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Summary

Discovering statistical correlation between causal genetic variation and clinical traits through association studies is an
important method for identifying the genetic basis of human diseases. Since fully resequencing a cohort is prohibitively
costly, genetic association studies take advantage of local correlation structure (or linkage disequilibrium) between single
nucleotide polymorphisms (SNPs) by selecting a subset of SNPs to be genotyped (tag SNPs). While many current
association studies are performed using commercially available high-throughput genotyping products that define a set
of tag SNPs, choosing tag SNPs remains an important problem for both custom follow-up studies as well as designing
the high-throughput genotyping products themselves. The most widely used tag SNP selection method optimizes the
correlation between SNPs (r2). However, tag SNPs chosen based on an r2 criterion do not necessarily maximize the
statistical power of an association study. We propose a study design framework that chooses SNPs to maximize power and
efficiently measures the power through empirical simulation. Empirical results based on the HapMap data show that our
method gains considerable power over a widely used r2-based method, or equivalently reduces the number of tag SNPs
required to attain the desired power of a study. Our power-optimized 100k whole genome tag set provides equivalent
power to the Affymetrix 500k chip for the CEU population. For the design of custom follow-up studies, our method
provides up to twice the power increase using the same number of tag SNPs as r2-based methods. Our method is publicly
available via web server at http://design.cs.ucla.edu.

Keywords: association study, tag SNP selection, statistical power, single nucleotide polymorphism, linkage
disequilibrium

Introduction

Discovering statistical correlation between causal genetic vari-
ation and clinical traits through association studies is an im-
portant method for identifying the genetic basis of human
disease (Risch & Merikangas 1996; Balding 2006). Typically,
a genetic association study gathers case/control individuals,
collects genetic variation information such as genotypes at
single nucleotide polymorphisms (SNPs), and tests the sig-
nificance of association for each SNP using a statistical test
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such as a χ2 test. Since fully resequencing a cohort is pro-
hibitively costly, a set of representative SNPs (called tags or
tag SNPs) are chosen as proxies for nearby SNPs, utilizing
the local correlation structure of SNPs (or linkage disequi-
librium) to find associations (Pritchard & Przeworski 2001).
While many current association studies are performed using
commercially available high-throughput genotyping products
that define a set of tag SNPs, selection of these SNPs remains
an important problem for both custom follow-up studies as
well as designing the high-throughput genotyping products
themselves (Stram 2004, 2005; de Bakker et al. 2005; Cousin
et al. 2003, 2006; Halperin et al. 2005; Lin & Altman 2004;
Pardi et al. 2005; Qin et al. 2006; Saccone et al. 2006; Carlson
et al. 2004).

In the context of association studies, maximizing statistical
power is the most relevant goal of tag SNP selection. Since
the actual causal SNP is not known, the statistical power of
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an association study is defined as the average power over all
possible causal SNPs. Recent availability of reference data
sets such as the HapMap (Hinds et al. 2005; HapMap 2003,
2005) allows us to empirically measure power of an association
study design (de Bakker et al. 2005; Pe’er et al. 2006; Kruglyak
2005). A standard method for picking tags is greedily choosing
the smallest number of SNPs with a minimum cut-off of
correlation (r2) between tag SNPs and uncollected SNPs (de
Bakker et al. 2005; Carlson et al. 2004; HapMap 2003, 2005).
However, choosing tag SNPs based on r2 alone does not
necessarily maximize power, because r2 does not take into
account minor allele frequency (MAF) which also influences
power.

In this paper, we present a flexible study design framework
that chooses tag SNPs to maximize the statistical power of an
association study.

The underlying intuition is that we quickly find the “key
tag SNPs” that contribute a considerable amount of power.
The power a tag SNP contributes depends on (1) the coverage
of a tag SNP (the number of putative causal SNPs a tag SNP
can cover), (2) the correlation (the r2 between a tag SNP and
each causal SNP it covers), and (3) the MAF of each causal
SNP. We observe that r2-based methods do not consider (3)
and maximize (1) by setting (2) to a fixed threshold. Instead,
we use a greedy procedure that evaluates each candidate tag
SNP’s possible average power increase, and selects the best
SNP as a tag SNP at each step. By evaluating the average
power increase, we take into account all three aspects of a tag
SNP. By not fixing a minimum value of r2, we allow more
flexibility in selecting a tag SNP of maximum power. For
example, if a tag SNP has a low r2 to causal SNPs but covers
many common SNPs (bad at (2) but good at (1) and (3)), we
can select the SNP based on the power increase unlike the
r2-based methods.

Empirical simulations based on the HapMap ENCODE re-
gions show that our power-optimized method requires 21%
fewer tag SNPs on average than widely used r2-based meth-
ods, to achieve equivalent power. When applied to whole
genome association mapping, our power-optimized tag sets
consistently outperform the r2-based tag sets across all pop-
ulations. We compare our designs to the commercial prod-
ucts as well. Our 100k tag set provides equivalent power to
the Affymetrix 500k chip for European and Asian popula-
tions. In addition, our 300k tag set outperforms the Illumina
550k chip across all three HapMap populations. We apply
our method to the custom follow-up study design problem
where the goal is to select tag SNPs in addition to those
already present on a commercial product to maximize the
statistical power within a region of interest. Our method pro-
vides up to twice the power increase using the same number
of additional tag SNPs compared to the widely used r2-based
methods.

Since study parameters such as relative risk are generally un-
known, a possible pitfall of using statistical power instead of a
study-independent measure such as r2 is “fitting” the design
to an incorrect parameter. We show that when the parame-
ters are correct our method performs optimally, and when the
parameters are incorrect our method still outperforms or per-
forms similarly to the widely used r2-based methods, within
a wide range of parameters.

During the course of design, our procedure requires us
to evaluate the power of candidate tag sets numerous times,
thus the use of empirical simulation for measuring power (de
Bakker et al. 2005) is computationally impractical. We com-
bine the use of an analytical approximation for the power in
our tag selection method with an efficient empirical simula-
tion that can accurately measure the power of a tag set. The
efficiency of our method allows us to design an association
study in one ENCODE region in 3 seconds and a genome
wide study in 1.5 CPU hours. The empirical simulation for
accurately measuring power is based on a standard technique
described in de Bakker et al. (2005). To the best of our knowl-
edge, no one has analyzed this standard simulation procedure
with respect to its accuracy. We improve the efficiency of
this simulation and scale it to the whole genome using a
sampling procedure, for which we derive the corresponding
confidence intervals. This allows us to determine the number
of sampling iterations required for a given level of accuracy.
The key insight in this sampling procedure is that the variance
of the estimate of the power is independent of the shape of
the distribution of the true power over the causal SNPs.

Previous works in tag SNP selection include haplotype-
based methods (Johnson et al. 2001; Stram 2004, 2005; Lin &
Altman 2004; Halperin et al. 2005), correlation-based meth-
ods (Carlson et al. 2004; Qin et al. 2006; HapMap 2005; de
Bakker et al. 2005), and power-based methods (Byng et al.
2003; Pardi et al. 2005; Cousin et al. 2003, 2006; Saccone
et al. 2006). The correlation-based methods are power-based
methods in that r2 is closely related to power (Pritchard &
Przeworski 2001), but here we group power-based meth-
ods separately based on whether MAF is taken into account.
Among the power-based methods, Byng et al. (2003) and
Pardi et al. (2005) use the generalized linear model to test
the association between the region of interest and the dis-
ease. Their approach is different from ours which considers
single SNP association for each SNP in order to detect and
locate the association. Cousin et al. (2003, 2006) maximizes
average power over all possible parameters, specifically over a
relative penetrance from 0 to 1 which corresponds to the rel-
ative risk from 1 to ∞. Since such a high relative risk is often
of little interest in the current association studies, and since
sometimes the relative risk can be approximated from the pre-
vious studies, our method can be more suitable for those cases
by allowing a flexible choice of parameter values or ranges.
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Saccone et al. (2006) focus on the observation that the power
is affected by the phase of the correlation, whether a tag SNP
and the causal SNP are correlated positively or negatively.
However, if we use r2 as a correlation measure instead of D′

they use (Devlin & Risch 1995), the power is approximately
independent of the phase of correlation (Pritchard & Prze-
worski 2001). Thus, selecting tag SNPs based on the phase
may not maximize power.

The implementation of our method is publicly available via
web server at http://design.cs.ucla.edu. On this web
site, we provide power analysis for all popular commercial
products as well as candidate gene study designs for every
gene in the human genome.

Materials and Methods

Power-optimized tag SNP selection

Our power-optimized tag SNP selection method is a stepwise
greedy procedure to maximize power. We assume that we can
estimate the relative risk (γ ). We determine the MAF threshold
and the significance level α. Then, we fix at least one degree
among the three degrees of freedom in design which are (1) the
number of individuals, (2) number of tags, and (3) desired power.
If we fix two of them, our method will give one design. If we
fix one of them, our method will iterate and give many designs
to choose among. The computational core of this procedure is
selecting tags to maximize power given the fixed numbers of
individuals and tags. Since this core procedure is very efficient,
our method can quickly iterate to find the solution for any choice
of fixed parameters. For example, if we fix the desired power, our
method will use binary-search over the number of individuals by
repeating the core procedure until the resulting tag set meets the
desired power. It will iterate this whole process for every number
of tags.

For simplicity, we will only consider the core tagging proce-
dure where both the numbers of individuals (N ) and the number
of tags (nt ) are fixed. Let S be the set of all SNPs in the region.
Let C ⊆ S be the set of (common) putative causal SNPs defined
by the MAF threshold. Let I ⊆ S and E ⊆ S be the sets of SNPs
that we want to include into or exclude from the tag set. Then
our tagging procedure is as follows.

1. Initialize the tag set as T ← I
2. For every candidate tag SNP x ∈ S − (T ∪ E), analyti-

cally estimate per-causal-SNP power for every causal SNP c
∈ C using the tag set T ∪ {x}, to get the average power
P (T ∪ {x}).

3. Select the best candidate tag SNP x′ which maximizes
P (T ∪ {x′}).

4. T ← T ∪ {x}
5. Repeat from step 2 while |T| < nt

We define the per-causal-SNP power as a tag set’s power to detect
each putative causal SNP. A more detailed pseudo-code is shown
in Supporting Figure S1. How we analytically estimate the per-

causal-SNP power at step 2 will be described below. During
the procedure, we measure the average power of a tag set for
O(nc nt ) times where nc and nt are the number of causal SNPs
and tag SNPs respectively. Since empirically measuring power
through simulation for this number of times is computationally
impractical, we use an analytical approximation for power.

For genome-wide design, we assume the maximum distance
of LD to be 250kb and use the adjusted greedy algorithm (Sup-
porting Figure S2) to reduce the computational burden. 250kb
is not long enough to capture long range LDs, but enough for
selecting tag SNPs based on power. We will assume a longer
range of maximum LD (10Mb) when we estimate the power of
a design using empirical simulation. The adjusted greedy algo-
rithm picks k “independent” SNPs at each round, from the top
of the candidate tag SNP list sorted by their power increase. We
define two SNPs to be independent if the distance between them
is greater than the twice the length of maximum distance of LD.
We set k to be 1% of the total number of SNPs. We consider
the power between a tag SNP and a causal SNP only if the r2

between them is ≥0.1.
We now describe how to analytically estimate the per-causal-

SNP power of a tag set at step 2 of the tagging procedure. We
use the framework of Pritchard & Przeworski (2001), Jorgenson
& Witte (2006), Klein (2007), and Eskin (2008). Given an asso-
ciation study which collects genotypes in N+/2 case and N−/2
control individuals (equivalently N+ and N− chromosomes), we
assume that a marker A with population minor allele frequency
p A affects the disease with relative risk γ . Let F be the disease
prevalence. The case and control allele frequencies are then

p+
A = γ p A

(γ − 1)p A + 1
and p−

A = p A − F p+
A

1 − F

(or,p−
A ≈ p A if F is very small)

respectively. We denote the observed case and control frequencies
in the collected sample as p̂+

A and p̂−
A. The association statistic at

marker A,

SA = p̂+
A − p̂−

A√
p̂±

A

(
1 − p̂±

A

)
√

N+N−

N+ + N−

(
where p̂±

A = (
p̂+

A + p̂−
A

)
/2

)
approximately follows a normal distribution with variance 1 and
mean (non-centrality parameter)
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A − p−

A√
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A

(
1 − p±

A

)
√

N+N−

N+ + N− .

(
where p±

A = (
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A + p−
A

)
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)
If we genotype a marker B correlated with A with a correlation
coefficient of r AB, the power that the marker B will be detected
as significant is analytically approximated as

PB = 1 − 1√
2π

∫ �−1(1−α/2)+λA

√
r 2

AB

�−1(α/2)+λA

√
r 2

AB

e− 1
2 x2

d x
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with respect to the significance threshold α, where �(x) is the
c.d.f. of the standard normal distribution.

Now we can estimate the single marker power between the
causal SNP A and the tag SNP B. To extend this single marker
power to multiple markers, we apply two simplifying assump-
tions. A best-tag assumption assumes that each causal SNP is only
detected by its best tag, that is, the most correlated tag SNP with
the highest r2. A Bonferroni assumption assumes that every SNP is
independent allowing us to use α/nt as a significance level for a
single test where α is the region-wide significance level and nt is
the number of tags (the Bonferroni correction). With these two
assumptions, the per-causal-SNP power for each causal SNP is
efficiently computed as the single marker power at the best tag
SNP. Thus, the average power can be analytically estimated by
averaging the per-causal-SNP power over every causal SNP.

r2-based tag SNP selection

Pairwise r2 tagging (de Bakker et al. 2005; Carlson et al. 2004;
HapMap 2003, 2005) is a widely used r2-based tag SNP selection
method that greedily chooses the smallest number of tag SNPs
with a minimum r2 threshold between tag SNPs and uncollected
SNPs. The procedure starts with a SNP pool containing every
SNP of interest, which is defined by MAF ≥5% in our experi-
ments. At each step, the procedure selects a tag SNP which covers
the most SNPs in the pool with the r2 threshold, and removes
the tag SNP and the SNPs it covers from the pool. Then the
procedure is repeated until the pool becomes empty.

Since the only parameter we can vary in pairwise r2 tagging is
the r2 threshold, we use binary-search over the threshold when
we want to design a specific tag set size, with the precision of
0.001. For the follow-up study design which adds SNPs to a pre-
defined tag set, we first remove from the pool the pre-defined
tag SNPs and the SNPs they cover, and then resume the normal
procedure. For the genome-wide study design, as in our power-
optimized method, we assume 250 kb as the maximum distance
of LD and use the adjusted greedy algorithm. The algorithm
picks k “independent” SNPs at each round, from the top of the
candidate tag SNP list sorted by the number of SNPs they cover.
We define two SNPs to be independent if the distance between
them is greater than the twice the length of maximum distance
of LD. We set k to be 1% of the total number of SNPs.

Best-N r2 (de Bakker et al. 2005) is another r2-based method.
The procedure is the same as pairwise r2 tagging except that the
tag SNPs are selected until the desired tag set size is obtained, not
until the SNP pool becomes empty. Thus, the tag set size can
be controlled without varying the r2 threshold. We use a fixed r2

threshold of 0.8 in our experiments. For genome-wide design,
we use the same assumption of maximum distance of LD and the
adjusted greedy algorithm as for pairwise r2 tagging.

Empirical simulation for power

We empirically measure the final estimate of the power of a tag
set after design. Our empirical simulation is based on the stan-
dard simulation procedure described by de Bakker et al. (2005).

This procedure resembles the “bootstrapping” statistical proce-
dure which samples from the data set with replacement to esti-
mate the sampling distribution of an estimator (Wasserman 2004;
Efron 1979). The major difference is that a typical bootstrapping
procedure draws the same number of samples as the data set,
while the de Bakker et al. (2005) simulation amplifies the num-
ber of samples based on a small reference data set, which is the
HapMap. This procedure assumes that although the currently
available reference data set is small, the correlation structure be-
tween SNPs will be mostly conserved independent of the size
of the data set. Since this procedure does not require the con-
servative assumptions used in the analytical approximation, it is
a standard method for measuring power (de Bakker et al. 2005;
Marchini et al. 2007).

The procedure consists of creating null panels and alternate
panels. Random chromosomes are drawn from the reference
data set to create many case/control panels without any causal
association (null panels). For each null panel, the best χ2 statistic
among all tag SNPs is obtained. Given a region-wide significance
level α, the maximum χ2 value exceeded in α of null panels is
chosen as the threshold to declare a positive result. Next, based
on the assumption of a causal SNP which defines the expected
allele frequencies in cases and controls, random chromosomes are
drawn from the reference data set to create many case/control
panels (alternate panel). For each alternate panel, a positive result
is recorded if the best χ2 statistic among all tag SNPs exceeds the
χ2 threshold obtained in the null panels. The power is estimated
as the proportion of the positive findings among alternate panels.
Previous studies (de Bakker et al. 2005; Pe’er et al. 2006; Zaitlen
et al. 2007) assume a uniform distribution for the causal SNP,
and construct an even number of panels per every putative causal
SNP.

This standard simulation is not based on the best-tag or Bon-
ferroni assumption, but we can incorporate these assumptions
into the simulation for the purpose of comparison (Figure 8 and
Supporting Figure S8). The Bonferroni assumption is incorpo-
rated by using the Bonferroni correction instead of null panels
to assess the per-marker threshold. The best-tag assumption is
incorporated by declaring a positive result in an alternate panel
only when the causal SNP’s most correlated tag shows signifi-
cance, regardless of other tags.

The computation cost of empirical simulation is a major bot-
tleneck of optimal design of association studies. We improved the
efficiency of empirical simulations by taking advantage of having
small reference samples. Instead of drawing each simulated case
and control from the reference samples, we count how many
times each chromosome in reference samples are drawn in cases
and controls. Since the number of reference samples are typically
much smaller than the number of individuals in the simulation,
such an implementation improves the efficiency of simulation
studies by orders of magnitude compared to the straightforward
implementation. With r simulation panels, N individuals and t
tags, the computational complexity is reduced from O(rNt) to
O(r(N+t)) assuming the number of reference panels is a constant
smaller than N .

To the best of our knowledge, no one has applied this standard
simulation to the whole genome. We introduce two ideas to
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efficiently scale it to the whole genome. First, we observe that
the SNPs very far away from the causal SNP have the same
distribution as null panels. Thus, positive results found on those
SNPs are likely to be false positives. We use this insight to set a
maximum distance L between a casual SNP and a tag SNP, to
avoid having to generate alternate panels consisting of an entire
chromosome. We conservatively choose L = 10 Mb not to miss
any long range correlation. This idea reduces the computational
load of alternate panel construction by more than 5-fold.

Second, we introduce a sampling procedure. The standard
strategy of creating an even number (k) of panels per every pu-
tative causal SNP (even-k strategy) is impractical for the whole
genome even when k = 1. Instead, we sample the causal SNP
from the uniform distribution, and create a number of panels
per each sampled causal SNP (sample-k strategy). We analyze the
variance of the power estimate in this strategy to determine
the number of sampling iterations. Using the sampling strategy,
the variance of the average power estimate is approximately given
as 3p (1 − p )/m where p is the true average power and m is the
number of samplings (See Supporting Information). Thus, the
number of samplings can be estimated given a desired accu-
racy. The idea of sampling reduces the computational load by
more than 20-fold compared to a naive even-k strategy which
constructs one panel per causal SNP.

These two ideas for efficient genome-wide simulation increase
the efficiency of alternate panel construction but do not help the
null panel construction where a causal SNP is not defined. We
can reduce the computational load in the null panel construction
by adjusting the number of individuals to an appropriate level,
based on the fact that the adjusted χ2 threshold is independent
of the number of individuals when the number of individuals is
large (Conneely & Boehnke 2007). This fact allows us to con-
struct null panels once and use them for many different numbers
of individuals. We construct null panels of 1,000 cases and 1,000
controls when we measure the power of designs in our experi-
ments.

Genotype data

We downloaded the HapMap genotype data (build 36) for the
whole genome and ENCODE regions from the HapMap project
web site (HapMap 2005). The project collected SNP informa-
tion from 30 trios in each of the African (YRI) and the European
(CEU) populations, and 45 unrelated individuals in each of the
Japanese (JPT) and Chinese (CHB) populations. The data in-
cludes 2,605,595, 2,471,887, and 2,926,893 polymorphic SNPs
in each of the CEU, JPT+CHB, and YRI populations. We
phased the data into haplotypes using the HAP software (Zaitlen
et al. 2005).

Results

Performance

We evaluate the performance of our power-optimized
method by comparing it to those of widely used r2-based

methods. Pairwise r2 tagging (Carlson et al. 2004; de Bakker
et al. 2005; HapMap 2005) is the most common r2-based
method. It greedily selects tags until every SNP is covered
with a given minimum r2 threshold. Best-N r2 is another
r2-based method (de Bakker et al. 2005). It greedily selects
a fixed number of tags to cover as many SNPs as possible
with a given minimum r2 threshold. We use the HapMap
ENCODE regions which consist of ten 500kb regions that
have been widely used to evaluate design methodologies due
to their complete ascertainment of common SNPs (MAF ≥
5%).

In this experiment and throughout this paper, we assume
a multiplicative disease model with fixed relative risk of 1.2
and disease prevalence of 0.01. We assume a uniform distri-
bution of causal SNPs over all common SNPs defined by a
5% MAF threshold, and use a 5% region-wide significance
level (α) for statistical tests. We note that other studies often
assume a varying relative risk depending on MAF. For exam-
ple, Marchini et al. (2007) and de Bakker et al. (2005) set a
relative risk so that a single SNP can have a 95% of nominal
power at a nominal significance level of 1% (ignoring multiple
hypothesis testing). This corresponds to a relative risk of 1.21
for a SNP of 50% MAF and a relative risk of 1.48 for a SNP
of 5% MAF when 4,000 cases and 4,000 controls are used. In
this paper, we assume a uniform relative risk of 1.2, to evalu-
ate the worst case power over all disease models with relative
risk of 1.2 or above. This model is often more realistic than
the varying relative risk model for the case that the relative
risk is estimated from previous studies. These assumptions are
used in both analytically designing tag sets and empirically
measuring their power.

First, we consider the ENr232 ENCODE region contain-
ing 533(CEU), 596(CHB), 573(JPT), and 740(YRI) com-
mon SNPs. The full set of common SNPs achieves the maxi-
mum possible power. We will call this the full-SNP-set power.
For each population, assuming 4,000 cases and 4,000 controls
(= 8,000/8,000 chromosomes), we use our power-optimized
method to construct 100 different tag sets of increasing size.
The number of tags in each tag set is increased by 1% of total
common SNPs.

For comparison, we construct another 100 tag sets of sim-
ilar size using pairwise r2 tagging. Since we can only vary the
r2 threshold in pairwise r2 tagging, we use binary-search over
the r2 threshold with a precision of 0.001, to find a tag set
having the desired size as closely as possible. Then we con-
struct another 100 tag sets using best-N r2. We use a widely
used threshold of r 2 = 0.8 for best-N r2. We will use this
threshold for every experiment using best-N r2.

For each tag set, we use the standard empirical simula-
tion for estimating power (de Bakker et al. 2005). We create
100,000 null panels for multiple hypothesis correction and
100,000 alternate panels for estimating power, which gives
a 95% confidence interval for a <0.6% error in power. We
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Figure 1 Power comparison between our power-optimized tag
SNP selection method and a widely used r2-based methods,
pairwise r2 tagging and best-N r2, in the ENr232 ENCODE
region of the CEU population. We use a 5% region-wide
significance level, a 5% MAF threshold for causal SNPs, and
assume relative risk of 1.2, disease prevalence of 0.01, and 4,000
cases and 4,000 controls. We use the r2 threshold of 0.8 for
best-N r2. The x-axis ranges up to the number of tags obtained
by best-N r2 to cover every SNP with r 2 = 0.8. The purple
horizontal dashed line indicates the full-SNP-set power
achievable by genotyping the full set of SNPs.

will use the same number of panels whenever we measure the
power of a tag set through the paper.

Figure 1 shows the results of the CEU population. The re-
sults of the other populations are shown in Supporting Figure
S3. The power-optimized method reaches the full-SNP-set
power (dashed horizontal line) faster than both r2-based meth-
ods. The range of the number of tag SNPs (x-axis) is shown
from zero up to the required number of tag SNPs for best-N
r2 to cover every SNP. Thus, at the end of the graph, pairwise
r2 tagging and best-N r2 become an equivalent procedure,
where the threshold of pairwise r2 tagging happens to be 0.8,
and best-N r2 happens to cover every SNP with r 2 = 0.8.
To achieve 95% of full-SNP-set power, our power-optimized
method requires 37, 71, 57, and 207 SNPs while pairwise r2

tagging requires 85, 124, 120, and 259 SNPs and best-N r2

requires 37, 89, 80, and 310 SNPs in the CEU, CHB, JPT, and
YRI populations respectively. Pairwise r2 tagging shows low
power with a small number of tags since the r2 has to be very
low to cover every SNP. It has reported that overly lowering
r2 threshold of pairwise r2 tagging may result in a perfor-
mance not better than randomly selected tags (de Bakker et
al. 2005). Best-N r2 performs well with a small number of
tags, although not better than our power-optimized method,
and often shows a worse performance than pairwise r2 tagging
with a large number of tags, as shown in Figure 1.

Next, we consider all ten ENCODE regions and ob-
tain similar results (Supporting Figure S3). We report the

fraction of SNPs required to achieve 95% of full-SNP-set
power in each region (Supporting Figure S4). The power-
optimized method reduces the required number of tag SNPs
by 60.0% compared to pairwise r2 tagging and 20.9% com-
pared to best-N r2 on average over all populations and
regions.

r2 and power distribution

We examine the underlying reasons why our power-
optimized method achieves equivalent power using fewer tag
SNPs than the r2-based methods. From the previous exper-
iment in the ENr232 ENCODE region of the CEU pop-
ulation, we select three tag sets designed by each of power-
optimized method, pairwise r2 tagging, and best-N r2. For
each method, we select the smallest tag set which achieves
the same 99% of the full-SNP-set power. These are 85 tag
SNPs designed by power-optimized method, 123 tag SNPs
designed by pairwise r2 tagging, and 138 tag SNPs designed
by best-N r2. They have almost the same power of 86.2%,
86.3%, and 86.4% respectively. Pairwise r2 tagging is designed
with r 2 = 0.703.

In order to analyze the performance of each tag set, we
measure the tag set’s maximum r2 to each putative causal
SNP and the tag set’s power to detect each putative causal
SNP (per-causal-SNP power). We group the causal SNPs
into three groups based on their MAF: infrequent (5-10%),
semi-frequent (10-25%), frequent (25-50%), which contain
74, 150, 299 SNPs respectively. We plot the r2 and per-causal-
SNP power distribution in Figure 2. In the infrequent group,
the r2 distribution of our power-optimized method is not
very concentrated on the high level compared to the r2-
based methods. In this group, the average r2 of our power-
optimized method is 0.75 while those of pairwise r2 tagging
and best-N r2 are very high at 0.98 and 0.99 respectively.
However, compared to the r2 difference, the average power
of our method is 36% which is not much lower than the 40%
of the two r2-based methods. In the semi-frequent group,
the average r2 of power-optimized method is 0.94 which is
slightly lower than 0.95 of the two r2-based methods, but the
average power is 88% which is slightly higher than 87% of
the r2-based methods. In the frequent group, the average r2 of
our method, pairwise r2 tagging, and best-N r2 are 0.93, 0.91,
and 0.94, and the average power estimates are 98%, 97%, and
98% respectively.

The reason that in the infrequent or semi-frequent group
our method achieves comparable or higher power with lower
average r2 is because our method takes into account MAF
in selecting tag SNPs. If a causal SNP has a high MAF, the
SNP is worth covering with high r2 because the power will
significantly increase. If a causal SNP has a low MAF, the
SNP might not be worth covering with high r2 because the
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Figure 2 Maximum r2 and per-causal-SNP power distribution over all 533 causal SNPs in the ENr232 ENCODE region of the
CEU population. We divide the causal SNPs into three groups by their MAF: infrequent (5%–10%), semi-frequent (10%–25%),
frequent (25%–50%), which contain 74, 150, 299 SNPs respectively. Each bar of different colors represents the power-optimized
tagging method (85 tag SNPs), pairwise r2 tagging method (123 tag SNPs), and best-N r2 tagging method (138 tag SNPs). The
three tag sets achieve the same 99% of full-SNP-set power.

power will still be low. In that case, we can allow the SNP to be
covered with low r2 without much power loss. Within a MAF
group, our method strategically covers the SNPs of relatively
high MAF with high r2, thus having high power with low
average r2. This strategy is applied across MAF groups as well.
Often, it can be possible to gain more power by spending
a tag SNP to cover the SNPs in the frequent group than
the SNPs in the infrequent group. Although our method
has lower power than r2-based methods in the infrequent
group, our method successfully covers SNPs in the semi-
frequent and frequent groups with high r2. Consequently, our
method achieves the same average power with much fewer
tag SNPs than pairwise r2 tagging and best-N r2, reducing
the tag set size by 31% and 38% compared to those methods
respectively.

We note that covering SNPs of high MAF with high r2 is
not the only behaviour of our method. If the per-causal-SNP
power is saturated to 100%, then it can be possible to cover
the causal SNP with moderate r2 and still have 100% or very
high power. In that case, our method strategically loosens the
r2 for that SNP so that it can spend the tag SNP for other
SNPs which would increase power with high r2. All these
decisions are automatically made based on the average power
increase.

Robustness

Our power-optimized tag SNP sets depend on the choice of
study parameters such as relative risk and number of individ-
uals. One concern with this approach is the potential for a
performance drop due to using incorrect parameters. If the
true relative risk is higher than expected, then some tag SNPs
are wasted on common SNPs that already have very high
power. If the true relative risk is lower than expected, then
some tag SNPs are wasted on rare SNPs that are too difficult
to capture even with higher r2. We evaluate this performance
drop with two experiments, and show that our method still
performs better than or similarly to the r2-based methods in
most cases. Both experiments are performed in the ENr232
ENCODE region of the CEU population.

In the first experiment, we design three different tag sets
assuming relative risks of 1.1, 1.2, 1.4, and measure their
power based on the assumption of a relative risk of 1.2. For
each relative risk, we select 100 tag SNPs assuming 4,000
cases and 4,000 controls. For comparison, we design tag sets
of the same size using pairwise r2 tagging and best-N r2. As
shown in Figure 1, the two r2-based methods have similar
power at this number of tag SNPs. Figure 3 shows the results.
As expected, the tag set based on a correct relative risk (1.2)
works better than the tag sets based on incorrect relative risks
(1.1 and 1.4) at the number of individuals assumed in the
design (4,000 cases and 4,000 controls). As the number of
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Figure 3 Robustness of our power-optimized method to
errors of parameter selection. We use our power-optimized
method to design three different tag sets of size 100
assuming different relative risks of 1.1, 1.2, 1.4 in the
ENr232 ENCODE region of the CEU population. We
also design two more tag sets of the same size using
pairwise r2 tagging and best-N r2. We then measure the
power of each tag set based on the assumption of a true
relative risk of 1.2. We use a 5% region-wide significance
level, a 5% MAF threshold for causal SNPs, and assume a
disease prevalence of 0.01 and 4,000 cases and 4,000
controls when designing the tag sets.

individuals decreases, the tag set based on a lower relative
risk (1.1) shows the highest power amongst the tag sets. This
is because lowering the number of individuals has the same
effect on the test statistic as lowering the relative risk. For the
same reason, as the number of individuals increases, the tag
set based on a higher relative risk (1.4) obtains the highest
power amongst the tag sets.

At the number of individuals assumed in the design, even
though r2 is incorrectly assumed in the design, our method
works similarly to the r2-based methods. If r2 is correctly
assumed in the design (line with diamond), even though the
number of individuals varies, our method works similarly to
the r2-based methods. Our method works comparably to the
r2-based methods for a wide range of parameters, except for
the extreme case that the bias of two parameters affect the
statistic in the same direction, for example a smaller relative
risk (1.1) is assumed in the design and a large number of
individuals (8,000 cases and 8,000 controls) are used.

In the second experiment, we use the tag set based on a
relative risk of 1.2 and the tag sets designed by r2-based meth-
ods from the previous experiment. We measure the power of
the tag sets assuming 20 different relative risks from 1.0 to

1.5, and 160 different study sizes from 0 cases and 0 controls
to 8,000 cases and 8,000 controls. Figure 4 shows the power
difference between our method and r2-based methods over
the two-dimensional parameter space (total 3,200 points). As
expected, an optimal power gain is obtained when the pa-
rameters that the design is based on (γ = 1.2 and 4,000 cases
and 4,000 controls) or equivalent designs are applied (diagonal
red curve). In this experiment, our method performs better
than pairwise r2 tagging when the actual effect size is smaller
than assumed (lower left plane), and better than best-N r2

when the actual effect size is larger than assumed (upper right
plane). For both comparisons, our design works better than
or similarly to the r2-based methods within a wide range of
parameters.

Varying study parameters such as relative risk, sample size,
disease prevalence, and significance level can all be interpreted
as varying the effect size, which can be thought of intuitively as
the difference in the test statistic between the null and alterna-
tive hypothesis. Thus, the results of our experiments on vary-
ing the two major factors affecting the effect size (relative risk
and sample size) can be straightforwardly generalized to the
other parameters as well. Since the performance drop by us-
ing incorrect parameters exists, a study-independent method
such as r2-based methods can be an appropriate design choice
if the study parameters are completely unknown. But even
when only the expected ranges of parameters are known,
which we believe to be the case in current association studies,
our method can provides robust performance.

Custom follow-up study design

After finding a putative association, a follow-up study veri-
fies the association by replicating the result with independent
samples. In many cases in follow-up studies, the samples are
already in hand and have already been processed with a com-
mercial product. A practical way to increase power is adding
more tag SNPs to a commercial product by designing a cus-
tom SNP set.

We simulate a custom follow-up study by adding tag SNPs
to the Affymetrix 500k chip in the ten ENCODE regions.
For each region, assuming 4,000 cases and 4,000 controls, we
incrementally add 5 tag SNPs to the tag set, and construct
100 different tag sets of increasing size. For comparison, we
construct another 100 tag sets of similar size using pairwise r2

tagging and best-N r2.
Figure 5 shows the power increase as we add more SNPs to

the Affymetrix 500k chip in the ENr232 region of the YRI
population. Adding tag SNPs in this region increases substan-
tial power because the large number of SNPs (1,075) are not
relatively well captured by the tag SNPs in the Affymetrix
500k chip (52 tag SNPs). Among the three methods, our
method increases the most power. The results of the other
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Figure 4 Distribution of power gain of our
power-optimized method compared to r2-based
methods over a parameter space. We design a tag set
of size 100 assuming relative risk of 1.2 and 4,000
cases and 4,000 controls in the ENr232 ENCODE
region of the CEU population. We also design tag sets
of the same size using pairwise r2 tagging and best-N
r2. We measure the three tag sets assuming many
different parameters, varying the relative risk from 1.0
to 1.5 and the sample size from 0 case and 0 control to
8,000 cases and 8,000 controls. Then we plot the
power difference (a) between our power-optimized
method and pairwise r2 tagging and (b) between our
power-optimized method and best-N r2, over the
space of these various parameters. We use a 5%
region-wide significance level, a 5% MAF threshold
for causal SNPs, and assume disease prevalence of
0.01.
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Figure 5 Power comparison between our power-optimized
method and r2-based methods with respect to the number of
tag SNPs added to a commercial chip. To simulate a custom
follow-up study, we use each of our power-optimized method,
pairwise r2 tagging, and best-N r2, to add tag SNPs to the tag
set defined by the Affymetrix 500k chip in the ENr232
ENCODE region of the YRI population. We use a 5%
region-wide significance level, a 5% MAF threshold for causal
SNPs, and assume relative risk of 1.2, disease prevalence of 0.01,
and 4,000 cases and 4,000 controls.

populations and regions are similar and shown in Supporting
Figure S5. In the ENr232 region, by adding 1 SNP per 25kb
(20 SNPs), our method improves power 6%, 10%, 10%, and
9% in the CEU, CHB, JPT, and YRI populations respectively,
while pairwise r2 tagging improves power 2%, 4%, 4%, and
3% and best-N r2 tagging improves power 5%, 8%, 5%, and
6% in the same populations.

The power gain by adding more tag SNPs varies between
the regions depending on the coverage of the chip. For exam-
ple, by adding 50 SNPs in the same YRI population, we get
a 6% and 7% power increase in the ENm013 and ENm014
regions, while we get a 17% and 15% power increase in the
ENm010 and ENr232 regions. Therefore, it is important to
examine the coverage of the commercial chip for the region
of interest, to see if we will get sufficient power by adding
more SNPs. Since our design framework provides efficient
empirical simulation for measuring power as well as an effi-
cient tag SNP selection method, we can accurately evaluate
power before and after adding tag SNPs, and decide which
SNPs to add. Our method can provide optimal performance
in custom follow-up study designs because the value of the
relative risk can be estimated from the result of the original
study.

High-throughput genotyping product design

Since our power-optimized tagging method can scale to the
whole genome, we can apply the method to design a whole
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Figure 6 Genome-wide power comparison
between whole genome tag sets designed by
our power-optimized method, pairwise r2

tagging, and best-N r2 in the CEU population.
We measure the power assuming relative risk of
1.2, disease prevalence of 0.01, a 5%
genome-wide significance level, and a 5% MAF
threshold for causal SNPs. We use 8,000 cases
and 8,000 controls when designing the tag sets.

genome high throughput genotyping product. For each of the
HapMap populations, we design 500 k, 300 k, 100 k whole
genome tag sets using our power-optimized method assuming
8,000 cases and 8,000 controls. We also design the same size
of tag sets using pairwise r2 tagging and best-N r2. Figure 6
(CEU) and Supporting Figure S6 (all populations) show that
our tag sets outperform the r2-based tag sets.

We also compare our tag sets to commercial products.
Figure 7 (CEU) and Supporting Figure S7 (all populations)
show that our tag sets work better than the commercial prod-
ucts of the same size. Our 100 k tag set performs similarly to
the Affymetrix 500 k chip in the CEU and JPT+CHB pop-
ulations, but performs worse in the YRI population, because
100 k tag set is not large enough to capture the variations in
the YRI population. Our 100 k tag set also performs similarly
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Figure 7 Genome-wide power comparison
between whole genome tag sets designed by
our power-optimized method and the
commercial products in the CEU population.
We measure the power assuming relative risk of
1.2, disease prevalence of 0.01, a 5%
genome-wide significance level, and a 5% MAF
threshold for causal SNPs. We use 8,000 cases
and 8,000 controls when designing the tag sets.

to the Illumina 300 k chip, except in the CEU population for
which the Illumina 300 k chip seems to be optimized. Our
300 k tag set performs better than or comparable to any com-
mercial product evaluated including the Illumina 550 k chip,
and our 500 k tag set outperforms all products in all pop-
ulations. For the same 80% genome-wide power level, our
500 k tag set requires 26%, 29%, and 33% fewer individuals
than the Affymetrix 500 k chip and 7%, 11%, and 23% fewer
individuals than the Illumina 550 k chip in each of the CEU,
JPT+CHB, YRI populations.

Efficient power estimation

The analytical approximation for power that we use in design
is efficient enough to estimate the whole genome power of a
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Figure 8 Comparison between four different empirical
estimates of power and the analytical approximation in the
ENr232 ENCODE region of the CEU population. Given a tag
set consisting of the common SNPs in the Illumina 550 k chip,
we perform empirical simulations with all four combinations of
the best-tag and Bonferroni assumptions, and compare to the
analytical approximation. Details of how we incorporate these
assumptions into our simulations are described in the Methods.
We use a 5% region-wide significance level, a 5% MAF
threshold for causal SNPs, and assume relative risk of 1.2 and
disease prevalence of 0.01.

500 k tag set in 3 minutes. This efficiency allows us to design
on one ENCODE region in 3 seconds and on the whole
genome in 1.5 CPU hours using the adjusted greedy algo-
rithm (See Methods). An underlying reason why we use an
analytical approximation instead of a more accurate empirical
simulation, other than the computational feasibility, is that we
only need a rough estimate of the power to select tag SNPs.
The analytical approximation always underestimates power yet
in the vast majority of cases preserves the relative ordering of
candidate tag sets with respect to their power.

However, an analytical approximation is overly inaccurate
for the final estimate of the power of a design, because it
applies two assumptions which ignore the correlation struc-
ture between SNPs. The Bonferroni assumption ignores the
correlation structure between tags by assuming they are in-
dependent for multiple-hypothesis correction. The best-tag
assumption ignores the correlation structure between a causal
SNP and multiple tags by assuming a causal SNP is detected
only by its best tags, disregarding the possibility that other
tags can also detect the causal SNP. We measure the effects
of these assumptions on power. Given a fixed tag set defined
as the common SNPs in the Illumina 550 k chip, we per-
form empirical simulations for measuring power with all four
combinations of the two assumptions (Bonferroni and best-
tag) and compare the results to the analytical approximation.
Details of how we incorporate these assumptions into the
simulations are described in Methods.

Figure 8 (ENr232, CEU) and Supporting Figure S8 (other
regions) show that we can underestimate the power by up
to 15% using both assumptions. The effect of the best-tag
assumption is shown to be more critical than the effect of
the Bonferroni assumption in our results. The difference be-
tween the effects of the two assumptions is most significant
in the YRI population. The small effect of the Bonferroni
assumption implies that the tag SNPs are nearly independent
due to the short LD in the YRI population. The signifi-
cant effect of the best-tag assumption implies that there are
many ungenotyped SNPs which are correlated to multiple
tag SNPs with moderate r2. (If a SNP is directly genotyped
or highly correlated to a tag SNP, then the effect of the best-
tag assumption is small.) From the same reasoning, we can
expect that as we collect more and more tag SNPs, the effect
of the Bonferroni assumption will increase and the effect of
the best-tag assumption will decrease (but not disappear en-
tirely). The empirical simulation with both assumptions (red
circles) is almost equivalent to the analytical approximation
(black small diamonds) showing that the significant difference
in power between the empirical simulation and the analytical
approximation is directly due to the assumptions and not the
stochastic nature of simulation.

After design, we run empirical simulations for measuring
power to avoid the inaccuracy of the analytical approximation.
This resampling approach using a reference data set is origi-
nally described by de Bakker et al. (2005). We improve the
efficiency of this procedure and scale it to the whole genome
using a random sampling procedure. If we directly apply the
standard simulation to the whole genome to measure the
power of the Affymetrix 500 k chip for 4,000 cases and 4,000
controls in the CEU population, it takes 4,000 CPU hours
to construct null and alternate panels. Using our improved
simulation procedure, it takes less than 10 CPU hours for the
same construction.

Discussion

We introduced a design framework which provides an effi-
cient tag SNP selection method based on power and a quick
empirical simulation procedure that can accurately measure
the power of a tag set. The tag SNP selection and the empiri-
cal simulation can efficiently scale to the whole genome. Our
framework efficiently finds the “key” tag SNPs contributing
to power thus providing superior performance to the widely
used r2-based methods in both custom follow-up study design
and whole genome tag set design.

We assumed a fixed relative risk of 1.2 for all causal SNPs,
since the fixed relative risk assumption is often more realis-
tic than the varying relative risk when we can approximate
the relative risk before the study. Our method can maximize
power under the varying relative risk assumption as well. We
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assumed a multiplicative disease model, but the same tag SNP
selection technique based on other disease inheritance models
can be straightforwardly developed. Furthermore, our method
can be optimized over multiple parameters. For example, if
we want to design a study optimized for both relative risks of
1.2 and 1.4, we can select tags to maximize the average power
over these two disease models. This approach will expand the
robustness of our method over a wider range of parameters,
at the expense of the peak performance at the single disease
model and parameters used in the design. If the study param-
eters are completely unknown, a study-independent measure
such as r2 can be a suitable choice. However, since many
current association studies have at least an expectation of the
ranges of parameters, in that case, our method can provide
superior performance over the r2-based methods. A good ex-
ample is a custom follow-up study, where the relative risk is
estimated from the original study.

The results show that our whole genome tag set works
significantly better than the commercial products. This com-
parison is unfair because we designed a tag set for each popula-
tion while the commercial products are designed for multiple
populations. Howie et al. (2006) propose an r2-based tag SNP
selection method for multiple populations. Our method can
also select tag SNPs for multiple populations, by maximiz-
ing the sum of the power over multiple populations (

∑
pi

where pi is the power for population i). However, this might
bias against populations that have low power such as the YRI
population. We can avoid this problem by heuristically adding
second-order terms to penalize the bias toward a specific pop-
ulation (

∑
pi + ∑

pi p j ). We found that tag sets designed for
multiple populations in this way have similar power in each of
the populations to a tag set designed for a single population
(data not shown).

The computational core of our tagging method is an effi-
cient procedure for selecting tag SNPs given a fixed number
of individuals and a fixed number of tags. Since this core pro-
cedure is very efficient we can answer many design questions
by repeatedly searching with this core procedure and by using
our efficient empirical simulation for accurately measuring
power. For example, our method can answer questions such
as “How many additional tags do we need to achieve 80%
power given a sample size in addition to the Affymetrix 500 k
chip for a candidate region?”, “If we use the individual geno-
typing for a small region of interest, what is the optimal cost
point between the number of individuals and number of tags
given a desired power of 80%?” (Pardi et al. 2005) or “How
many individuals should we collect for 70% genome-wide
power when using the Illumina 550 k chip?”.

Our experiments for custom follow-up study design are
performed in the context of replication analysis of a genomic
region of interest without prior knowledge. In addition, our
method can leverage the results from previous studies by ei-
ther explicitly including prioritized tag SNPs or by applying

a weighted prior of causal SNPs obtained from previous stud-
ies (Yu et al. 2007; Eskin 2008). Our method can also be
extended to maximize the power of joint analysis combining
the original and the replicated data sets (Skol et al. 2006).
Furthermore, our method can be easily modified to maxi-
mize the minimum power over all causal SNPs instead of the
average power.

A recent methodological development in statistical genetics
allows us to estimate the probability distribution of ungeno-
typed SNPs given a tag set and directly compute the test
statistic from the distribution. This is called imputation or
multi-marker analysis (Zaitlen et al. 2007; Marchini et al.
2007). Since the test statistic is based on estimated infor-
mation which also has an uncertainty (variance), the multi-
ple hypothesis correction is more subtle. To the best of our
knowledge, there is no established tag SNP selection method
for this analysis. Our method can be applied to this multi-
marker analysis in two different ways. First, we can select tag
SNPs to maximize the imputed power at each step. The com-
putational cost of this procedure will be very high. Second,
we can design a tag set assuming a single marker analysis, and
then apply multi-marker analysis to the resulting tag set. We
assume that this latter approach will work reasonably well,
since we expect that if a tag set has a good power in a single
marker analysis, in most cases it will also have a good power
in a multi-marker analysis. We expect that tag SNP selection
for imputation analysis will be an active area of research in the
future.

In summary, we present an efficient and accurate power-
optimized design framework which also provides flexibility
and robustness. The utility of our method ranges from custom
follow-up study designs to whole genome high-throughput
product design. Our method is publicly available for research
purposes via web server at http://design.cs.ucla.edu.

Acknowledgements

B.H. and H.M.K are supported by the Samsung Scholar-
ship. N.Z. is supported by the Microsoft Graduate Research
Fellowship. B.H., H.M.K., N.Z., and E.E. are supported
by the National Science Foundation Grant No. 0513612
and 0731455, and National Institutes of Health Grant No.
1K25HL080079. Part of this investigation was supported
using the computing facility made possible by the Re-
search Facilities Improvement Program Grant Number C06
RR017588 awarded to the Whitaker Biomedical Engineer-
ing Institute, and the Biomedical Technology Resource Cen-
ters Program Grant Number P41 RR08605 awarded to the
National Biomedical Computation Resource, UCSD, from
the National Center for Research Resources, National Insti-
tutes of Health. Additional computational resources were pro-
vided by the California Institute of Telecommunications and

C© 2008 The Authors
Journal compilation C© 2008 Blackwell Publishing Ltd/University College London

Annals of Human Genetics (2008) 72,834–847 845



B. Han et al.

Information Technology (Calit2). This research was also sup-
ported in part by the UCSD FWGrid Project, NSF Research
Infrastructure Grant Number EIA-0303622.

Web Resources

The URL for the method presented herein is as follows:
http://design.cs.ucla.edu.

References
Balding, D. J. (2006) A tutorial on statistical methods for population

association studies. Nat Rev Genet 7(10), 781–791.
Byng, M. C., Whittaker, J. C., Cuthbert, A. P., Mathew, C. G. &

Lewis, C. M. (2003) SNP subset selection for genetic association
studies. Ann Hum Genet 67(Pt 6), 543–556.

Carlson, C. S., Eberle, M. A., Rieder, M. J., Yi, Q., Kruglyak, L.
& Nickerson, D. A. (2004) Selecting a maximally informative set
of single-nucleotide polymorphisms for association analyses using
linkage disequilibrium. Am J Hum Genet 74(1), 106–120.

Conneely, K. & Boehnke, M. (2007) So many correlated tests, so
little time! rapid adjustment of p values for multiple correlated
tests. Am J Hum Genet 81(6).

Cousin, E., Deleuze, J.-F. & Genin, E. (2006) Selection of SNP sub-
sets for association studies in candidate genes: comparison of the
power of different strategies to detect single disease susceptibility
locus effects. BMC Genet 7, 20.

Cousin, E., Genin, E., Mace, S., Ricard, S., Chansac, C., del Zompo,
M. & Deleuze, J. F. (2003) Association studies in candidate genes:
strategies to select SNPs to be tested. Hum Hered 56(4), 151–159.

de Bakker, P. I. W., Yelensky, R., Pe’er, I., Gabriel, S. B., Daly, M. J.
& Altshuler, D. (2005) Efficiency and power in genetic association
studies. Nat Genet 37(11), 1217–1223.

Devlin, B. & Risch, N. (1995) A comparison of linkage disequilib-
rium measures for fine-scale mapping. Genomics 29(2), 311–322.

Efron, B. (1979) Bootstrap methods: Another look at the jackknife.
Ann Stat 7(1), 1–26.

Eskin, E. (2008) Increasing power in association studies by using
linkage disequilibrium structure and molecular function as prior
information. Genome Res 18(4), 653–660.

Halperin, E., Kimmel, G. & Shamir, R. (2005) Tag SNP selection
in genotype data for maximizing snp prediction accuracy. Bioin-
formatics 21 (Suppl 1), i195–203.

HapMap (2003) The International HapMap Project. Nature
426(6968), 789–796.

HapMap (2005) A haplotype map of the human genome. Nature
437(7063), 1299–1320.

Hinds, D. A., Stuve, L. L., Nilsen, G. B., Halperin, E., Eskin, E.,
Ballinger, D. G., Frazer, K. A. & Cox, D. R. (2005) Whole-
genome patterns of common DNA variation in three human
populations. Science 307(5712), 1072–1079.

Howie, B. N., Carlson, C. S., Rieder, M. J. & Nickerson, D. A.
(2006) Efficient selection of tagging single-nucleotide polymor-
phisms in multiple populations. Hum Genet 120(1), 58–68.

Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J.,
Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A., Dudbridge,
F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., Stevens,
H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C.,
Clayton, D. G. & Todd, J. A. (2001) Haplotype tagging for the
identification of common disease genes. Nat Genet 29(2), 233–
237.

Jorgenson, E. & Witte, J. S. (2006) Coverage and power in
genomewide association studies. Am J Hum Genet 78(5), 884–
888.

Klein, R. J. (2007) Power analysis for genome-wide association stud-
ies. BMC Genet 8, 58.

Kruglyak, L. (2005) Power tools for human genetics. Nat Genet
37(12), 1299–1300.

Lin, Z. & Altman, R. B. (2004) Finding haplotype tagging SNPs
by use of principal components analysis. Am J Hum Genet 75(5),
850–861.

Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P.
(2007) A new multipoint method for genome-wide association
studies by imputation of genotypes. Nat Genet 39(7), 906–913.

Pardi, F., Lewis, C. M. & Whittaker, J. C. (2005) SNP selection
for association studies: maximizing power across SNP choice and
study size. Ann Hum Genet 69(Pt 6), 733–746.

Pe’er, I., de Bakker, P. I. W., Maller, J., Yelensky, R., Altshuler, D.
& Daly, M. J. (2006) Evaluating and improving power in whole-
genome association studies using fixed marker sets. Nat Genet
38(6), 663–667.

Pritchard, J. K. & Przeworski, M. (2001) Linkage disequilibrium in
humans: models and data. Am J Hum Genet 69(1), 1–14.

Qin, Z. S., Gopalakrishnan, S. & Abecasis, G. R. (2006) An effi-
cient comprehensive search algorithm for tagSNP selection using
linkage disequilibrium criteria. Bioinformatics 22(2), 220–225.

Risch, N. & Merikangas, K. (1996) The future of genetic studies of
complex human diseases. Science 273(5281), 1516–1517.

Saccone, S. F., Rice, J. P. & Saccone, N. L. (2006) Power-based,
phase-informed selection of single nucleotide polymorphisms for
disease association screens. Genet Epidemiol 30(6), 459–470.

Skol, A. D., Scott, L. J., Abecasis, G. R. & Boehnke, M. (2006) Joint
analysis is more efficient than replication-based analysis for two-
stage genome-wide association studies. Nat Genet 38(2), 209–213.

Stram, D. O. (2004) Tag SNP selection for association studies. Genet
Epidemiol 27(4), 365–374.

Stram, D. O. (2005) Software for tag single nucleotide polymorphism
selection. Hum Genomics 2(2), 144–151.

Wasserman, L. (2004) All of Statistics: a concise course in statistical infer-
ence, Springer.

Woodruff, R. S. (1952) Confidence intervals for medians and other
position measures. J Amer Statistical Assoc 47(260), 635–646.

Yu, K., Chatterjee, N., Wheeler, W., Li, Q., Wang, S., Rothman, N.
& Wacholder, S. (2007) Flexible design for following up positive
findings. Am J Hum Genet 81(3), 540–551.

Zaitlen, N. A., Kang, H. M., Feolo, M. L., Sherry, S. T., Halperin,
E. & Eskin, E. (2005) Inference and analysis of haplotypes from
combined genotyping studies deposited in dbSNP. Genome Res
15(11), 1594–1600.

Zaitlen, N., Kang, H. M., Eskin, E. & Halperin, E. (2007) Leverag-
ing the HapMap correlation structure in association studies. Am J
Hum Genet 80(4), 683–691.

Supporting Information

The following material is available for this article online:

Variance of power estimate of sampling strategy in
empirical simulation

Figure S1 The stepwise greedy algorithm of our power-
optimized tag SNP selection method. S, I , E, C, and T
denote the sets of every SNP, SNPs manually included into
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the tag set, SNPs manually excluded from the tag set, putative
causal SNPs, and the tag SNPs respectively. The analytical
per-causal-SNP power estimation is described in Methods.

Figure S2 The adjusted greedy algorithm of our power-
optimized tag SNP selection method. Instead of picking a
single SNP at each round, we sort the candidate tags to a list
with respect to their resulting power and pick all “indepen-
dent” SNPs from the top k% of the list. We call two SNPs
independent if the distance between them is greater than W ,
which is twice the length of what we expect as the longest
distance of linkage disequilibrium. S, I , E, C, and T denote
the sets of every SNP, SNPs manually included into the tag
set, SNPs manually excluded from the tag set, putative causal
SNPs, and the tag SNPs respectively. touched[] are the Boolean
values to check if a nearby (non-independent) SNP is selected
as a tag. The analytical per-causal-SNP power estimation is
described in Methods.

Figure S3 Power comparison between our power-optimized
tag SNP selection method and a widely used r2-based meth-
ods, pairwise r2 tagging and best-N r2, in all ten ENCODE
regions of all four HapMap populations. We use a 5% region-
wide significance level, a 5% MAF threshold for causal SNPs,
and assume relative risk of 1.2, disease prevalence of 0.01, and
4,000 cases and 4,000 controls. We use the r2 threshold of
0.8 for best-N r2. The x-axis ranges up to the number of tags
obtained by best-N r2 to cover every SNP with r 2 = 0.8.
The purple horizontal dashed line indicates the full-SNP-set
power achievable by genotyping the full set of SNPs.

Figure S4 Comparison between our power-optimized
method and r2-based methods in terms of the proportion
of SNPs selected as tag SNPs required to achieve 95% of full-
SNP-set power, in each of ten ENCODE regions. We use a
5% region-wide significance level, a 5% MAF threshold for
causal SNPs, and assume relative risk of 1.2, disease prevalence
of 0.01, and 4,000 cases and 4,000 controls.

Figure S5 Power comparison between our power-optimized
method and r2-based methods with respect to the number of
tag SNPs added to a commercial chip. To simulate a cus-
tom follow-up study, we use each of our power-optimized
method, pairwise r2 tagging, and best-N r2, to add tag SNPs
to the tag set defined by the Affymetrix 500 k chip in all ten

ENCODE regions of all four HapMap populations. We use
a 5% region-wide significance level, a 5% MAF threshold for
causal SNPs, and assume relative risk of 1.2, disease prevalence
of 0.01, and 4,000 cases and 4,000 controls.

Figure S6 Genome-wide power comparison between
whole genome tag sets designed by our power-optimized
method, pairwise r2 tagging, and best-N r2. We measure the
power assuming relative risk of 1.2, disease prevalence of 0.01,
a 5% genome-wide significance level, and a 5% MAF thresh-
old for causal SNPs. We use 8,000 cases and 8,000 controls
when designing the tag sets.

Figure S7 Genome-wide power comparison between
whole genome tag sets designed by our power-optimized
method and the commercial products. We measure the power
assuming relative risk of 1.2, disease prevalence of 0.01, a 5%
genome-wide significance level, and a 5% MAF threshold for
causal SNPs. We use 8,000 cases and 8,000 controls when
designing the tag sets.

Figure S8 Comparison between four different empirical es-
timates of power and the analytical approximation in all ten
ENCODE regions of all four HapMap populations. Given
a tag set consisting of the common SNPs in the Illumina
550k chip, we perform empirical simulations with all four
combinations of the best-tag and Bonferroni assumptions,
and compare to the analytical approximation. Details of how
we incorporate these assumptions into our simulations are
described in the Methods. We use a 5% region-wide signifi-
cance level, a 5% MAF threshold for causal SNPs, and assume
relative risk of 1.2 and disease prevalence of 0.01.

This material is available as part of the online article from:
http://www.blackwell-synergy.com/doi/abs/10.1111/
j.1469-1809.2008.00469.x
(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for the
content or functionality of any supporting informations sup-
plied by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the article.
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