. In fact, Müller et al. (2004)
provide several examples of loss functions that induce decision
rules of the form δi = I(vi > γ∗). A disadvantage of the loss
functions inducing the above decision rule is that they do not
fully account for the expression levels. Müller et al. (2006)
propose an alternative loss function, which in the context of
our model is:

L(a, δ) = K
∑

i

(1 − δi )|ai | −
∑

i

δi |ai | + ςD, (7)

where K is the tradeoff between rejecting or not the null hy-
pothesis and ς is the cost associated with rejecting H0. The
above loss function implies that the optimal decision rule is:
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δ∗i = I
{

E(|ai | | Y) = m̄i >
ς

1 + K

}
. (8)

In our applications, we consider a combined criteria ac-
counting for the strength of evidence in the amplitude while
controlling for the expected posterior FDR. Specifically, we
consider decision rules provided by equation (8), choosing ς
such that E(FDR |Y) ≤ α. Defining pi = (1 − vi ), it can be
easily shown that the optimal cost ς∗ that explicitly controls
for the FDR is ς∗ = (1 + K) m̄� , with � = sup(i :

∑i

j=1 pj ≤
iα) and pj ordered so that m̄1 ≥ m̄2 ≥ . . . ≥ m̄N .

2.2.2 Network inferences. The underlying idea for the inves-
tigation of gene networks using time course microarray data
is that genes that share similar expression profiles may share
similar biological functions and thus, could be related. Three
aspects are, however, not always collectively taken into ac-
count by traditional network models. First, that genes often
exhibit different levels and different changes in amplitude of
their mRNA abundance despite being related. Second, that
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Figure 1. Motivating example. Panels (a) and (c): Profile for two hypothetical genes (gene A in full line, gene B in dashed
line). Profiles are derived from composite functions f i (x) = m(ui (x)). Panels (b) and (d): Time-transformation functions
ui (x) describing the timing of profile features (from profiles shown in panels (a) and (c), respectively).

relationships may be time delayed as seen, for example, be-
tween transcription factors and their targets. And, third, that
relationships may have a dynamic aspect changing over time.

This motivates our work. We investigate relationships be-
tween genes accounting for gene-specific patterns of expres-
sion. We assume that two genes are related if their expression
profiles, up to scale, have similar timing features. To illustrate
this idea, consider the profiles for two hypothetical genes in
panel (a) of Figure 1. Features such as peaks and valleys in
the profile shown in solid line (gene A) are delayed in relation
to those observed in dashed line (gene B). The correspond-
ing time-transformation functions in panel (b) highlight the
time shift. Because for all time points the time-transformation
functions show that timing features of gene B anticipate that
of gene A, they are suggestive that gene B has a regulatory
effect over gene A. Panel (c) shows another example where
looking at the profiles alone may indicate that there is no
relationship between two genes. Here, the two profiles have
an overall small correlation (correlation = −0.31), indicating
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no relationship. However, the time-transformation function in
panel (d) is very informative about the dynamic similarity of
the two profiles. In particular, we notice that the two profiles
are fairly synchronized in the first half of the design interval,
but much less so in the second half.

We thus propose using the time-transformation functions to
derive measures of relationships that are based on functional
similarities.

Definition:We define a local distance dik (φi , φk , t) between
genes i and k (i 
= k) with t ∈ [t1, tn ] as

dik = dik (φi , φk , t) = |ui (t, φi ) − uk (t, φk )|, (9)

that is, as the absolute distance between the time-transformation
functions of genes i and k at time t. The local distance may
be interpreted as the time shift between the expression profile
features of two genes at a given time point.

One may adapt the above local distance by looking at the
network in subsets of the sampling design. In the more ex-
treme end where we look at the network over the entire ob-
servation period we can define a global distance measure as
follows.

Definition:We define a global distance Dik (φi , φk ) summa-
rizing the pairwise profile similarity between genes i and k as

Dik = Dik (φi , φk ) =
n∑

j=1

|ui (tj , φi ) − uk (tj , φk )| /(tn − t1),
(10)

that is, as the average absolute distance between the time-
transformation functions evaluated on the time points of the
sampling design. The global distance can be interpreted as the
average distance between the timing of the curve features char-
acterizing the expression profiles of two genes.

Recall that our inferences are based on samples from the
posterior distribution of the model parameters. Let φ

(j )
i de-

note the jth draw from the marginal posterior distribution
of the time-transformation coefficient φi , i = 1, . . . , N ; j =
1, . . . , M . Draws from the marginal posterior distribution of
the time-transformation function ui (t, φi ) = B′

u (t)φi at time
t are given by:

u
(j )
i (t, φi ) = B′

u (t)φ(j )
i , j = 1, . . . , M. (11)

For all pairs of genes i 
= k, we can then derive the marginal
posterior distributions of the pairwise local and global dis-
tances by applying equations (9) and (10) to the samples in
equation (11) so that:

d
(j )
ik =

∣∣u(j )
i (t, φi ) − u

(j )
k (t, φk )

∣∣, j = 1, . . . , M ;

D
(j )
ik =

n∑
j=1

∣∣u(j )
i (tj , φi ) − u

(j )
k (tj , φk )

∣∣/(tn − t1), j = 1, . . . , M.
(12)

Relevant summaries from the marginal distributions may
be extracted to draw conclusions on the relationships. In par-
ticular, given the expected posterior distances E(Dik | Y) ≈
1/M

∑M

j=1 D
(j )
ik , we can use a decision-theoretic formulation

and select gene pairs satisfying E(Dik |Y) ≤ ς/(1 + K) as
in equation (8). Note that the specification of a cost ς may
not be easy in practice. As an alternative, one may place

a cap on the number of network relationships, say n∗, that
a biologist may look at in future experiments. Another op-
tion is to specify a cost ς that explicitly controls the ex-
pected posterior FDR. This requires specifying a null hy-
pothesis H0 and an alternative H1 in relation to what may
be considered a meaningful relationship. Let H0ik : Dik ≥ γ
and H1ik : Dik < γ, for each pair i 
= k, where γ denotes
a timing envelope of interest. Clearly, using the notation of
Section 2.2.1, we can define pik as the posterior probability
P (Dik ≥ γ | Y) ≈ 1/M

∑M

j=1 I(D(j )
ik ≥ γ) and proceed by se-

lecting the optimal cost ς∗ as:

ς∗ = (1 + K) E
(
D�

ik

∣∣Y)
, (13)

where � = sup(q :
∑q

j=1 pq
ik < qα) and pq

ik ordered so that
E(D1

ik |Y) ≤ E(D2
ik |Y) ≤ . . . ≤ E(DC

ik |Y), where C = CN
2 .

The above approach recognizes the importance of the tim-
ing characteristics of gene expression. The selection of an ap-
propriate timing envelope γ must, however, be aided by bio-
logical knowledge about the timing of gene–gene regulation in
the specific process under investigation. For example, in cell
cycle experiments, regulatory envelopes of interest may span
only a few minutes (Spellman et al., 1998), while in the study
of androgen refractory tumors the timing of interest is of the
order of days (Pound et al., 1999).

3. Applications
In this section, we apply our model to a set of simulated
data and to time course microarray data arising from ani-
mal studies on prostate cancer progression. Our inferences
are based on 15,000 samples from the posterior distribution
of the model parameters obtained after discarding the initial
20,000 MCMC iterations for burn-in.

3.1 Simulation
Let yi (t) = ai f (t + δi ) + εi , where εi

iid∼ N (0, σ2
ε ) and δi

iid∼
U [−1, 1]. Moreover, assume that the functional mean f(t)
takes one of the following five generating forms:

f1(t) = −[sin{(t + 0.5)/4} + cos{(t − 1)/5}],
f2(t) = cos(t/4),

f3(t) = sin{(t + 0.5)/4} + cos{(t − 1)/5},
f4(t) = − cos(t/4),

f5(t) = sin(t/6).

Assuming that σε = 0.4 and that ai ∼ N (1, 0.2)I(ai > 0),
we simulated trajectories for 40 pseudogenes over 30 equally
spaced time points in the interval T = [0, 30] from each of the
above functions, in order. Additionally, we added 300 “nondif-
ferentially” expressed pseudogenes simulated from N (ci , σ2

ε ),
with ci ∼ U (−1, 1).

We note that the 500 pseudogenes are not simulated from
our model. In fact, here we use five different shape functions,
with different levels of synchronicity and different numbers of
functional features (local extrema) over the time domain.

We model the common shape function with 30 equally
spaced interior knots and the time-transformation functions
with three equally spaced knots (see Section 2.1.2 for consid-
erations about these choices). We also consider a maximum
expansion constraint Δ = 5.
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Panels (a) and (b) of Figure 2 show, respectively, the sim-
ulated and fitted (posterior mean) profiles. Panel (c) shows
the expected posterior amplitude values. The first 200 tra-
jectories are successfully classified as belonging to the overly
active class. Controlling the expected posterior FDR at the
level 0.05 we select 210 pseudogenes with no false negatives
(panel (d)). Our selection is similar to that obtained when ap-
plying the method of Storey (2007) (See Web Supplementary
Materials, Section 3).

Panel (e) shows the median time-transformation functions.
We note that the time-transformation functions clearly iden-
tify the three patterns of synchronicity used to generate the
pseudogenes. Panel (f) shows the expected posterior global
distances between each pair of pseudogenes. In the result-
ing matrix, darker areas represent smaller distances, and thus
stronger associations. The chess-like pattern in the associa-
tion matrix shows that we successfully identified within-curve
similarities of trajectories generated from the same functional
mean f k (t) (k = 1, . . . , 5) and between-curve similarities be-
tween pseudogenes simulated from f 1(·),f 3(·) and f 2(·),f 4(·),
which reflects the functional relationships f 1(t) = −f 3(t) and
f 2(t) = −f 4(t). The lighter shade of gray associated with
the last functional class f 5(t) as related to profiles generated
from f 1(t) and f 3(t) reflects that these profiles achieve syn-
chronicity only over a partial section of the time domain. The
degree of posterior separation between pseudogenes that are
not supposed to be related (lightly colored versus dark col-
ored areas in the matrix) is in general very well defined. In
the Web Supplementary Materials, Section 4, we compare the
results from our model to those obtained using the Gaus-
sian partial correlation method implemented in the R package
GeneNet (Opgen-Rhein and Strimmer, 2006b). Our inferences
using the posterior mean distances offer a sharper identifi-
cation of the patterns of synchronicity when compared to
inferences obtained using partial correlation estimates from
GeneNet.

We also examined sensitivity of the results to the choice
of the parameter σε . Our analyses (Web Supplementary Ma-
terials, Section 5) indicate that our model still gives a good
separation between unrelated genes when profiles are simu-
lated with increased variability.

3.2 Case Study
3.2.1 Background. The diagnosis and treatment of prostate

cancer have changed dramatically over the last 20 years paral-
lel to an increased understanding of the natural history of the
disease. As a result of these advances, use of androgen with-
drawal therapies has grown as an effective way to slow down
prostatic neoplasms proliferation. Although the majority of
tumors regresses in response to androgen ablation therapy,
almost all eventually progress to a state of androgen indepen-
dence, characterized by tumor growth despite the androgen-
depleted environment.

The Shionogi tumor model is an androgen-dependent model
of mouse origin. Because patterns of change in gene expression
after castration of the animals are similar to those seen in
humans, this model has been validated as a model for human
disease.

In this analysis, we utilize data from 6- to 8-week-old mice
implanted with Shionogi xenografts and castrated at day

14 post implantation. Shionogi tumor cells were isolated at
different time points: precastration (day 0) and from day 1 to
25 postcastration with mRNA obtained for microarray anal-
ysis. The sampling design consists of 17 mRNA expression
measurements per gene, collected at unequally spaced time
points between day 0 and day 25. For this application we
consider 2357 genes.

Data were preprocessed and normalized using methods im-
plemented in the R-package Limma from Bioconductor.

3.2.2 Analysis and results. Figure 3 shows the data and the
results from fitting our model. Specifically, panel (a) shows
mRNA time course expression profiles for a random sample
of genes. Panel (b) shows the posterior mean of the ampli-
tude parameters, E(ai |Y), versus the posterior mean proba-
bilities of normal expression, E(π0|Y). Applying the method
discussed in Section 2.2.1 to the posterior samples of the am-
plitude parameters, controlling the posterior expected FDR
at the 0.01 level, we selected a set of 456 differentially ex-
pressed genes for network analysis. Panels (c)–(f) show a sam-
ple of gene-expression profiles superimposed with the poste-
rior mean mRNA abundance profiles and simultaneous 95%
credible bands.

Figure 4 shows the results from our network analysis
over the set of 456 differentially expressed genes. Panel (a)
shows the (transformed) posterior mean global distances (i.e.,
E[exp{−Dik (φi , φk )} | Y]), against the posterior probability
of the average timing distance being at least one day (that
is, P {Dik (φi , φk ) ≥ 1 | Y}). The vertical line in panel (a)
shows the decision boundary, controlling the expected pos-
terior FDR for the network relationships at the level 0.05.
Similarly, panel (b) shows the expected posterior FDR versus
the number of differential network relationships. The horizon-
tal line corresponds to the boundary controlling the expected
posterior FDR at 0.05. Panel (c) shows the corresponding
gene–gene expected posterior global distance matrix (genes
were ordered to visualize possible interaction structures using
the R package cluster). Finally, panel (d) shows the set of in-
teractions selected to control the expected posterior FDR at
level α = 0.05. The presence of a significant network relation-
ship between genes i and k is pictured as a dark spot in the
(i, k) entry of the matrix in panel (d).

After castration, androgen levels in mice are virtually re-
duced to zero and tumor cells undergo apoptosis leading to
tumor regression. However, after an initial phase of induced
apoptosis, lasting approximately 7 days, tumor cells become
androgen-independent and they start to grow. Thus, it may
prove useful to look at how genes interact with each other
during different phases of the biological process under study.
We consider the changes in gene–gene regulatory networks
up to 7 days and between 7 and 25 days after castration. We
build the networks on slightly modified local measures where
we take average distances over the two time periods. Figure 5
shows changes in the cluster structure of the distance ma-
trix and associated changes in the topology of the inferred
network.

In order to interpret the biological information captured
by our network analysis, we looked at a subset of transcrip-
tion regulators and genes with known pairwise relationships
related to regulation of expression in the ingenuity database.
Table 1 shows the subset of genes with significant interactions



Differential Expression and Network Inferences 7

Figure 2. Simulation study. (a) Simulated pseudogene trajectories superimposed with true shape functions (solid lines).
(b) Fitted median profiles (solid black) for a random sample of pseudogenes along with 95% credible interval (dot–dashed
lines) superimposed with true signal (solid gray). (c) Expected posterior amplitudes E(ai |Y). (d) Expected posterior FDR
versus number of selected genes. (e) Posterior median time-transformation functions. (f) Gene–gene expected posterior global
distance matrix.
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Figure 3. Case Study. (a) Gene-expression profiles. (b) Posterior mean amplitude versus the posterior mean probability of
normal expression. (c)–(f) Posterior mean profiles (solid line) for a sample of four genes superimposed with simultaneous 95%
credible bands. Dots represent the observed data points.
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Figure 4. Case study. (a) Expected posterior global distance versus P (Dik (ui , uk ) > 1 |Y) with decision boundary controlling
the expected posterior FDR at level 0.05. (b) Expected posterior FDR by number of differential interactions. (c) Expected
posterior global distance matrix (darker areas indicate higher synchronicity). (d) Global network associated with the distance
matrix in (c) (dark spots correspond to the edges selected in (a)).

(posterior probability less than or equal to 0.05 according to
our analysis). In the table, genes under the first column are
transcription regulators. Analysis of the selected network with
Cytoscape software (http://www.cytoscape.org/) revealed
the presence of six subnetworks related to biological processes
relevant to our system. Specifically, two subnetworks (subnet-
works 1 and 5) may be related to T-cell infiltration of tumors
that occurs in the Shionogi model upon castration of mice
(Nesslinger et al., 2007). Genes in Sub1 (SPP1, SPI1, EMR1,
ELA2, CSF1R) are related to proliferation, apoptosis, and dif-
ferentiation of leukocytes as well as chemotaxis of leukocytes.
Moreover, genes in Sub5 (APEX1, HMGB2, SET) are part of
the ‘Granzyme A mediated Apoptosis Pathway’ according to
BIOCARTA (http://www.biocarta.com/). Thus, it is possi-
ble that in our system, infiltrating T-lymphocytes result in
the release of Granzyme A in Shionogi tumor cells, leading
to an additional activation of caspase-independent apoptosis
pathway. Genes in Sub2 (RUNX1T1, CD53, OMD, EZH2,
SERPINF1, JUND, HCK) are mainly related to cell pro-

liferation and apoptosis. Genes in Sub3 (PSMA2, NFE2L2,
PSMA6, PSMA5, SOD2) are related to the ubiquitin protea-
some pathway and oxidative stress. The ubiquitin proteasome
pathway has an important role in the degradation of proteins.
This oxidative pathway combats the accumulation of reactive
oxygen containing molecules that are produced in the cell in
response to stress. Levels of oxidative stress affects the effec-
tiveness of radiotherapy and severe oxidative stress can dam-
age DNA and proteins and trigger apoptosis. In Sub4, genes
NEUROG3 and PAX6 are related to differentiation of neu-
rons. In the context of prostate cancer progression there is an
increase in cells with a neuroendocrine phenotype following
androgen ablation and it is thought that the neuropeptide
hormone produced from these cells may impact on tumor bi-
ology (Amorino and Parsons, 2004) and that NEUROG3 is
expressed in metastatic neuroendocrine prostate cancer cells
(Hu et al., 2002). Finally, the two genes in Sub6 (MTPN,
NPPB) are related to apoptosis and their relationship is sup-
ported in the Ingenuity database.
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Figure 5. Case study. (a) Local timing distance matrix (days 0 to 7). (b) Local timing distance matrix (days 7 to 25). For
both panels, darker areas correspond to higher levels of synchronicity. (c)–(d) Dark spots correspond to relationships selected
to control the expected posterior FDR at a level α = 0.05.

4. Discussion
In this article, we propose a model-based framework for select-
ing differentially expressed genes and inferring gene network
relationships based on the characterization of profile similari-
ties of time course microarray data. Our model assumes that
variation of gene-expression profiles can be sufficiently well
captured by gene-specific linear transformations of a common
shape function evaluated over a gene-specific stochastic time
transformation. We showed that our method is flexible enough
to fit even profiles that violate the assumption of a common
shape function (Section 3.1). Moreover, we showed that our
model validates biologically significant relationships that are
plausible based on the current literature (Section 3.2). The
approach outlined in this article is likely to work well when
considering time series long enough to allow for the identifi-
cation of a functional response.

Differential expression in the time course setting has been
previously defined as a significant variation of the mRNA

abundance signal over time (Angelini et al., 2007; Storey,
2007). In this article, we adhere to this concept, proposing a
model-based framework for the definition of abnormal activity
in gene expression. We base our inferences on the estimated
amplitude parameters indicating the strength of the mRNA
abundance signal.

Assessing regulatory relationships between genes based on
the level of synchronicity of their expression profiles has also
been considered by other investigators (see, e.g., Qian et al.,
2001; Leng and Müller, 2006). In contrast to these previous
approaches, our method does not depend on equally spaced
sampling time points. Moreover, our model allows for time
shifts but also nonlinear transformations in the gene-specific
time scales, making our representation suitable to the analy-
sis of expression profiles exhibiting more than one functional
feature over the sampling design interval.

The focus of this article is on utilizing a model-based frame-
work that allows for inferences on both differential expression
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Table 1
Biological interpretation of the network in a subset of genes
where relationships are related to regulation of expression

P (Dij ≥
Gene 1 Gene 2 1 day |Y ) Notes

Sub 1
SPI1 SPP1 0.039 Proliferation, apoptosis
SPI1 ELA2 0.001 and differentiation
SPI1 CSF1R <0.001 of leukocytes
SPI1 EMR <0.001

Sub 2
RUNXIT1 SERPINF1 <0.001 Cell proliferation
RUNXIT1 OMD 0.005 and apoptosis
RUNXIT1 CD53 <0.001
RUNXIT1 EZH2 0.016
RUNXIT1 HCK <0.001
RUNXIT1 JUND <0.001

Sub 3
NFE2L2 PSMA2 <0.001 Ubiquitin
NFE2L2 PSMA5 <0.001 proteasome pathway
NFE2L2 PSMA6 0.029
NFE2L2 SOD2 <0.001

Sub 4
PAX6 NEUROG3 0.013 Neuronial
PAX6 EHBPIL1 <0.001 differentiation

Sub 5
HMGB2 SET 0.01 Granzyme apoptosis
HMGB2 APEX1 <0.001 pathway

Sub 6
MTPN NPPB 0.004 Apoptosis

and network relationships. To our knowledge, no previous
work has addressed these two tasks simultaneously. Even
so, we compared our approach with single-tasks approaches.
Using a simulation study (Web Supplementary Materials,
Section 3) we compared our approach with that proposed by
Storey (2007). We showed that our method selects a similar
set of genes. We also compared our approach for inferring net-
work relationships with that proposed by Opgen-Rhein and
Strimmer (2006b) (Web Supplementary Materials, Section 4)
and showed that our method identifies relationships missed
by GeneNet.

We note that our results are mostly dependent on gene-
expression data because our priors are fairly diffuse. Addi-
tional prior structure related to the biological knowledge of
existing genetic interactions may improve the quality of our
inferences and could, in principle, be integrated in our model
via a conditional independence prior at the level of the time-
transformation coefficients φ and scale parameters (c, a). This
would, however, increase the model complexity from linear to
combinatorial in the number of genes.

5. Supplementary Materials
Web Tables and Figures referenced in Sections 2.1.1, 2.1.2,
and 3.1 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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