
BioMed CentralBMC Genomics

ss
Open AcceResearch article
Phase Coupled Meta-analysis: sensitive detection of oscillations in 
cell cycle gene expression, as applied to fission yeast
Saumyadipta Pyne*1,2, Roee Gutman3, Chang Sik Kim4 and Bruce Futcher*5

Address: 1Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA, 2Present address: 
Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA, 3Department of Statistics, 
Harvard University, Cambridge, MA 02138, USA, 4Department of Biological Sciences, RCWD, Sookmyung Women's University, Seoul, Republic 
of Korea and 5Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA

Email: Saumyadipta Pyne* - saumyadipta_pyne@dfci.harvard.edu; Roee Gutman - rgutman@fas.harvard.edu; 
Chang Sik Kim - cskim@kangwon.ac.kr; Bruce Futcher* - bfutcher@ms.cc.sunysb.edu

* Corresponding authors    

Abstract
Background: Many genes oscillate in their level of expression through the cell division cycle.
Previous studies have identified such genes by applying Fourier analysis to cell cycle time course
experiments. Typically, such analyses generate p-values; i.e., an oscillating gene has a small p-value,
and the observed oscillation is unlikely due to chance. When multiple time course experiments are
integrated, p-values from the individual experiments are combined using classical meta-analysis
techniques. However, this approach sacrifices information inherent in the individual experiments,
because the hypothesis that a gene is regulated according to the time in the cell cycle makes two
independent predictions: first, that an oscillation in expression will be observed; and second, that
gene expression will always peak in the same phase of the cell cycle, such as S-phase. Approaches
that simply combine p-values ignore the second prediction.

Results: Here, we improve the detection of cell cycle oscillating genes by systematically taking into
account the phase of peak gene expression. We design a novel meta-analysis measure based on
vector addition: when a gene peaks or troughs in all experiments in the same phase of the cell cycle,
the representative vectors add to produce a large final vector. Conversely, when the peaks in
different experiments are in various phases of the cycle, vector addition produces a small final
vector. We apply the measure to ten genome-wide cell cycle time course experiments from the
fission yeast Schizosaccharomyces pombe, and detect many new, weakly oscillating genes.

Conclusion: A very large fraction of all genes in S. pombe, perhaps one-quarter to one-half, show
some cell cycle oscillation, although in many cases these oscillations may be incidental rather than
adaptive.

Background
Cells reproduce and divide using an ordered set of proc-
esses. The cell division cycle is usually divided into four

phases, called G1 (Gap 1), S (DNA Synthesis), G2 (Gap 2)
and M (Mitosis). In late G1 phase, cells commit to a round
of cell division, and in other ways prepare for the upcom-
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ing duplication; in S phase they replicate their DNA; in G2
they prepare for mitosis, and during mitosis they segregate
their chromosomes, form two nuclei around these two
sets of chromosomes, and finally the two new cells sepa-
rate from one another. These ordered processes are
extremely complex, involving hundreds if not thousands
of proteins. These processes are regulated and assisted by
changes in gene transcription: that is, many genes needed
for DNA synthesis are transcribed just before S phase;
many genes needed for mitosis are transcribed just before
M phase, and so on. Genes regulated in this way - i.e.,
expressed at a particular time in the cell division cycle,
with the effect of aiding progress through a particular part
of the cell division cycle - are called cell cycle regulated
genes.

In principle, there might be two kinds of genes whose
expression oscillates as a function of progress through the
cell cycle. What we will call adaptive cell cycle regulation
refers to regulation that has the effect of aiding progress
through a particular part of the cell cycle, for instance the
up-regulation of DNA ligase or histone expression during
the DNA synthesis phase. One might expect natural selec-
tion in favor of such regulation. In addition, however,
there might be what we will call "incidental" cell cycle
oscillation, where a gene oscillates in expression, not
because the oscillation is directly helpful to the cell, but as
a consequence of something else. For instance, chromatin
typically condenses in preparation for mitosis, and this
condensation might interfere with the transcription of
some genes. Such genes would oscillate as a function of
the cell cycle, but the oscillation would not be adaptive. In
view of the fact that the cell division cycle entails massive
changes in the conformation of the DNA, it might not be
surprising if a large proportion of genes oscillated for inci-
dental reasons. In this work, we will usually refer to
changes in gene expression through the cell cycle as oscil-
lations, and reserve the phrase "cell cycle regulation" for
adaptive regulation leading to oscillation. That is, some
cell cycle oscillations are due to cell cycle regulation, while
other oscillations may be incidental.

The development of microarrays allowed changes in gene
expression to be monitored for all genes in a genome, and
microarray technology has been applied to the problem of
identifying cell cycle oscillating genes in various organ-
isms [1-5]. In a typical time course experiment, a popula-
tion of cells is obtained such that all the cells are
"synchronized" in one particular phase of the cell cycle,
such as G1 phase. The synchronized population is
allowed to grow and progress through the cycle, and sam-
ples of cells are taken at regular intervals as the cells pass
through one, two, or even three consecutive, synchronous
rounds of cell division. Messenger RNAs are extracted

from the cells in each sample, and these are analyzed
using microarrays so that the pattern of expression over
time can be determined for each gene. For a cell cycle
oscillating gene, it is expected that gene expression will
peak and trough once per cell cycle, and the oscillation
can be modeled using Fourier analysis [4]. There are many
variations of this approach, and these have been systemat-
ically compared by de Lichtenberg et al [6]. Using meth-
ods of this general kind, even the earliest studies found
that a significant fraction of all genes oscillate through the
cycle. For instance, Spellman et al. found 800 cell cycle
oscillating genes in the yeast S. cerevisiae, which is more
than 10% of the total genes (about 6,000). Because the
number of cell cycle oscillating genes found is statistically
limited by the amount of data and by the noise in the
experiments, it is quite possible that the true number of
cell cycle oscillating genes could be larger.

In recent years at least ten microarray time course experi-
ments from three labs have studied cell cycle expression in
the fission yeast Schizosaccharomyces pombe (Rustici et al.
[7], Peng et al. [8], Oliva et al. [9]). This has made S. pombe
currently the organism with the largest amount of cell
cycle transcriptome data. These data sets can be combined
by various techniques of statistical meta-analysis. The tra-
ditional method of combining cell cycle data sets has been
to calculate a p-value (generally based on Fourier analysis
and permutation testing) for oscillation of each gene in
each individual cell cycle time course, and then combine
these p-values with a traditional statistical method such as
Fisher's inverse chi square method or Stouffer's sum of Z's
method [10]. Marguerat et al. [11] analyzed all ten data
sets, and by combining p-values (for periodicity of oscil-
lation and also for expression regulation, see below), they
found about 500 cell cycle oscillating genes (out of about
5000 total genes).

However, we argue here that simply combining p-values is
an inefficient approach, which ignores a critical source of
information in the available data. Consider a putative cell
cycle regulated gene, perhaps involved in S-phase. There
are two independent hypotheses about such a gene. First,
it will peak and trough once per cell cycle, and thus it will
generate a relatively large Fourier sum with a small p-
value. This is the hypothesis tested by the standard meth-
ods of analysis, including the study by Marguerat et al. But
in addition, it can also be predicted that in multiple inde-
pendent time course experiments, the peak of expression
will always be at a similar time in the cell cycle. For
instance, a cell-cycle regulated gene involved in DNA syn-
thesis will typically reach peak levels of expression just
before S-phase (DNA synthesis), while a cell cycle regu-
lated gene involved in mitosis will typically reach peak
levels of expression just before M phase. The second
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hypothesis - that there is a particular, consistent, time of
peak expression for a cell cycle oscillating gene - is not
tested by current methods; we show that, in conjunction
with the earlier hypothesis, it can allow for a more power-
ful test of cell cycle oscillation.

There are major intuitive advantages of testing the peak
phase consistency hypothesis. Microarray noise often
affects gene expression readout; yet it is less likely to hide
the peak signals in a time course. Moreover, if a gene
peaks at the same phase in multiple independent experi-
ments, it is highly unlikely for all the consistent peaks to
be affected simultaneously by random noise.

To emphasize the phase consistency hypothesis in a dif-
ferent way, let us consider two different genes, and 10
independent cell cycle time course experiments. Suppose
that the times of peak expression in the cell cycle are cal-
culated for each gene in each time course. Let these times
be converted to phase angle values in the circular range 0°
to 360° (equivalently, the interval of [0, 2π) radians),
which corresponds to one complete cycle, and assign 0°
to the end of mitosis. For the first gene, let the times of
peak expression in the 10 time course experiments occur
at 10 different cell cycle times, scattered around the cell
cycle. For the second gene, let the times of peak expression
in the 10 time courses all occur in S-phase, at about 90°
in this example. Then for these two genes, based on the
variances of their phase angles, one could conclude that
the second but not the first gene oscillates, even without
knowing p-values.

Here, we propose a new method for the analysis of cell
cycle oscillating genes. This new method takes into
account both kinds of available information. That is, it
uses the standard measures for determining the signifi-
cance of a gene's oscillation, but in addition, it uses the
reproducibility of the cell cycle phase of its peak expres-
sion. First, the time course of each gene in each experi-
ment is represented as a vector whose magnitude captures
the oscillation information and whose direction captures
the peak phase information. Then we combine these two
independent sources of information using vector addi-
tion; if a gene peaks or troughs in all experiments in
roughly the same phase of the cell cycle (we call this prop-
erty "phase consistency"), then the vectors add to produce
a large final vector. Conversely, when the peaks of differ-
ent experiments are in different phases of the cycle, vector
addition produces a small final vector. Fig. 1 shows an
example of this kind of analysis over two time courses.
The gene shown in Fig. 1a has two time courses in which
the phase of peak expression is similar between the time
courses, and the resultant vector has large magnitude. The
gene shown in Fig. 1b has two time courses in which the

phase of peak expression is not similar, and the resultant
vector has small magnitude.

To demonstrate the power of this approach, we re-con-
sider the 10 cell cycle time course experiments of S.
pombe. We use the same data as Marguerat et al., and we
use roughly (though not exactly) the same approach to
determine p-values for oscillations in the individual time
courses. However, with this new meta-analysis, we find
roughly 2,000 cell cycle oscillating genes in S. pombe, in
contrast to the 500 found by more traditional methods
(e.g. Marguerat et al. [11]), a difference we attribute
largely to the increase in power due to consideration of
peak phase consistency in addition to the p-value of the
oscillation. We call this new method "Phase Coupled
Meta-analysis", or PCM.

Methods
Marguerat et al. [11] have already performed a meta-anal-
ysis of the S. pombe cell cycle data using methods that take
into consideration the strength of the oscillations in gene
expression. Because we particularly want to highlight the
effect of adding phase information, in general we have
used the same data and followed the same methods as
Marguerat et al. for calculating the strength of oscillations.

Vector sum based on oscillation and phaseFigure 1
Vector sum based on oscillation and phase. For a gene, 
each time course is represented by a vector such that the 
Periodicity and Expression scores determine the magnitude 
of the vector, and the cell cycle phase of peak expression 
gives the direction of the vector. Plot (a) shows two hypo-
thetical time courses with similar phases of peak expression 
(both peaking in G2 phase). In (a), the sum of the two vec-
tors u+v yields a vector (plotted in grey) with a greater mag-
nitude than either of the component vectors. Plot (b) shows 
two time courses with dissimilar phases of peak expression, 
one peaking at the beginning of M phase, and the other peak-
ing just after S-phase. The sum of these two vectors u+v 
yields a vector (in grey) with a lower magnitude than either 
of the component vectors. The colored circumference refers 
to the circular distribution of cell cycle phases in S. pombe 
(red-G2, green-M, purple-G1, blue-S) in both plots.
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Experiments and data
The ten microarray cell cycle experiments used in the
present study were from Rustici et al. 2004; Peng et al.
2005; and Oliva et al. 2005 [7-9], and were the same
experiments used by Marguerat et al. [11]. Most of these
time courses covered more than one round of cell divi-
sion. In their meta-analysis, Marguerat et al. used a small
set of experimentally validated cell cycle regulated genes
to align the cell cycle stages of all ten experiments. They
expressed the time of peak expression for each gene in
each time course as a percentage of the elapsed cycle, after
aligning the various time courses. Using their estimated
cell cycle period for each experiment, we transformed
these peak times of expression into angular values in the
circular range [0, 2π) radians. This produced our input
matrix of 4990 × 10 angular data points where the (i, j)th

entry represented the cell cycle phase of peak expression
for gene i in experiment j. In addition, genome-wide data
from ten transcription factor knockout and over-expres-
sion experiments were used for clustering (see below),
which are described elsewhere [9].

Periodicity and Expression scores

Following de Lichtenberg et al. and Marguerat et al.
[6,11], we evaluated the Periodicity score (Pgj) of each

gene g's time course in the jth experiment (j = 1...10) using
a Fourier sum, and its Expression score (Egj) with standard

deviation. For assessment of global significance of the
periodicity and expression scores, we used permutation
testing. Since by shuffling only along the time axis, the
standard deviation of a time course (and hence its expres-
sion score) does not change, we adopted a different but
related strategy. We generated a joint null population of
105 permuted simulated time courses by shuffling the
original time courses in each experiment both along the
gene and time axes, thus destroying any signals from bio-
logical regulation. Then with respect to these 105 ran-
domly-generated "genes" we computed the percentile
scores qPgj and qEgj for every real gene g. That is, for every

real gene, we compared its Periodicity score and Expres-
sion score to the scores of the joint null population. The
scores for the real genes were then ranked. The percentiles

qPgj and qEgj were computed as  (Pgi) and

 (Egi) respectively using the cumulative distribu-

tion functions (  and ) of the null pop-

ulation's periodicity and expression scores for experiment
j. The cumulative distribution functions were computed
with the R function ecdf. As percentiles, qPgj and qEgj

assumed values between 0 that represented minimal sta-
tistical significance and 1 that represented the gene that is

most strongly periodic or expressed. Note that the percen-
tile scores allowed a direct genome-wide ranking mecha-
nism with built-in nonparametric statistical significance
owing to the background provided by the joint null distri-
bution.

Phase Coupled Meta-analysis score

Since a cell cycle oscillating gene with a true phase of peak
expression is likely to peak consistently in multiple inde-
pendent experiments, the phase consistency should cause
the oscillatory signals to "add up" in a phase coupled
meta-analysis measure. Thus we define our Phase-Cou-
pled Meta-analysis (PCM) score for a gene g as the magni-

tude of a sum of Lg (≥ 5) vectors, PCM(g) =

, where the

jth vector �Mgi, θgi� of g has direction θgj given by the phase

angle of g in experiment j and magnitude Mgj defined as

Mgi = exp (qPgi) × exp(qEgi) based on the percentile scores

described above. The exponential spreading out of their
percentile scores allowed the genes to be ranked more dis-
tinctively, in particular those with weak expression. For
instance, the magnitude a gene that is both strongly peri-
odic and strongly expressed is higher than that of a gene
with strong periodicity but weak expression by an expo-
nential factor. Moreover, the exponential function's lower
bound of 1 (i.e. for the 0th percentile), instead of 0,
allowed even the weak expression profiles to be included
in the PCM score; only if a gene g is not present in some
experiment j, the corresponding magnitude Mgj is zero.

Finally all genes were ranked in the decreasing order of
PCM scores, which we refer to as the PCM rank list (see
Additional file 1).

Circular statistics

Circular variance, test of circular uniformity and sampling
from von Mises distribution were computed with the R
package CircStats. P-values based on the test of circular
uniformity were adjusted for multiple hypotheses testing
by Benjamini-Hochberg procedure [12]. The median
phase angle [13] of every gene was computed as a solution
to the following optimization:

, where Lg is the

number of experiments in which the gene g is present.
Genes that were absent in more than five experiments (i.e.
Lg < 5) were excluded from the PCM analysis (marked as

'NA' in the PCM rank list).
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To evaluate the extent of phase consistency among S.
pombe oscillations, we compared every gene's PCM score
with its simulated version (PCM*) with known phase var-
iance. The simulated score was computed for each gene g
by using the original oscillation information {Mgi: j = 1,...

Lg} from every experiment but randomizing the original

phase information {θgi: j = 1,... Lg}: PCM*(g) =

, by taking

the median over fifty random samplings of phases

 from the von Mises distribution

VM(μg, k = 1) with mean μg specified by circular mean of

the observed phases {θgi: j = 1,... Lg} and unit circular var-

iance (1/κ = 1). Then we computed the difference
PCM(g)-PCM*(g) as a measure of deviation of the
observed phase variance of a gene g from a corresponding
distribution with fixed circular variance.

Clustering
For clustering, we used the following two-step refinement
strategy --

Step 1: we clustered the top 2,000 genes from the PCM
rank list using data from the ten transcription factor
knockout and over-expression experiments to identify
genes with similar regulatory signatures. We used the Par-
titioning Around Medoids (PAM [14]) algorithm, a ver-
sion of k-means clustering that is robust against outliers.
The optimal number of clusters in this step (found to be
8) was determined by maximizing the Average Silhouette
Width [15].

Step 2: we extended and used the recently developed
Phase Synchronization Clustering (PSC [16]) algorithm
on the ten time course experiments to classify the clusters
from step 1 into groups of genes having specific peak
phase expression. In particular, we focused on a cluster of
551 genes composed of two PAM clusters from step 1 hav-
ing similar regulatory signatures and containing 43 out of
44 genes from the original ribosomal biogenesis cluster in
Oliva et al. The extended PSC algorithm produced a
phase-specific cluster of 103 genes, which peaked in mid
G2 phase of the cell cycle, as an enhanced version of the
original ribosomal biogenesis cluster of Oliva et al. (con-
sequently we named it Cribo). The genes in Cribo are indi-
cated in the PCM rank list (Additional file 1).

In step 2, we extended the original multivariate PSC algo-
rithm of Kim et al. [16] in two ways to construct the
enhanced ribosomal cluster Cribo with greater statistical
power and precision. In the original PSC algorithm, the

strength of phase similarity (or "synchronization")
between the time courses of two genes g and g' was meas-
ured by the mean phase coherence ρgg' (see [16] for
details), which assumed values between 0 for no phase
synchronization, and 1 for perfect synchronization. Then
the expression ρgg' was extended to compute phase syn-
chronization ρgC between a gene g and a cluster C by sub-
stituting the phase of g' with the weighted mean phase of
C, denoted by ΦC, such that the weights measured how
closely each gene g in cluster C followed the common
phase ΦC. For details, see [16] and [17].

In the present study, we incorporated the idea of consensus
about a gene's phases in multiple experiments by comput-
ing the mean phase coherence [16] ρgC for a given gene-
cluster pair over five or more experiments. Another exten-
sion to the PSC algorithm was the idea of seeding the mean
phase ΦCribo of the target cluster Cribo with the phases of the
original ribosomal biogenesis genes with the aim of iden-
tifying additional and possibly weakly oscillating genes
which synchronized with the original ribosomal cluster in
five or more experiments. The above-mentioned 551
genes (based on the clusters in Step 1), with regulatory sig-
natures similar to the original 43 ribosomal genes, were
further clustered with the extended PSC algorithm (with
the cutoff parameter set to 0.6; see [16] for details on this
parameter). Eight outlier genes with high phase variance
were removed, resulting in a cluster of 103 genes (called
Cribo).

Motif analysis and orthology analysis
The enhanced cluster Cribo allowed us to investigate the
regulatory mechanism underlying it. No motif was
reported for the ribosomal cluster in [9]. The powerful
motif search tool BioProspector [18] was applied to the
full upstream intergenic regions of the 103 genes in Cribo
as foreground DNA sequences, and all intergenic regions
in S. pombe were used as the background DNA sequences.
To identify phylogenetically conserved binding sites, the
upstream intergenic sequences of the Cribo orthologs in
another fission yeast species Schizosaccharomyces japonicus
were obtained from the Schizosaccharomyces group Data-
base at the Broad Institute of MIT and Harvard University.
The motif visualization program MotifViz [19] was used
to detect the transcription factor binding sites with motif
match p-value cutoff 0.01 and with all intergenic
sequences of S. pombe and S. japonicus as background
sequences for searching with the respective species. The
TRANSFAC database [20] was searched for similar tran-
scription factor binding sites in other species. The
orthologs were identified by reciprocal best hits among
species with the program Inparanoid [21]. For S. pombe
orthologs of cell cycle oscillating genes in other species
(human, S. cerevisiae and Arabidopsis) we integrated data
from multiple sources (the databases YOGY [22] and
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Cyclebase.org [23]; also unpublished orthology data from
Chris Penkett).

Results
For each gene and time course, we coupled cell cycle phase
information with the standard measures of periodicity
and expression to derive a new Phase-Coupled Meta-anal-
ysis measure (PCM score). The cell cycle oscillation of a
gene g in a particular experiment j is represented by a vec-
tor �Mgi, θgi� with magnitude Mgj directly proportional to
the gene's periodicity and expression scores, and direction
θgj given by the gene's peak phase angle within the cell
cycle (Fig. 1). If g shows consistency in peak phase over
many experiments, then its vector sum (which is also a
vector) will be larger in magnitude than any component
vector (Fig. 1). The PCM score for a gene is the magnitude
of the vector sum over all the experiments (see Methods);
it was computed for every gene that was present in at least
five out of ten experiments. The genes were then ranked by
their PCM scores, and these ranks were compared to the
ranks of the same genes obtained by Margureat et al. [11].
The ranked list is available as Additional file 1. Fig. 2
shows results for four example genes. These demonstrate
all four possible combinations of large or small vector
magnitude, and high or low phase consistency. Fig. 3
shows the correlation between PCM ranks and Marguerat
ranks. It is of course expected that they are well correlated,
since the Marguerat Periodicity and Expression scores are
used to help calculate the PCM score. Genes with rela-
tively low magnitude vectors, but high phase consistency
(Fig. 2c) have much better PCM ranks than Marguerat
ranks (shown by dark points high above the diagonal line
in Fig. 3). It is particularly genes of this kind that are found
as cell cycle oscillating genes by our analysis, but missed
by methods that focus only on the strength of the oscilla-
tion in expression. Genes with relatively large magnitude
vectors, but poor phase consistency (Fig. 2d), have much
worse PCM ranks than Marguerat ranks, and are found in
the lower right quadrant of Fig. 3. These genes are not con-
sidered cell cycle oscillating by PCM analysis, but might
be so considered by other methods. Fig. 4 shows the time
course data for four example genes. The examples chosen
had PCM ranks of 1 (i.e., the most strongly regulated gene,
cdc22, also see Fig. 2a), 100, 500, and 1000. By rank 1000,
oscillations (at least when presented in this format) are
barely visible to the eye, but nevertheless are statistically
detectable.

Number of Genes showing Cell Cycle Oscillation
In principle, one could imagine that there might be genes
regulated by the cell cycle, which might have strong or
weak oscillations, and in addition there might be other
genes that do not oscillate. Thus there might be a biphasic
distribution of oscillation. However, previous genome-
wide cell cycle transcriptional studies have not supported

this [4,8,9]. Instead, these studies show a small number of
genes with strong oscillation, a larger number of genes
with slightly weaker oscillation, an even larger number of
genes with still weaker oscillation, and so on, until the sta-
tistical evidence for cell cycle oscillation reaches the level
of noise in the underlying experiments (e.g., Fig. 2 of ref
[9]). That is, it appears there is just one population of
genes, and it varies in a continuous manner from strongly
oscillating to very weakly oscillating or not oscillating at
all. Various authors have drawn a more-or-less arbitrary
cut-off at some point on the distribution to define a set of
"cell cycle regulated" genes. In S. pombe, this arbitrary
number of genes thought to be cell cycle regulated was

Four examples genesFigure 2
Four examples genes. A variety of cases are observed: in 
(a), SPAC1F7.05 (cdc22, ribonucleotide reductase) has both 
high Periodicity and Expression scores, and also high phase 
consistency. It is the highest-ranked gene by PCM (rank 1). In 
(b), SPAC23H4.05c has low Periodicity and Expression 
scores, and also low phase consistency, leading to a very low 
PCM rank (4000). In (c), SPAC6G9.06c (pcp1) has mediocre 
Periodicity and Expression scores, but relatively high phase 
consistency (PCM rank of 259), and finally (d), 
SPAC27D7.09c (encoding a but1 family protein) has mostly 
high Periodicity and Expression scores, but relatively low 
phase consistency (PCM rank of 1464). In some cases, vec-
tors were intentionally offset by small amounts to avoid 
overlapping. The colored circumference refers to the circu-
lar distribution of cell cycle phases in S. pombe (red-G2, 
green-M, purple-G1, blue-S), while the vectors in colder (blu-
ish) and warmer (redish) hues represent cdc25 and elutria-
tion experiments respectively.
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407 (Rustici), 747 (Peng), 750 (Oliva) or 500 (Margu-
reat).

Here, we are using all available experimental data, and
using more information from these data than previously
considered, so it is expected that there will be statistical
evidence for a larger number of cell cycle oscillating genes.
Fig. 5, which uses only phase information, suggests there
could be between 1400 and 3200 cell cycle oscillating
genes. We applied a test of circular uniformity across
experiments, using only peak phase information, and this
test suggested around 1,900 cell cycle oscillating genes
(Fig. 6). Finally, to most efficiently use all available infor-
mation, we did permutation testing using PCM, as fol-
lows: for each gene, every time course experiment was
shuffled with respect to the time axis and with the median
expression level of a random gene (i.e. qEgj = 0.5, see
Methods). A "PCM" score was calculated based on the
shuffled measurements in all experiments. This was
repeated 1,000 times per gene to obtain the p-value based
on its PCM scores from shuffled (i.e., randomized) data.

After FDR adjustment of the p-values, the randomization
procedure suggests that there are about 2,554 cell cycle
oscillating genes. In other words, we estimate about 40-
50% of all S. pombe genes to be cell cycle oscillating to
some degree, however slight. Many of these new, weakly-
oscillating genes peak in G2 phase, but many peak at
other times, especially at M/G1, the same time as most
strongly-oscillating genes (Additional file 2; Fig. S1).

For visual confirmation of the idea that there could be as
many as 2,000 weakly-oscillating genes, we took the top
2,000 genes in the PCM-ranked list, and removed all the
genes that were designated cell cycle oscillating by either
Oliva et al. or Margureat et al., leaving about 1,275 genes
(i.e., 1,275 genes hitherto considered "non-oscillating").
(Not all Oliva or Marguerat genes were in the top PCM
2000 genes, so the number of "non-oscillating" genes is
more than 2000 minus the 750 genes of Oliva et al.) The
expression patterns of these 1,275 genes are shown in Fig.
7. The genes are stacked on top of each other by time of
peak expression. Fig. 7 clearly shows that to the eye, many
or most of these genes appear to be cell cycle oscillating
(high resolution version in Additional File 3). The statisti-
cal evidence for cell cycle oscillation of roughly 2,000
genes is strengthened by this visual evidence, even though
the oscillation of the worst 1,000 of these genes is
extremely weak. The significance, of any, of these very
weak oscillations is addressed in the Discussion.

An enhanced cluster of ribosomal biogenesis genes
Given the increased statistical power to identify weakly-
oscillating cell cycle genes, we performed clustering with
the top 2,000 genes from the PCM-based rank list. Since
this pool of genes includes many weakly-oscillating genes,
we used a novel two-step refinement strategy to allow
stepwise filtering to produce biologically meaningful clus-
ters. In each step an algorithm that is robust and well
suited for that step was applied (see Methods). We
obtained an enhanced ribosomal biogenesis cluster Cribo
with 103 genes specific to early to mid-G2 phase (Fig. 8,
high res version Additional file 4), which was a 137%
increase with respect to the original ([9]) size of this clus-
ter. Of the newly included genes, 52% had PCM ranks
between 750 and 2000 (i.e. weakly oscillating) and many
were annotated in GO as ribosomal proteins (e.g. dbp10,
SPBC3F6.04C, SPBC365.04C, SPAC823.04,
SPBC1604.06C, fcf2, moe1). Motif analysis of the inter-
genic regions upstream of these genes revealed a novel
and statistically significant motif BYTCGTTA (where B is C
or G or T, and Y is C or T) with p-value 3.7 × 10-18. The
motif was found in 56% (58/103) of all the genes in Cribo
as well as in 52% (47/91) of the known orthologs of Cribo
genes in S. japonicus. This motif could be the binding site
of a DNA binding protein that helps regulate the genes of
this cluster.

Specificity and sensitivity of PCM ranksFigure 3
Specificity and sensitivity of PCM ranks. Each gene is 
plotted as a 2-dimensional point where the x-coordinate is its 
PCM rank and the y-coordinate is its Marguerat et al. rank. 
Genes with higher phase consistency are marked with darker 
points. Clearly there are many more darker points above the 
diagonal (y = x) line, suggesting that genes with consistent 
phases across experiments get higher ranks (i.e. ranked 
closer to the top) by PCM than Marguerat et al. The sparse 
upper left quadrant of the plot shows that if genes did not 
receive a high rank by Marguerat et al., due to their poor 
Periodicity and Expression scores, then they did not get high 
a PCM rank either. However, many genes in the lower right 
quadrant received a high score from Marguerat et al. on the 
basis of good Periodicity and expression scores, but a low 
PCM score on the basis of poor phase consistency.
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Discussion
Most microarray cell cycle studies in the past decade have
modeled the periodic time courses with Fourier summa-
tion of sinusoidals [4-6,8,9,11]. However, in general such
a Fourier score is independent of the time course's phase
angle, and most microarray cell cycle analyses have not
explored peak phase information in a systematic manner.
While some approaches in the past have modeled a gene's

phase for detection of periodic oscillations [24,25] or
used it to identify the bottleneck genes [26], others have
explicitly ignored it [27]. Although Marguerat et al. noted
the phase variation [11], no study that we are aware of has
used it for combining multiple experiments [6,9,11,28].
The main contribution of our Phase-Coupled Meta-analy-
sis is the use of peak phase information within a novel
measure - the PCM score - to combine ten genome-wide

Variation in peak phase consistency captured by PCM rankingFigure 4
Variation in peak phase consistency captured by PCM ranking. Time courses of genes with different PCM ranks are 
shown: (a) rank 1; (b) rank 100; (c) rank 500; and (d) rank 1000. High peak phase consistency among the ten independent time 
courses can be seen for the high PCM ranked genes in plots (a) and (b), while in the lower PCM ranked genes peak phase con-
sistency is less, which can be observed among fewer time courses ((c) and (d)). (The plots in this figure were created with the 
help of Cyclebase.org due to Gauthier et al.)
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studies for identification of cell cycle oscillating genes in
S. pombe with substantial increase in power and prediction
accuracy.

The premise of our study is simple: consistency in the cell
cycle phase of a gene's peak expression across multiple
independent experiments is an indicator of genuine cell
cycle oscillation. Using information about the consistency
of the phase of peak expression, and adding it to informa-
tion about the strength of oscillation, will give a better
result than the strength of oscillation alone. By design, the
PCM score shows more specificity and sensitivity for iden-
tifying genes with high phase consistency than, for
instance, the previous meta-analysis by Marguerat et al.
which combined p-values for periodicity and expression
(Fig. 3); the relatively lower phase variance of genes that
received higher ranks by PCM than by Marguerat et al. is
statistically significant (p-value < 2.2 × 10-16 for two-sam-
ple t test). Thus our PCM meta-analysis helps to discover
genes that are weakly but consistently oscillating.

We observed low circular variance (< 0.4) across 10 exper-
iments for more than 50% of all genes in S. pombe (Addi-

tional file 2; Fig. S2a). In fact, the count increased to more
than 2,900 genes when the experiment in which a gene
deviated most from its median phase was excluded from
variance computation (Additional file 2; Fig. S2b). Under
the assumption that a gene which is not cell cycle oscillat-
ing should peak, with whatever amplitude, at random
phases in different independent cell cycle experiments, we
tested every gene for phase uniformity over a circular
range [29], and for 1,884 genes, as shown in Fig. 6, the
uniform phase distribution hypothesis was rejected at sig-
nificance level 0.05 (of which 1,189 genes were rejected at
level 0.01). Indeed a closer look at the peak phases of
genes that were not identified as periodic by earlier studies
show significant phase consistency over several experi-
ments (Fig. 4). These observations motivated us to design
the PCM score for systematic phase-coupled meta-analysis
of multiple time course experiments, and to re-rank all
genes in S. pombe based on it.

The effectiveness of PCM scoring can be illustrated using
the contrasting examples of SPAC6G9.06C and
SPAC27D7.09C. The former (a.k.a. pcp1) is a weakly oscil-
lating but known cell cycle gene; Fig. 2c shows PCM vec-
tors of moderate magnitude representing its weak
oscillation in ten experiments. Marguerat et al. did not
rank the gene among the top 1,000 nor included it as cell
cycle oscillating. However, we note that the same vectors
show high peak phase consistency with similarity of direc-

Difference of PCM scores with real and random phasesFigure 5
Difference of PCM scores with real and random 
phases. For each gene, the PCM score was computed as 
sum of vectors (see Methods). Then for the same gene, a 
random-phase PCM score was computed as sum of vectors 
with the original magnitudes but randomly-chosen phase 
angles. For every gene, the difference between its original 
PCM score and its random-phase PCM score was then com-
puted, and plotted in increasing order from left to right. To 
the right of the dotted line are 3,200 genes where the differ-
ence is positive; i.e., for these genes, the cell cycle phases of 
peak expression in the time courses are less variable than the 
randomly distributed phases.

Statistical significance of cross-experiment phase consistencyFigure 6
Statistical significance of cross-experiment phase 
consistency. Approximately 1,900 genes can be rejected at 
level 0.05 for the null hypothesis that their peak phases 
across experiments are distributed uniformly over a circular 
range.
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tion. As a result, the gene obtained PCM rank of 259.
Indeed, the GO functional annotation for the gene is as
follows: chromosome segregation; microtubule nuclea-
tion; mitotic cell cycle spindle assembly checkpoint;
mitotic metaphase/anaphase transition. Moreover, its S.
cerevisiae ortholog YDR356W is known to be phosphor-
ylated by Mps1p in cell cycle-dependent manner. On the
other hand, SPAC27D7.09C is in general strongly
expressed, as seen in the form of large magnitude PCM
vectors in Fig. 2d. However it is a known heat shock stress
responder which has mediocre cell cycle peak phase con-
sistency across ten experiments as can be observed by the
inconsistent direction of the vectors. Marguerat et al.
ranked it among their top 300 genes and included it as cell
cycle oscillating while PCM penalized its phase inconsist-
ency and assigned it a much lower rank of 1,464.

Many of the new cell cycle oscillating genes peak in early
to mid G2 phase, and trough in mitosis. A cluster of 44
similar genes was described by Oliva et al. [9] as the
"kap123" cluster, which contains many genes involved in
ribosome biogenesis (note that this cluster does not con-
tain many actual components of the ribosome; it contains

only a few actual ribosomal protein genes. The vast major-
ity of the ribosomal protein genes form a separate cluster
that we do not discuss here.). Using the new cell cycle
genes, and a two-step clustering algorithm, we enhanced
the "kap123" cluster to form the Cribo cluster of 103 genes,
many of which pertain to ribosome biogenesis. The pres-
ence of a larger number of genes allowed us to identify a
statistically significant motif {TCG}{TC}TCGTTA in
more than half of all the genes in Cribo. The motif was
found to be conserved in the regulatory sequences of a
similar percentage of orthologs in fission yeast S. japoni-
cus. Searching the TRANSFAC binding site database yields
close matches with motifs for several Hox proteins:
chicken HOXA4 (entry: TTCTCGTTATCT) and human
HOX11 (TGACCGgTCGTTAA). Interestingly, HOX11 is a
homeodomain transcription factor which is known to be
cell-cycle regulated [30]. Further, it interacts directly with
protein phosphatases that normally regulate cell cycle
check point in G2-phase [31]. We note that in higher
eukaryotes, ribosomal RNA transcription (which is
dependent on RNA polymerase I) is inhibited during
mitosis; this might also be true in S. pombe, and if so, the
matching trough in the ribosomal biogenesis genes we see
in Cribo might be a response to a lack of ribosomal RNA.

Our work here carries on from the analysis of Marguerat
et al. [11], in part because we wished to show the power
of our new method by comparing our results to previous
results for the same data. Thus, we have used the same
data as Marguerat et al., and we have also used their "reg-
ulation" and "periodicity" scores to calculate the magni-
tude of our vectors. However, Marguerat et al. concluded
that the data supported identification of about 500 cell
cycle oscillating genes, while we believe it supports iden-
tification of about 2000 such genes. There are at least two
reasons for this difference. First, because we are using con-
sistency of peak phase in addition to regulation scores and
periodicity scores, we are using more of the information
inherent in the data, not just within-experiment but also
across experiments, and this gives us greater power. Sec-
ond, we make different assumptions than Marguerat et al.
with regard to permutation testing. We use the null
hypothesis that all variations in the experimental meas-
urements in a time course are due to random noise; our p-
values are relative to this null hypothesis. In contrast, Mar-
guerat et al believe that random noise null hypothesis
may be naive; for instance, there could be effects such that
experimental measurements in adjacent time points are
correlated and thus not independent. If so, p-values calcu-
lated by permutation testing on the null hypothesis of
completely random noise would be too small [32]. Mar-
guerat et al. made an ad hoc adjustment for this possibility
and then normalized (and raised) all their initially calcu-
lated p-value distributions around the median p-value of
each distribution. We feel that this is a somewhat aggres-

Periodic oscillation of 1,275 "non-periodic" genesFigure 7
Periodic oscillation of 1,275 "non-periodic" genes. 
After removal of genes identified as periodic in the Oliva et 
al. and Marguerat et al. studies from the top 2,000 PCM 
ranked genes, there are 1,275 genes remaining. In this figure, 
these 1,275 genes are stacked top to bottom in phase order. 
Cyclic behavior is apparent. The time courses a-e are from 
Rustici et al., f-g from Peng et al., and h-j from Oliva et al. 
Block k consists of samples from transcription factor knock-
out and overexpression experiments (i.e., this block does not 
contain a cell cycle experiment). The color band "Phase" 
marks the phase distribution (red-G2, green-M, purple-G1, 
blue-S). A high resolution version is available in additional file 
3.
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sive adjustment that increases p-values significantly, thus
significantly decreasing the apparent number of cell-cycle
oscillating genes. While we completely agree with Mar-
guerat et al., and Futschik and Herzel [32], that the null
hypothesis of completely random noise may be too sim-
ple, which if true would lead to p-values that are too
small, on the other hand, there is no objective, quantifia-
ble alternative, and we do not wish to make an ad-hoc
adjustment. Thus, at least for the time being, we feel that
the null hypothesis of random noise is the best we can do.
In any case, regardless of statistical arguments, it is visu-
ally and intuitively clear from Fig. 7 that there are many
more than 500 cell cycle oscillating genes.

Marguerat et al. also argue for a relatively small number of
cell cycle oscillating genes using benchmark sets of known
cell cycle oscillating genes. They choose three sets of
benchmark cell cycle genes, consisting of 40 very strongly
oscillating genes whose periodicity has been demon-
strated in small scale experiments (set B1); genes whose
promoters are bound by the known cell cycle transcrip-
tion factors Cdc10, Res1, Res2 (all three of these being
components of MBF) or Fkh2 (set B2); and genes shown
in expression experiments to be the targets of the tran-
scription factors Ace2, Sep1, or Cdc10 (set B3). Marguerat
et al. find that their top-ranked 500 cell cycle genes are
enriched for the genes in these benchmark sets, but that
there is little if any enrichment after the top 500. How-

ever, we feel this argument is unconvincing. The bench-
mark sets contain strongly oscillating cell cycle genes, or
genes controlled by a small number of powerful cell cycle
transcription factors. Cell cycle oscillating genes of dis-
tinctly different kinds (e.g., genes weakly regulated by
other transcription factors, or by RNA half-life, or by chro-
matin condensation) are not in any of the benchmark sets
at all. Thus, for example, many of the genes we find
ranked between 500 and 2000 are in the Cribo cluster
described above. These are not strongly oscillating, and
are not regulated by any of the transcription factors used
for benchmark sets 2 or 3, and are not significantly (if at
all) represented in any of the benchmark sets. In short,
since the benchmark sets consist of strongly oscillating
genes controlled by a few known transcription factors, it is
not surprising that these genes are not enriched amongst
weakly oscillating genes controlled in other ways.

The biological relevance of 2000 cell cycle oscillating genes
By "cell cycle oscillating" gene, we mean a gene whose
expression oscillates up and down, however slightly, as a
function of position in the cell cycle. Traditionally, one
thinks in terms of genes whose cell cycle oscillation is
adaptive; that is, genes where there is a selective advantage
to the organism if gene expression oscillates. Examples of
such genes are cdc22, encoding ribonucleotide reductase,
and the histone genes, encoding histone proteins. Ribo-
nucleotide reductase is needed only for making deoxyri-

The enhanced ribosomal biogenesis cluster CriboFigure 8
The enhanced ribosomal biogenesis cluster Cribo. The 103 genes constituting the "Cribo" cluster, expression of these 
genes peaks in G2 phase. The genes in this cluster are marked with 'Cribo' in the PCM rank list (Additional file 1). The time 
courses a-e are from Rustici et al., f-g from Peng et al., and h-j from Oliva et al. Block k consists of samples from transcription 
factor knockout and overexpression experiments. A high resolution version is available in additional file 4.
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bonucleotides in preparation for immediate DNA
synthesis; otherwise it is a metabolically-expensive hin-
drance. Similarly, histone proteins are needed only for
making nucleosomes during DNA replication; otherwise
they interfere with proper DNA metabolism. We refer to
such genes, where the oscillation is adaptive and purpose-
fully controlled by the cell, as "cell cycle regulated" genes.

Recently, the issue of "how many genes are cell cycle reg-
ulated" has received some attention [33,34]. Although we
believe that 2000 fission yeast genes, or even more, do
oscillate in expression at least slightly as a function of cell
cycle, the oscillations of many of these genes may not be
adaptive. Instead, many oscillations may be indirect, una-
voidable consequences of the cell cycle, and may have no
adaptive significance. For instance, in preparation for
mitosis, chromosomes condense. It seems likely that
chromosome condensation might interfere with tran-
scription. Indeed, in higher eukaryotes, bulk transcription
is greatly inhibited during mitosis. Genes whose transcrip-
tion is inhibited during mitosis, perhaps as either a direct
or indirect effect of chromosome condensation, would be
detected in microarray experiments as cell cycle oscillating
genes.

Thus, we suggest that there may be two classes of cell cycle
oscillating genes. First, there are what we call "adaptive"
oscillations, i.e., oscillations that are a selective advantage
for the organism; cdc22 and histones are examples of
genes with adaptive oscillations. Second, there might be
what we call them "incidental" oscillations, i.e., oscilla-
tions that are not adaptive, but instead are a consequence
of some other cell cycle event, such as chromosome con-
densation. At present there is no good way of distinguish-
ing adaptive cell cycle regulation from incidental
oscillation, but it seems likely that most strong oscilla-
tions, associated with a cell cycle transcription factor, are
probably adaptive, while weak oscillations, not associated
with a cell cycle transcription factor, may (or may not) be
incidental.

Finally, we note that while evidence has accumulated for
more and more cell cycle oscillating genes, parallel results
have been obtained for genes oscillating with a circadian
rhythm [35-37]. Exactly as in the case of cell cycle genes,
microarrays have allowed the accumulation of large
amounts of data for circadian oscillations, and exactly as
in the case of cell cycle, increasingly powerful statistical
methods have allowed the discovery of an increasingly
large number of genes with a circadian oscillation. The
most recent studies suggest that nearly all mammalian
genes have at least a slight circadian oscillation [37]. As in
the case of the cell cycle genes, these circadian rhythms
may sometimes be adaptive, and sometimes indirect and
incidental.

Conclusion
In conclusion, we have developed a new meta-analysis
method that uses more of the information inherent in
microarray studies of cell cycle gene expression. This extra
information allows us to detect a larger number of cell
cycle oscillating genes. Because the proportion of oscillat-
ing genes is very large - one quarter to one half of all genes
in the organism - we suggest that many of them may be
oscillating for incidental reasons, rather than because the
oscillation is necessarily adaptive.
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