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a b s t r a c t

The outlier sensitivity of classical principal component analysis (PCA) has spurred the
development of robust techniques. Existing robust PCA methods like ROBPCA work best
if the non-outlying data have an approximately symmetric distribution. When the original
variables are skewed, too many points tend to be flagged as outlying. A robust PCAmethod
is developed which is also suitable for skewed data. To flag the outliers a new outlier map
is defined. Its performance is illustrated on real data from economics, engineering, and
finance, and confirmed by a simulation study.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis is one of the best known techniques of multivariate statistics. It is a dimension reduction
techniquewhich transforms the data to a smaller set of variableswhile retaining asmuch information as possible. These new
variables, called the principal components (PCs), are uncorrelated and maximize variance (information). Once the PCs are
computed, all further analysis like cluster analysis, discriminant analysis, regression, . . . can be carried out on the transformed
data.

When given a data matrix X with n observations and p variables, the PCs ti are linear combinations of the data ti = Xpi
where

pi = argmax
a

{var(Xa)}

under the constraints

� a �= 1 and a⊥ {p1, . . . , pi−1} .

From the Lagrange multiplier method it follows that the PCs can be computed as the eigenvectors of an estimate of the
covariance matrix.

Classical PCA (CPCA) uses the classical sample covariance matrix for this, but it is well known that this technique is
sensitive to outliers. In order to resist these outliers, various robust alternatives have been proposed (see for example Croux
and Ruiz-Gazen (2005), Higuchi and Eguchi (2004), Hubert et al. (2002), Locantore et al. (1998) and Maronna (2005)). The
robust PCA techniquewewill focus on is called ROBPCA (Hubert et al., 2005) andwill be explained inmore detail in Section 2.

Since covariancematrices are intimately connected to ellipsoids, both CPCA and robust PCAmethods are typically applied
to data that are roughly elliptically symmetric (at least the non-outlying points). This requires the original variables to have
roughly symmetric distributions. If this is not the case one often preprocesses the data by transforming the original variables
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(e.g. using the Box–Cox transform), but these transformed variables may be more difficult to interpret. In such situations it
may be useful to analyze the original data bymeans of a PCA technique that is suitable for asymmetric data. In this paper we
propose a modified ROBPCA algorithm which can cope with skewed data, and we define new criteria to flag the outliers. In
Section 3 the modifications are described, and the performance of the new algorithm is illustrated on real data (Section 4)
and by simulation (Section 5).

2. The ROBPCA method

2.1. Description

The ROBPCA method (Hubert et al., 2005) combines ideas of both projection pursuit (PP) and robust covariance
estimation. ROBPCA is very well suited for the analysis of high-dimensional data and has a.o. been applied to multivariate
calibration and classification (Chiang and Colegrove, 2007; Hubert and Engelen, 2004; Hubert and Vanden Branden, 2003;
Hubert and Verboven, 2003; Vanden Branden and Hubert, 2005). The algorithm consists of the following steps:
(1) Perform a singular value decomposition to restrict the observations to the space they span. This is not absolutely

necessary, but when the number of variables vastly exceeds the number of observations it already yields a huge
dimension reduction without losing information. (We will denote the resulting data set again as X in what follows.)

(2) Choose the coverage 1
2 < α < 1 (the default is α = 0.75). Set h = [αn] (where [.] denotes the integer part). The choice

of the coverage α determines the robustness as well as the efficiency of the method. The smaller α the more robust
ROBPCA will be, but the less accurate.

(3) In every data point xi (a row ofX), calculate the outlyingness introduced by Stahel (1981) and Donoho and Gasko (1992):

outl(xi,X) = sup
v∈B

|x�
iv − m(x�

jv)|
s(x�

jv)
(1)

wherem(.) and s(.) are the robust univariate Minimum Covariance Determinant (MCD) estimators of location and scale
(Rousseeuw, 1984) and B is a set of 250 random directions through two data points. Then we take the set Ih of the h data
points with smallest outlyingness, and compute their mean and covariance matrix:

µ̂0(X) = 1
h

�

i∈Ih

xi

�̂0(X) = 1
h − 1

�

i∈Ih

�
xi − µ̂0(X)

� �
xi − µ̂0(X)

��
.

(4) Reduce the dimension by projecting all data on the k-dimensional subspace V0 spanned by the first k eigenvectors of
the robust covariance estimator �̂0 obtained in step 3. The choice of k can be made by looking at a scree plot of the
eigenvalues, at the percentage of variance explained, or by a robust PRESS algorithm (Hubert and Engelen, 2007).

(5) For each observation, compute its orthogonal distance

OD(0)
i =

��xi − x̂i
�� (2)

with x̂i the projection of xi on the subspace V0.
We then obtain an improved robust subspace estimate V1 as the subspace spanned by the k dominant eigenvectors

of �̂1, which is the covariance matrix of all observations xi for which OD(0)
i ≤ cOD (Engelen et al., 2005). The cutoff value

cOD is difficult to determine because the distribution of the orthogonal distances is not known exactly. In ROBPCA this
is resolved by the fact that the orthogonal distances to the power 2

3 are approximately normally distributed, which
can be derived from Box (1954) and Nomikos and MacGregor (1995). The cutoff value can then be determined as
cOD = (µ̂+ σ̂ z0.975)

3
2 where µ̂ and σ̂ are estimated by the univariateMCD and z0.975 is the 97.5% quantile of the gaussian

distribution.
Next, we project all data points on the subspace V1.

(6) Compute a robust center and covariance matrix in this k-dimensional subspace by applying the reweighted MCD
estimator (Rousseeuw and Van Driessen, 1999) to the projected data. The final principal components are the
eigenvectors of this robust covariance matrix. (The MCD estimator searches for the subset of size h whose classical
covariancematrix hasminimal determinant. TheMCD location and scatter are given by themean and covariancematrix
of that subset. After this a reweighting step is performed to increase the finite-sample efficiency. We use the fastMCD
algorithm developed in Rousseeuw and Van Driessen (1999).)

Note that it is possible to stop the programwithout performing step 6. This reduces the computation time considerably, and
still yields the same PCA subspace as the full ROBPCA, but less robust eigenvectors and eigenvalues.

When there are at least five times more observations than variables in the data and the number of variables is not too
high, the ROBPCA program simply computes the reweighted MCD estimator on the original data and reports the resulting
eigenvectors.
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Fig. 1. Different types of PCA outliers.

2.2. Outlier map

Apart from computing principal components, ROBPCA also flags the outliers. In general, an outlier is an observationwhich
does not obey the pattern of the majority of the data. In the context of PCA three types of outliers can be distinguished:

(1) good leverage points
(2) orthogonal outliers
(3) bad leverage points.

In Fig. 1 we see the different types of outliers in a three-dimensional data set that is projected on a robust two-dimensional
PCA subspace. The data set contains 200 observations and was generated from the multivariate normal distribution with
centerµ = [0, 0, 0]� and covariancematrix� = diag [12, 8, 0.001]. The first 6 observations have been replaced by different
types of outliers.

Good leverage points (like observations 1 and 2) lie close to the PCA subspace but far from the regular observations,
whereas orthogonal outliers (observations 3 and 4) have a large orthogonal distance to the PCA subspace while their
projection on the PCA space is inlying. Bad leverage points (observations 5 and 6) have a large orthogonal distance and
their projection on the PCA space is far from the regular data.

To be precise, the orthogonal distance, as in (2), is the distance between an observation and its projection in the k-
dimensional subspace V1:

ODi =
��xi − µ̂x − Pp,kti

��

where Pp,k is the loading matrix with orthogonal columns (the eigenvectors), µ̂x is the robust center, and ti = P
�
p,k(xi − µ̂x)

are the robust scores. The robust score distance is given by

SDi =

����
k�

j=1

t2ij
lj

where lj are the sorted eigenvalues of the MCD scatter matrix obtained in step 6 of the algorithm.
The outlier map plots the orthogonal distances versus the score distances. Lines are drawn to distinguish between

observations with a small and a large OD, and between a small and a large SD. For the orthogonal distances, the cutoff
is defined as in step 5 of the algorithm. For the score distances, the cutoff value cSD =

�
χ2
k,0.975 is used.

In the outlier map (Fig. 2) of the simulated dataset we see that ROBPCA has flagged the outliers correctly.

3. The modified algorithm for skewed data

3.1. Description

Here we propose a more general robust PCA method that can also cope with skewed data. Our approach consists of the
same steps as the ROBPCA algorithm (as described in Section 2.1), but we have made three modifications.

The first is that the Stahel–Donoho outlyingness (1) in step 3 of the algorithm is replaced by a new measure, called
the adjusted outlyingness. It is based on the adjusted boxplot (Hubert and Vandervieren, in press) and has previously been
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Fig. 2. ROBPCA outlier map of the data in Fig. 1.

used to robustify Independent Component Analysis (Brys et al., 2005). The good properties of this measure are shown in
Hubert and Van der Veeken (2008), where it has already been extensively studied. The adjusted outlyingness has a different
denominator in order to flag fewer data points at skewed distributions. It is defined as:

AOi = max
v∈B

|x�
iv − med(x�

jv)|
(c2(v) − med(x�

jv))I[x�
iv > med(x�

jv)] + (med(x�
jv) − c1(v))I[x�

iv < med(x�
jv)]

(3)

where c1 corresponds to the smallest observation which is greater than Q1 − 1.5e−4MCIQR and c2 corresponds to the largest
observation which is smaller than Q3 + 1.5e3MCIQR. Here Q1 and Q3 are the first and third quartile of the projected data,
IQR = Q3−Q1 andMC is themedcouple (Brys et al., 2004), a robustmeasure of skewness. Formula (3) assumes thatMC ≥ 0,
otherwise we replace v by −v.

As in (1), B is a set of random directions through two data points. For skewed distributions it is useful to increase the size
of B. More directions make the result more accurate, but also increase the computation time.

The second adjustment concerns the cutoff value for the orthogonal distancesOD in step 5.Wenowuse as cutoff value the
largest ODi smaller than Q3({OD})+ 1.5e3MC({OD})IQR({OD}). Should the medcouple of the orthogonal distances be negative
(this only happens in exceptional cases), we will take as cutoff the largest ODi smaller than Q3({OD}) + 1.5IQR({OD}).By
doing this the data no longer have to be transformed and the cutoff value is now dependent on the data itself instead of on
some breakdown value. Taking the cutoff dependent on the breakdown value and setting this for example to 25% whereas
only 5% of the data are outlying results in using too few data points in the computation, leading to less efficiency.

The third modification occurs in step 6. Instead of applying the reweighted MCD estimator, we calculate the adjusted
outlyingness in the k-dimensional subspace V1 and compute themean and covariancematrix of the h points with the lowest
adjusted outlyingness. On the horizontal axis of the outlier map we now plot the adjusted outlyingness of each observation,
and the corresponding cutoff value is derived in the same way as for the orthogonal distances.

Note that the skewness-adjusted version of ROBPCA no longer uses cutoff values derived from quantiles of theoretical
distributions, but instead employs adaptive cutoff values obtained from the empirical data at hand.
Whenwe return to the data of Fig. 1 and apply themodified ROBPCA algorithm to it, we obtain the outlier map in Fig. 3. Note
that the outliers are still classified correctly. Indeed, when the bulk of the data are not skewed, the modified algorithm gives
similar results to the original one. Moreover, we see that the outlier cutoff lines no longer flag several regular observations
as outliers.

4. Examples

In this section the regular ROBPCA method based on the Stahel–Donoho outlyingness (denoted as ROBPCA-SD) and our
new approach based on the adjusted outlyingness (denoted as ROBPCA-AO) are compared with several real data sets. When
there are at least five times more observations than variables in the data, we will also compute the eigenvectors of the
reweighted MCD estimator (this approach is denoted as ROBPCA-MCD).

In each example we first robustly center and scale the variables by subtracting the median and dividing by the median
absolute deviation. Unless otherwisementioned, the number of randomdirections to search over is 1000 in both ROBPCA-AO
and ROBPCA-SD.
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Fig. 3. Outlier map of Fig. 1 using the skewness-adjusted ROBPCA method.

Table 1

CES data with MCs and their p-values

Variable Description MC p-value

EXP Total household expenditure 0.21 <0.00001
FDHO Food consumed at home 0.17 <0.00001
FDAW Food consumed away from home 0.32 <0.00001
SHEL Housing and household equipment 0.22 <0.00001
TELE Telephone services 0.33 <0.00001
CLOT Clothing 0.27 <0.00001
HEAL Health care 0.24 <0.00001
ENT Entertainment 0.37 <0.00001

4.1. Consumer expenditure survey data

This dataset stems from the Consumer Expenditure Survey (CES) of 1995 collected by the US Department of Labor,
available at http://econ.lse.ac.uk/courses/ec220/G/iedata/ces/. The data contains 869 households with 8 variables described
in Table 1. It also shows the skewness of each variable as measured by its medcouple. The corresponding p-values are all
smaller than 0.00001 (using the formulas in Brys et al. (2004) for testingwhether theMC is significantly different from zero).
It follows that the variables are all significantly asymmetric.

Because the CES data contain missing values, we have used the expectation robust (ER) approach of Serneels and
Verdonck (2008) for both ROBPCA-SD as well as ROBPCA-AO. We have decided to retain 5 components, which together
explain 88%. The corresponding outlier maps are in Fig. 4.

Note that ROBPCA-SD and ROBPCA-MCD flagged 198 and 190 observations as outlying whereas ROBPCA-AO flagged only
24, which is more realistic since the data are so skewed.

4.2. Computer hardware data

The Computer Hardware (CH) data of Ein-Dor and Feldmesser are available at http://archive.ics.uci.edu/beta/datasets/
Computer+Hardware.

The data set contains 209 observations, and we focus on the 8 variables in Table 2. We see that each of these variables
is significantly skewed. We retained 3 components, which together explain 87%. The resulting outlier maps are given in
Fig. 5. ROBPCA-SD and ROBPCA-MCD flagged 70 and 63 observations whereas ROBPCA-AO only flagged 6, which seems
more reasonable.

4.3. Credit default swap (CDS) data

The CDS data were obtained from iTraxx Europe. It contains the price of credit default swaps of 125 companies over
58 weeks (Cariboni, 2007). A typical preprocessing step for financial time series is to transform the data by taking the log
ratios log(xi,j/xi,j−1) = log(xi,j) − log(xi,j−1) for every observation xi where i is the company and j is the week. After this
transformation there were some columns containingmore than 125/2 zeroes, meaning that the credit default swap price of
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Fig. 4. Outlier maps of the CES data based on (a) ROBPCA-SD, (b) ROBPCA-MCD, and (c) ROBPCA-AO.

Table 2

Computer hardware data with MCs and their p-values

Variable description MC p-value

MYCT Machine cycle time in nanoseconds 0.42 <0.00001
MMIN Minimummain memory in kilobytes 0.27 0.00057
MMAX Maximummain memory in kilobytes 0.33 0.00002
CACH Cache memory in kilobytes 0.60 <0.00001
CHMIN Minimum channels in units 0.60 <0.00001
CHMAX Maximum channels in units 0.60 <0.00001
PRP Published relative performance 0.53 <0.00001
ERP Estimated relative performance 0.57 <0.00001

more than half of the companies did not change during that week. We have left these variables out of the analysis, yielding
a dataset of 125 companies and 37 log ratios.

Because the number of variables is quite high in this example, we have allowed both ROBPCA-SD and ROBPCA-AO to
compute their outlyingness using 5000 random directions through two data points. In the resulting analysis we decided to
retain 10 principal components, which explain 67%. The corresponding outlier maps are given in Fig. 6.

Looking at the outlier map of the ROBPCA-AO method one would flag the companies Hilton, CarltonComm, BAA, VNU,
TDCAS, Altadis and Rentokil. In practice, researchers may not be pleased with discarding several observations out of their
analysis. On the other hand it is possible that the flagged companies are only atypical during a fewweeks. One possible way
to tackle this problem is by doing the following steps:

(1) Plot the outlying companies to see whether they indeed have atypical values for only a few weeks and are not outlying
throughout the whole period.
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Fig. 5. Outlier maps of computer hardware data based on (a) ROBPCA-SD, (b) ROBPCA-MCD, and (c) ROBPCA-AO.

Fig. 6. Outlier map of CDS data based on (a) ROBPCA-SD and (b) ROBPCA-AO.

(2) Find the outlying columns for every company by means of the adjusted boxplot.
(3) Replace outliers in each company by missing elements (NaN).
(4) Perform ROBPCA-AO by the ER approach of Serneels and Verdonck (2008).
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Fig. 7. Outlier map of the CDS data after adjusting the outlying companies.

By doing this it is possible to continue the analysis on the whole dataset, which is of course slightly adjusted (only a
couple of weeks of the outlying companies), but still contains all the observed companies. Applying ROBPCA-AO again
on this dataset gives the outlier map in Fig. 7, which confirms that the outlying behavior of the flagged companies was
only due to a few weeks. By following these steps we were able to identify and to adjust the variables that lead to
outlyingness.

5. Simulations

In this section we will compare the three algorithms on simulated data.

5.1. Simulation design

A straightforward way to set up a simulation for PCA is to construct data with a given complexity k as X = TkP �
k + E , i.e.

X is a matrix of rank k plus unstructured noise.
The orthogonal loadings Pk are taken as Pk = Ip×k = δij and the principal components Tk are generated as n draws from the
k-variate normal inverse gaussian distribution NIG(γ , δ, µ, σ ) as defined in Barndorff-Nielsen (1997). Here µ is a location
parameter, σ is a scale parameter, and γ and δ are shape parameters determining skewness and tail weight.

In our simulations we generate n observations with k variables drawn fromNIG(1, 0, 0, 1) and NIG(1, 0.8, 0, 1). The first
distribution is the standard gaussian, whereas the second distribution is skewed. We then construct the uncontaminated
n × p datamatrix X = TkP �

k + E where E is gaussian noise with standard deviation 0.01.
To contaminate the data we then replace the last 100�% of observations of X by outliers. We have added bad leverage

points by placing the center at
�
η × 1

�
k+1, 0

�
p−k−1

�
, and orthogonal outliers by placing the center at

�
0

�
k, η, 0�

p−k−1
�
, with

location parameter η �= 0 (good leverage points would not alter the PCA subspace). In our study we have considered
η = −8 and 12. The outliers are generated from the multivariate normal distribution with that center and with covariance
matrix κCov(X). The contaminationwas either concentrated (κ = 0.01) or had the same covariance structure as the regular
observations (κ = 1).

In a simulation study one needs performance measures in order to compare the different techniques. We evaluated each
method by considering the following measures:

• the angle between the subspace spanned by the columns of the real Pk = Ip×k and the estimated PCA subspace, which is
spanned by the columns of P̂k. This anglewas given by Krzanowski (1979) as arccos(

√
λk)withλk the smallest eigenvalue

of P �
kP̂kP̂ �

kPk. The optimal angle is 0.
• ND = number of unflagged outliers (its optimal value is 0).
• WD = number of flagged observations minus number of generated outliers (its optimal value is 0).

We conducted simulations of ROBPCA-MCD, ROBPCA-SD, and ROBPCA-AO and compared the results also with classical
PCA (CPCA). Because all simulations were performed on data sets containing 0%, 5%, 10%, or 15% of outliers, the coverage
parameter α of each robust method was set to 85%. The simulations were run in MATLAB 7.2 (The MathWorks, Natick, MA).
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Table 3

Simulation results for skewed data of size 500 × 10 with k = 2, contaminated by bad leverage points with η = −8

� (%) Measure CPCA ROBPCA-MCD ROBPCA-SD ROBPCA-AO
κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1

0 Angle 0.0076 0.0071 0.0123 0.0118 0.0083 0.0079 0.0078 0.0072
ND 0 0 0 0 0 0 0 0
WD 39 38 76 77 83 83 13 14

5 Angle 0.4087 0.4039 0.0109 0.0105 0.0078 0.0073 0.0074 0.0068
ND 0 0 0 0 0 0 0 0
WD 23 21 65 65 66 67 5 4

10 Angle 0.4722 0.4668 0.0098 0.0098 0.0076 0.0081 0.0073 0.0076
ND 3 8 0 0 0 0 0 0
WD 21 14 51 53 50 51 0 0

15 Angle 0.5010 0.4932 0.0079 0.0081 0.1723 0.1385 0.0082 0.0083
ND 75 52 0 0 23 4 0 0
WD −50 −31 33 33 19 29 0 0

Table 4

Simulation results for skewed data of size 500 × 10 with k = 2, contaminated by orthogonal outliers with η = −8

� (%) Measure CPCA ROBPCA-MCD ROBPCA-SD ROBPCA-AO
κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1

0 Angle 0.0076 0.0071 0.0123 0.0118 0.0083 0.0079 0.0078 0.0072
ND 0 0 0 0 0 0 0 0
WD 39 38 76 77 83 83 13 14

5 Angle 0.4456 0.3993 0.0109 0.0105 0.0079 0.0072 0.0074 0.0068
ND 0 0 0 0 0 0 0 0
WD 25 24 65 65 82 74 10 9

10 Angle 1.1135 1.0577 0.0098 0.0098 0.0076 0.0080 0.0073 0.0076
ND 12 8 0 0 0 0 0 0
WD 16 18 51 53 79 67 7 6

15 Angle 1.2729 1.2553 0.0079 0.0081 0.0082 0.0081 0.0079 0.0081
ND 75 54 0 0 0 0 0 0
WD −44 −29 33 33 80 58 5 5

5.2. Simulation results

Table 3 shows the simulation results for skewed data [generated from NIG(1, 0.8, 0, 1)] with n = 500 points in
p = 10 dimensions and rank k = 2, contaminated by bad leverage points with η = −8. For each contamination
percentage �, each of the four PCA methods, and each κ it shows the average angle over 50 runs, as well as the average ND
and WD.

As expected, classical PCA yields the best results if there are no outliers in the data (� = 0%), but breaks down as soon as
there is contamination.

We see that even with contamination, ROBPCA-AO has the same angle that CPCA has without contamination.
Also ROBPCA-MCD and ROBPCA-SD perform well in this regard, but from their WD we see that they flag too many
non-outliers.

Similar results are obtained for orthogonal outliers (Table 4). Table 5 repeats Table 3 for much higher-dimensional data
sets (n = 750, p = 200, and k = 4), still with the samequalitative conclusions. (Note that ROBPCA-MCD cannot be computed
in this case since n/p < 5). And finally, Table 6 redoes the experiment of Table 3 when the uncontaminated data are not
skewed (this time they are generated from the standard gaussian distribution). Also here ROBPCA-AO yields very satisfactory
results.

We ran many more simulations but their results were similar, hence they are not reported here.

6. Summary and conclusions

In this paper we have developed a robust PCA method that can cope with skewed data. It combines the ROBPCA method
for symmetric data with the adjusted boxplot for skewed data. Also outlier cutoff values are derived from the adjusted
boxplot outlier rule. Applying the new approach to real and simulated data reveals that the method estimates the PCA
subspace accurately and provides good classification between regular observations and outliers. Matlab software to apply
ROBPCA-AO is available as part of LIBRA: Library for Robust Analysis (Verboven and Hubert, 2005).
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Table 5

Simulation results for skewed data of size 750 × 200 with k = 4, contaminated by bad leverage points with η = −8

� (%) Measure CPCA ROBPCA-SD ROBPCA-AO
κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1

0 Angle 0.0279 0.0278 0.0307 0.0307 0.0286 0.0287
ND 0 0 0 0 0 0
WD 80 80 146 146 10 10

5 Angle 0.3181 0.3178 0.0307 0.0311 0.0289 0.0294
ND 0 0 0 0 0 0
WD 59 55 122 120 3 3

10 Angle 0.3430 0.3394 0.0310 0.0310 0.0295 0.0293
ND 75 40 0 0 0 0
WD −19 −13 95 95 0 0

15 Angle 0.3530 0.3496 0.0587 0.0369 0.0339 0.0302
ND 113 92 9 0 0 0
WD −57 −41 121 83 1 1

Table 6

Simulation results for gaussian data of size 500 × 10 with k = 2, contaminated by bad leverage points with η = −8

� (%) Measure CPCA ROBPCA-MCD ROBPCA-SD ROBPCA-AO
κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1 κ = 0.01 κ = 1

0 Angle 0.0155 0.0148 0.0192 0.0174 0.0163 0.0155 0.0157 0.0148
ND 0 0 0 0 0 0 0 0
WD 35 37 52 53 58 60 6 6

5 Angle 0.5713 0.5689 0.0175 0.0180 0.0162 0.0156 0.0155 0.0150
ND 0 0 0 0 0 0 0 0
WD 29 26 44 43 48 46 2 2

10 Angle 0.5936 0.5915 0.0167 0.0168 0.0159 0.0160 0.0153 0.0158
ND 0 1 0 0 0 0 0 0
WD 31 26 38 38 40 39 0 0

15 Angle 0.6026 0.6015 0.0167 0.0169 0.0172 0.0171 0.0166 0.0169
ND 75 57 0 0 0 0 0 0
WD −44 −31 30 31 30 30 0 0
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