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Hi-C experiments measure the probability of physical 
proximity between pairs of chromosomal loci on a genomic 
scale. We report on several systematic biases that substantially 
affect the Hi-C experimental procedure, including the distance 
between restriction sites, the GC content of trimmed ligation 
junctions and sequence uniqueness. To address these biases, we 
introduce an integrated probabilistic background model and 
develop algorithms to estimate its parameters and renormalize 
Hi-C data. Analysis of corrected human lymphoblast contact 
maps provides genome-wide evidence for interchromosomal 
aggregation of active chromatin marks, including DNase-
hypersensitive sites and transcriptionally active foci. We 
observe extensive long-range (up to 400 kb) cis interactions at 
active promoters and derive asymmetric contact profiles next 
to transcription start sites and CTCF binding sites. Clusters of 
interacting chromosomal domains suggest physical separation 
of centromere-proximal and centromere-distal regions. These 
results provide a computational basis for the inference of 
chromosomal architectures from Hi-C experiments.

The structures of chromosomes and the interactions among them 
are a fundamental component of any physical model of gene and 
genome regulation. Chromosomal organization has therefore been 
explored for many decades using methods that vary in scale and 
resolution1–4. The inherent throughput limitations of the tradi-
tional visual methods for quantifying chromosomal structure have 
been alleviated over the last few years with the development of the 
chromosome conformation capture (3C) technique for quantifying 
contact probabilities between specific loci5–7, and with the initial 
scaling of this technique to assays quantifying the contacts of one 
locus versus the entire genome8,9. The recent exciting introduction 
of the Hi-C method10 for mapping pairwise contacts on a genome-
wide scale means that high-throughput genomic techniques may 
soon pave the way to physical and quantitative three-dimensional 
models of genome regulation.

To fulfill this promise, 3C techniques and their derivations must 
become robust and quantitative. The complicated experimental 
procedure that includes fixation, digestion, ligation and amplifica-
tion or capture of 3C or Hi-C products necessarily carries with it 
numerous biases and experimental artifacts11. As the experimental 
readout becomes more extensive (from few quantitative PCR rea-
douts in a typical 3C experiment, to billions of sequenced bases in 
a Hi-C experiment), the need for comprehensive computational 
modeling and the ability to develop powerful statistical approaches 
increases markedly.

In this analysis we introduce an integrated probabilistic model for 
analyzing Hi-C experiments, working toward identification of the 
major systematic biases in the experiment and developing tools for 
robust interpretation of the data following their normalization. Using 
the new tools, we reanalyze lymphoblast Hi-C data from experiments 
that employed two different restriction enzymes and show that nor-
malized replicates are robustly comparable. Normalized Hi-C contact 
maps provide genome-wide evidence for trans clustering of hypersen-
sitive sites and transcriptional foci, and reveal remarkable enrichment 
of long-range cis contacts at active promoters. Furthermore, the data 
allow the quantification of symmetry breaking in contact probability 
decay near active transcription start sites (TSSs) and binding sites of 
the insulator binding protein CTCF, and uncover a partitioning of the 
transcriptionally nonactive fraction of the genome into a centromere-
proximal cluster and a centromere-distal cluster. With the expected 
continuous improvement in sequencing depth, higher resolution 
normalized Hi-C contact maps have the potential to transform our 
understanding of chromosomal architecture.

RESULTS
Source of systematic biases in Hi-C experiments
Hi-C experiments are designed to measure the contact probability 
between different chromosomal loci on a genome-wide scale. This 
is done by cleaving fixed chromosomes into restriction fragments 
using six-cutter restriction enzymes and ligating fragment ends 
to form ligation junctions connecting two loci that are nearby in 
three-dimensional space. These junctions are further processed  
(by shearing, biotin-based enrichment and size selection) to  
generate a pool of trimmed ligation products for paired-end 
sequencing. In a recent innovative work, GM06990 human lympho
blast cells were assayed using two types of restriction enzymes, 
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generating 29 million reads linking 1.67 million potential HindIII 
restriction fragments and 28 million reads linking 1.5 million NcoI 
restriction fragments10. We survey several potential sources for 
biases in the complex Hi-C experimental procedure and demon-
strate how these biases affect the two replicate experiments under 
study (Fig. 1). As the strongest phenomenon affecting global con-
tact probabilities is the chromosomal territory effect, we study 
biases affecting interchromosomal (trans) contacts separately from 
those affecting intrachromosomal (cis) contacts.

We first observed that part of the Hi-C sequence pairs is likely to 
represent ligation products between nonspecific cleavage sites rather 
than restriction fragment ends. As shown (Fig. 1a,b), 22% of the trans 
read-pairs in the HindIII experiment and 12% in the NcoI experiment 
were mapped with a generally uniform distribution over the restric-
tion fragments, in contrast to the majority of reads that mapped with 
the expected distribution within 500 bp (the size selection parameter) 
of the nearest restriction site. The cleavage and ligation events that 
generated these reads are unlikely to have occurred on cutter sites. We 
therefore discard them from downstream analysis. Another potential 
source of Hi-C bias is the length of restriction fragments (in other 
words, the distance between adjacent cutter sites). For example, 
long and short fragments may have variable ligation efficiencies or 
compete differently on ligations with cis and trans fragment ends 

(Fig. 1c). As shown (Fig. 1d), restriction fragment lengths are indeed 
correlated with trans-contact probabilities. Notably, although the 
effect is nonlinear (and the fragment pools in the two experiments 
are different), the bias is highly reproducible (HindIII versus NcoI 
element-wise Spearman’s ρ = 0.96). The effect of fragment lengths 
on cis-contact probabilities was also reproducible between experi-
ments but was shown to be markedly different from the trans effect 
(Supplementary Fig. 1).

A known major source of bias in sequencing experiments is the 
nucleotide composition of the DNA under study12,13. We outline key 
steps in the Hi-C procedure that are likely to be affected by the GC con-
tent near the ligated fragment ends (Fig. 1e). Analysis of the correlation 
between the GC content of the 200 bp next to the restriction site and the 
probability of trans contact (Fig. 1f) shows that GC content is a source 
of incompatibility between the replicates. The GC-content bias maps for 
the HindIII and NcoI data sets were inversely correlated (element-wise 
ρ = −0.14), providing a partial explanation for a global low correla-
tion between the derived trans-contact maps. A final genomic variable 
affecting trans-contact probabilities in a purely technical fashion is the 
mappability (or genomic uniqueness, see Online Methods) of the frag-
ment ends (Fig. 1g). Mappability is predicted and confirmed (Fig. 1h) 
to have a linear effect on the estimated trans-contact probabilities. In  
summary, we characterize several sources of potential systematic bias  
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Figure 1  Sources of Hi-C biases. (a,b) Spurious 
ligation products. Hi-C ligation products (shown 
schematically in a) are expected to map near 
restriction sites because of size selection. The sum 
of distances from mapped Hi-C sequences to the 
nearest restriction sites was computed for each  
Hi-C paired read, and the distribution of distances 
was reconstructed (b). Two distinct populations 
of reads are observed, one distributed as expected for normally ligated and size-selected products (HindIII 78%, NcoI 88%) and one including 
reads mapped farther away from restriction sites. (c,d) Fragment lengths and ligation efficiency. Restriction fragments of different lengths are shown 
schematically in c and can be hypothesized to affect crosslinking and ligation efficiency. The trans Hi-C coverage enrichment is defined as the ratio 
between the observed number of trans contacts and the total number of assayed fragment pairs. Shown are coverage enrichments for all of the fragment 
ends, binned into 20 equal-sized bins according to fragment length (x and y axes). Similar trends are observed for the HindIII and NcoI experiments. 
(e,f) Local GC content and Hi-C coverage. Ligation product processing and sequencing may be biased by GC content (e). Trans-contact enrichments (f)  
stratified according to the GC content of the 200 bp near the restriction fragment ends show intense and contrasting GC biases for the HindIII and 
NcoI experiments. (g,h) Effect of sequence uniqueness. Different fractions of uniquely mappable short tags are observed next to restriction sites (g). As 
shown in h, this has a direct empirical linear effect on Hi-C coverage.
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in the Hi-C data sets, showing that in some cases their effect may 
decrease the correlation between replicate experiments.

A probabilistic model for Hi-C contact maps normalization
To account for the different sources of biases discussed above, we defined 
a multiplicative probabilistic model that computes the prior probability 
of a trans (and, separately, cis) contact between two fragment ends given 
their mappability, fragment length and GC content. We developed an 
algorithm to estimate maximum-likelihood model parameters given 
an empirical raw contact map (Supplementary Fig. 2) and applied it 
to the HindIII and NcoI maps separately. By combining the different 
effects into one correction factor per pair of fragment ends, the model 
predicts a sixfold difference between the chance of covering ligation 
pairs with favorable (upper 10%) and unfavorable (lower 10%) fragment 
parameters (Fig. 2a). We used distributed computing to calculate the 
expected coverage for each of the ~1 × 1012 potential ligation events in 
the genome and derived normalized trans-contact maps by dividing the 
observed number of contacts between 1-Mb chromosomal bins by the 
expected number of contacts predicted by the model for these regions 
(Online Methods). We found that the overall element-wise correlation 
among trans-contact maps changes from ρ = −0.11 on raw counts, to 
ρ = 0.37 on raw counts normalized by number of fragment pairs per 
chromosomal bin, to ρ = 0.59 after full normalization (Supplementary 
Fig. 3). To visualize the consistency of the derived maps we plotted the 

total number of trans contacts involving each of the chromosomal bins 
(one-dimensional or 1D coverage). We found that the observed 1D  
coverage profiles of the two replicates were poorly reproducible  
(Fig. 2b,c, ρ = 0.19). We then divided the raw 1D coverage by the 
model-expected number of trans contacts and plotted the normalized 
profiles, revealing a highly reproducible behavior (Fig. 2d, ρ = 0.8 for all 
chromosomes). The probabilistic model therefore captures core experi-
mental biases affecting Hi-C coverage, allowing the normalized contact 
maps to be interpreted robustly and in a reproducible way.

Trans contacts associate GC-content domains
Regional GC content (computed over 1-Mb windows) is highly cor-
related with numerous large-scale genomic features, including gene 
density, banding patterns, repetitive content, epigenetic marks and 
more. In contrast, the probabilistic Hi-C model is designed to control 
for technical amplification biases associated with local-sequence GC 
content (over a few hundred bases). It is therefore important to verify 
that the model does not indirectly cancel potential physical contacts 
between chromosomal regions with high or low regional GC con-
tent. We addressed this question by computing the likelihood of the 
model when computing GC content in windows of increasing sizes 
upstream of the restriction site. For control we used the GC content 
of windows downstream of the restriction site (as these are not being 
processed during the experiment). We found that the model predicts 
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the empirical data optimally when the GC content is computed from a 
200-bp window upstream (but not downstream) of the restriction site 
(Fig. 2e). This trend is observed consistently for the HindIII and NcoI 
experiments despite their anticorrelated GC trends (recall Fig. 1f), 
implying that the model’s GC-content correction is adequately tar-
geted at technical biases caused by local GC content. The corrected 
maps are therefore expected to maintain large-scale structures asso-
ciating trans contacts with regional GC content or related genomic 
features, if such structures exist. The data (Fig. 2f) show consistent 
preferential contacts among chromosomal domains with low regional 
GC content and among domains with high regional GC content. The 
stringent design of the model assures that the clustering of domains 
with low and high GC content is independent of the local GC con-
tent of the sequenced fragments. We hypothesize that these contact 
preferences are driven by genomic and epigenomic factors that are 
themselves correlated with GC content, as we discuss next.

Trans-chromosomal contacts around epigenetic hotspots
A frequently discussed and studied aspect of nuclear architecture is the 
aggregation of chromosomal loci that are transcriptionally active4,14,15. 
We studied normalized Hi-C trans-contact maps to characterize such 
architectural features from a genome-wide (although low-resolution) 

perspective. Using data on the linear epigenomic makeup of human 
lymphoblast cells16, we partitioned Hi-C fragment ends into groups 
according to their distance to the nearest DNase-hypersensitive site 
(DHS), or the nearest H3K4me3, H3K4me1 or RNA polymerase 
(PolII) peak (Fig. 3a, Online Methods). We found that fragments 
near active chromatin marks are enriched for trans contacts and that 
regions remote from active marks were also more likely to self-interact 
than expected by chance (Fig. 3b). Stratified control for regional GC 
content confirmed that these enrichments cannot be explained merely 
by the known high regional GC content at active sites (Supplementary 
Fig. 4). Analysis of the correlation between trans contacts and his-
tone marks, controlled for DHS occupancy, suggested that hyper-
sensitivity may be associated with enriched contact probability more 
directly than other epigenetic marks, because regions proximal to 
DHS foci tend to be in contact even when other epigenetic marks are 
low, whereas the converse is usually not true (Supplementary Fig. 5, 
compatible with a recent report17). Taken together, normalized Hi-C 
maps provide genome-wide evidence for preferential aggregation of 
active chromosomal domains. Because multiple epigenetic factors 
are correlated with active chromatin, higher resolution analysis will 
be required to resolve the complex interplay between transcription, 
epigenetic marks and nuclear clustering.
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Figure 3  Chromosomal architecture around active chromatin. 
(a) Fragment ends (NcoI) were binned according to the 
distance to the nearest H3K4me3, H3K4me1, DNase-
hypersensitivity and RNA PolII peak. Bar graphs depict 
the number of fragment ends in each bin. (b) Contact 
enrichment for a pair of bins is defined as the ratio between 
observed and expected number of trans contacts between 
all fragment ends associated with the two bins. Enrichments 
are further normalized by the average values for each row 
and each column (top bar graphs, see Online Methods) and 
are depicted as color-coded matrices. In all cases the data 
reflect a preference for contacts between active foci (bottom 
left) and between regions that are remote from them (top right). (c) Shown are the differences in NcoI log2 enrichment values (y axis) when comparing 
cis contacts involving fragment ends up to 5 kb upstream of a TSS and controls. The data are generated for a set of spatial bins representing contacts 
over specific chromosomal distances (x axis), separately for TSSs that were marked as active (red) and inactive (blue). Confidence ranges represent 
propagated binomial standard deviation. (d) Same as c, but for fragment ends within 5 kb downstream of a TSS. (e) Upstream contact excess was 
computed by subtracting the downstream contact enrichments profile from the upstream contact enrichment profile. Downstream contact excess was 
defined conversely. The figure depicts a positive upstream contact excess from the promoter side of active TSSs, and a positive downstream contact 
excess from the gene side of active TSSs. Excess is observed strongly up to 40 kb, and more weakly for up to 1 Mb from the TSS.
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Long-range cis contacts around active TSSs
Analysis of the distribution of Hi-C cis contacts around active, 
H3K4me3-occupied TSSs demonstrates a specific local chromosomal 
architecture around transcriptionally active sites. As shown (Fig. 3c), 
the cis contacts involving restriction fragment ends located 0–5 kb 
upstream of an active TSS (that is, on the promoter side) are strongly 
enriched 20 kb to ~400 kb upstream and, in a weaker fashion, 40 kb 
to ~400 kb downstream of the TSS. This increase in the probability of 
long-range contacts may be associated with the active transcriptional 
state, as fragments located upstream of an inactive TSS show a much 
weaker enrichment over the controls. A mirrored phenomenon is 
observed when studying contacts involving fragment ends 0–5 kb 
downstream of an active TSS on the gene side (Fig. 3d). Fragment 
ends near the TSS (at both the promoter and gene sides) give rise 
to an asymmetric cis-interaction profile (Fig. 3e). Remarkably, even 
though the promoter and gene fragment ends used for reconstructing 
the cis profiles are only 5 kb apart on average (with a TSS separat-
ing them), the asymmetries of the resulting cis profiles are reversed. 
Excess upstream contacts are observed from the promoter side, and 
excess downstream contacts are observed from the gene side sug-
gesting that active TSSs may participate in forming chromosomal 
boundaries. In summary, pooling together cis-contact profiles pro-
vides strong evidence for an architectural role of TSSs in organizing 
their surrounding domains and confirms the abundance of long-range 
cis-chromosomal contacts associating active TSSs with neighboring, 
potentially regulatory, loci.

Asymmetric contacts around CTCF binding sites
CTCF binding sites are studied extensively in the context of insulation 
of chromosomal domains and are hypothesized to provide chromo
somes with a grid of highly organized anchor points facilitating 
domain demarcation and looping interactions18–20. Analysis of the 
trans contacts of fragment ends grouped according to their distance 
from a CTCF site reveals preferential clustering of the CTCF-bound 
region (Fig. 4a), in a way similar to marks associated with active 

chromatin (stratified control for DHS is shown in Supplementary 
Fig. 6a). Analysis of cis contacts involving fragments located  
0–5 kb on one side of a CTCF binding site reveals contacts asymmetry 
that persists over a range of up to 400 kb, confirming the correlation 
between CTCF and organized local chromosomal domains (Fig. 4b–d).  
Notably, although 15–20% of the TSSs show evidence for CTCF bind-
ing, the contact asymmetries associated with CTCF sites and TSSs 
are observed independently (Supplementary Fig. 6b,c). The local 
changes in genome organization around CTCF sites are likely to com-
bine with additional factors and form larger domains. Demarcation 
and isolation of such domains were previously attributed to inter
actions with the nuclear membrane (or the nuclear lamina)21,22. We 
next studied trans-contact enrichment as a function of the chromo-
somal association with the nuclear lamina. Even though the analysis 
was based on fibroblast lamina interaction profiles (that are likely to 
be only partially conserved in lymphoblasts22), we found that lamina- 
bound and lamina-unbound regions show a tendency to self- 
aggregate (Supplementary Fig. 7a). Of note, H3K4me3 transcription 
hot spots that are within lamina-associated domains do not preferen-
tially interact, in marked contrast to the behavior of transcription sites 
that are away from the lamina (Supplementary Fig. 7b).

Contact clustering of trans maps
Although current sequencing depth limits the resolution of the 
normalized Hi-C trans-contact map, several architectural features 
are noticeable even when using a coarse-grained view (Fig. 5a).  
Chromosomal territories naturally stand out as the strongest  
features defining the map. To reveal subtler structures, we have 
developed a simple approach for clustering chromosomal domains 
using only trans contacts. In short, our clustering strategy groups 
together chromosomal domains (1 Mb) on the basis of their trans 
contacts alone, allowing clustering of elements on the same chromo
some only through a common third party. Previous analysis of the 
raw Hi-C data suggested the existence of two compartments in 
the genome, one active and the other inactive10. Clustering of the  
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Figure 4  Chromosomal architecture around CTCF 
binding sites. (a) Contact matrices were projected on 
genomic bins generated according to the distance 
to the nearest CTCF site (NcoI). Enrichment values 
(normalized as in Fig. 3b) are depicted as a color-
coded matrix (column averages are depicted on 
top). CTCF sites, but also regions that are remote 
from any CTCF site, are shown to interact more than 
expected by chance. (b,c) Shown are the normalized 
cis-contact profiles (computed as in Fig. 3c,d) for 
fragment ends located on the 5′ side (b) or the  
3′ side (c) of CTCF sites. Increased contact 
probability is observed in a region up to 400 kb 
from the site, but contacts that are directly crossing 
the binding sites are depleted. (d) Upstream 
contact excess was computed by subtracting the 
downstream contact enrichments profile from the 
upstream contact enrichments profile. Downstream 
contact excess was defined conversely. The data 
show a positive upstream contact excess when 
analyzing fragment ends in the 5′ side of a CTCF 
site, and a positive downstream contact excess 
when analyzing fragment ends in the 3′ side of a 
CTCF site. Although the CTCF asymmetry profiles 
are similar to those observed near active TSSs, the 
two effects are observed independently, as shown in 
Supplementary Figure 6b,c.



©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

1064	 VOLUME 43 | NUMBER 11 | NOVEMBER 2011  Nature Genetics

a n a ly s i s

normalized contact maps reveals a finer 
cluster structure in a reproducible manner 
(Fig. 5b and Supplementary Fig. 8). One 
cluster, covering 31% of the genome, con-
sists of GC-rich and transcriptionally active 
loci, correlating well with the preferential 
contacts between active epigenetic marks 
discussed above (Fig. 5c). This cluster is 
more often observed at small chromosomes  
(with the exception of the gene-poor chromo
some 18) and therefore underlies the previ-
ously reported coclustering. The other two 
clusters are characterized by low genomic 
activity and low GC content. The two low-
activity clusters cannot be distinguished based on available func-
tional or epigenomic information, yet the genome-wide cluster 
distribution (Fig. 5d) reveals a consistent physical partitioning of 
chromosomes into centromere-proximal (28%) and centromere-
distal domains (41%). It currently cannot be resolved whether the 
mechanisms contributing to the observed physical clustering of cen-
tromere-proximal domains involve transient cell cycle–dependent 
effects, or reflect a stationary nuclear architecture. A similar effect, 
albeit on chromosomes that are two orders of magnitude smaller, 
was recently observed in yeast23.

DISCUSSION
The Hi-C approach for genome-wide mapping of chromosomal 
contacts is a remarkable experimental achievement, with a poten-
tial to reveal chromosomal architecture in a comprehensive and 
unbiased way. The applicability of the technique relies on extensive 
computational modeling to ensure that the complex and multi-
staged experimental procedure and the millions of reads generated 
by it are fully exploited. We have presented a probabilistic model 
for the analysis of Hi-C chromosomal contact maps and identified 
several sources of systematic biases that affect the prior probabil-
ity of generating and sequencing Hi-C ligation products. Analysis 
of normalized Hi-C contact maps that were derived by the model  

demonstrates how to eliminate these biases and provides reproduc-
ible global insights into chromosome architecture.

The resolution of the Hi-C–derived contact maps analyzed in 
this work is limited by the number of available reads and cannot 
be expected to reveal locus-specific architectural details that are 
finer than several megabases in scale. We have shown here that 
with appropriate control, some biological interpretation can still be 
drawn by pooling together chromosomal contacts between regions 
with known biological function or specific epigenetic marks. Using 
this approach, we were able to support the existence of nuclear 
transcriptional foci by identifying enrichment of trans interaction 
between H3K4me3 loci or DHSs, even after controlling for local 
and regional GC-content effects. The data also show a prototypical 
architecture of chromosomal contacts around TSSs and CTCF bind-
ing sites, providing a genome-wide confirmation for extensive long-
range cis contacts and asymmetric structure around these elements. 
Another useful strategy for the analysis of coarse-grain Hi-C maps 
is the application of global clustering to reveal the overall chromo
somal architecture of the nuclei under study. This unsupervised 
approach demonstrated the existence of one cluster representing a 
self-interacting core of gene-rich, active domains and partitioned 
the remaining nonactive genome into a centromere-proximal cluster 
and a centromere-distal cluster.
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Figure 5  Contact map clustering. (a,b) The 
normalized trans-contact map (a) and its 
clustering to three groups (b) are depicted for 
the NcoI data set. Chromosomes were divided 
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by enrichment for intracluster contacts and 
depletion of intercluster contacts. Cis contacts, 
which are not used in the clustering, are 
colored gray. (c) Properties of contact map 
clusters. Shown are the distribution of regional 
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for the three clusters. The red cluster strongly 
correlates with marks of active chromatin, 
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It is expected that a large number of Hi-C studies providing 
improved coverage and comparing different cell types will become 
available in the near future. The approach we propose here can 
facilitate the analysis of these data, aiming at the characterization of 
chromosomal structures at higher resolution and leading toward the 
association of these structures with regulatory function.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Mapping reads to the genome. Hi-C raw reads were downloaded from 
NCBI (GSE18199), where HindIII (AAGCTT) was present in two replicates 
(13,512,316 and 16,186,884 reads), and NcoI (CCATGG) was present in one 
replicate with 28,658,937 reads. The first 50 bp from the two sides of each 
paired-end read were separately mapped to the genome (build hg18) using 
MAQ24 with default parameters. Reads for which both sides were uniquely 
mapped (MAQ quality > 30) were kept, leaving us with 6,917,680 and 7,781,213 
pairs for HindIII, and 15,515,266 pairs for NcoI.

Mappability score. Each restriction fragment has two fragment ends that 
can participate independently in ligation events. The coordinates of the frag-
ment ends were computed by scanning the genome assembly (hg18) for the 
enzyme cutter sites (HindIII, 1.67 million ends; NcoI, 1.5 million ends). To 
compute the fragment end mappability score the whole-genome sequence was 
split into artificial reads (50-bp reads, starting every 10 bp) and then mapped 
back to the genome using MAQ. For each fragment end the mappability score 
was then defined to be the portion of artificial reads mapped uniquely to the 
genome (MAQ quality > 30) within a 500-bp window starting at the fragment 
end toward the fragment. After discarding fragment ends with a mappability 
score less than 0.5 we are left with 1.52 million HindIII fragment ends and 
1.34 million NcoI fragment ends. Only paired reads that mapped to two valid 
fragment ends were used in downstream analysis.

Identification of nonspecific ligation products. Each paired read is marked 
as a nonspecific cleavage product if the sum of the two distances to the nearest 
cutter sites is larger than 500 bp. Unlike cleavage with restriction enzymes, these 
nonspecific cleavage events depend on local DNA features (such as chromatin 
compaction) and are therefore harder to control for. In this work we analyze only 
cutter-specific cleavage events, which form the main bulk of the data.

Seeds for correction matrices. To robustly assess different biases affecting 
Hi-C coverage we studied separately trans and cis contacts (for cis contacts, 
fragment end pairs that are within less than 1 Mb from each other are not 
used to construct the model). We bin fragment ends according to the length of 
their corresponding fragments into 20 equally sized bins denoted by ( )Bi

len
i = 1
20 .  

The seed matrix for fragment lengths (shown in Fig. 1d) is defined as:

S i j P
O i j
T i jlen
len

len
[ , ] ( / )

[ , ]
[ , ]

,= ⋅1 prior

where Pprior is the prior probability to observe a pair and is equal to the total 
number of observed trans pairs divided by the total number of possible trans 
pairs, Olen[i, j] is the number of observed trans pairs such that one fragment 
end is in bin Bi

len and the other is in bin Bj
len, and Tlen[i, j] is the total number 

of possible unique trans pairs such that one fragment end is in bin Bi
len and 

the other is in Bj
len. The GC-content seed matrix Sgc is computed in a similar 

manner, defining the bins according to the GC content of the 200 bp near the 
fragment end, toward the fragment. Fragment length and GC-content bin 
ranges are given in Supplementary Table 1. The empirical mappability matrix 
Smap (Fig. 1h) is computed in the same manner, using five bins over the map-
pability score (0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, 0.9–1.0).

Learning the correction model. Given two fragment ends a, b, the probability 
P (Xa, b) to observe them in a paired-end read (that is, to get a pair of reads 
that map uniquely to them) is defined as:

P X P F a b F a b M a M ba b en len lenl( ) ( , ) ( , ) ( ) ( ),, = ⋅ ⋅ ⋅ ⋅prior gc gc gc

where alen, blen, agc, bgc are the fragment length bins and GC-content bins of the 
two ends, Flen (alen, blen), Fgc (agc, bgc) are two real valued functions, and M(a), 
M(b) are the mappability scores of the ends. Our algorithm uses maximum 
likelihood to estimate Flen (alen, blen) and Fgc (agc, bgc) (each is defined by a sym-
metric matrix with 400 = 20 · 20 parameters). The likelihood function is:

L F F P X P X

P X

len a b
a b I

a b
a b I

a b
cn

( , ) ( ) ( ( ))

( )

,
{ , }

,
{ , }

,

gc = ⋅ −

= ⋅

∈ ∉
∏ ∏ 1

[[ ( )],
( , , , )

1 −
=

∏ P Xa b
c

c alen a blen b

m

gc gc

where I is the set of observed fragment end pairs, nc is the number of observed 
pairs that match the bin criteria of c, and mc is the number of pairs that match 
the criteria but were not observed. We initialize F Slen len

0 =  and F Sgc
0 = gc  

(as defined in the previous section) and maximize the likelihood function by 
alternating between the optimization of the two matrices:

( ) argmax ( , ),

( ) ar

i

ii

gc gc gc

gc

F L F F F F

F

len
en

len
n

Fl

n n n

n

+ +

+

= =

=

1 1

1 ggmax ( , ),
F

n
l
n nL F F F Flen en len

gc
gc

+ =1

The algorithm repeats the two steps above (using the standard BFGS non-
linear optimization algorithm) until the improvement in the log-likelihood 
is smaller than an arbitrary threshold (1 in our analysis here). The resulting 
correction matrices are similar but not identical to the seed matrices (see 
Supplementary Fig. 2). The adjustment derived by the likelihood optimiza-
tion procedure can be attributed to the cross-correlation of fragment length, 
GC content and mappability.

Projecting the model on epigenetic features. H3K4me3, DNase and CTCF 
enrichment tracks for the GM06990 (ref. 25), PolII and H3K4me1 enrichment 
tracks for the GM12878 (ref. 26) were all downloaded from the UCSC genome 
browser. For H3K4me3 we denote as peaks the top 2% loci, which occupy approxi
mately 120,000 distinct genomic intervals. For H3K4me1 we use the top 1% to 
define peaks (82,000 intervals), and for DNase, CTCF and PolII we use for peak 
definition the top 0.5%, which occupy respectively 40,000, 48,000 and 36,000 
distinct genomic intervals. For all tracks above, each fragment end is assigned a 
value according to the distance between the fragment and the nearest peak. The 
LaminB1 enrichment track for Tig3 lung fibroblasts21 (including data on probes 
with a median distance of 750 bp) was smoothed using 2-kb sliding windows. 
Each fragment end was then associated with a lamina enrichment value according 
to the mean smoothed LaminB1 enrichment of the fragment. Fragment ends were 
binned according to their regional GC-content level (1-Mb windows centered on 
each of the fragment ends), lamina enrichment and distance from the above epi-
genetic peaks. For any arbitrary division of the genome into bins B1, B2, …,Bn we 
then compute two matrices. The matrix O[i, j] contains the number of observed 
contacts between fragment ends in bins [i, j], and the matrix E[i, j] contains the 
total expected number of contacts between all pairs of fragment ends in bins [i, j],  
assuming the background model described above. As the number of fragment 
end pairs is large (order of 1 × 1012), we have implemented an efficient distributed 
computing scheme for computing this matrix. The observed and expected matrix 
marginals are defined as O i O i j

j
[ ] [ , ]= ∑  and E i E i j

j
[ ] [ , ]= ∑ .The normalized 

contact enrichment for a pair of bins Bi, Bj is then computed using the formula 
O i j

E i j N i N j
[ , ]

[ , ] [ ] [ ]⋅ ⋅
,

where 

N i O i
E i

[ ] [ ]
[ ]

=

is a normalization factor that takes into account the variable total coverage 
for different bins.

Stratification controls for GC content or DNase hypersensitivity (as in 
Supplementary Figs. 4 and 5) were performed by considering Cartesian prod-
ucts of two bin sets (for example, GC content and H3K4me3 occupancy) and 
computing normalized contact enrichment between the extended bins sets.

Normalized contact maps. To generate genome-wide contact maps (as in 
Fig. 5a), we divided the genome-wide contact matrix into square 1 × 1 Mb bins. 
We computed a coarse-grained matrix O[i, j] of observed contacts by distributing 
reads among these bins, and a matrix E[i, j] containing the expected number of 
contacts in each bin, assuming the background model described above.

Given current sequencing depth, the expected number of Hi-C reads in 
each square bin is smaller than 1. We therefore smoothed the observed and 
expected contact matrices using linear weights as follows:

O i j O i k j l wgw

W l W W k W
k l[ , ] [ , ] ,,

,
= + + ⋅

− < < − < <
∑
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where W = 10 and
w

k lk l, .=
+ +
1

1

The smoothed expected-contact matrix Egw[i, j] is defined in a correspond-
ing manner.
The genome-wide contacts enrichment matrix is 

D i j
O i j

E i j N i N j

gw

gw gw gw[ , ]
[ , ]

[ , ] [ ] [ ]
,=

⋅ ⋅
where 

N i O i
E i

gw
gw

gw[ ] [ ]
[ ]

=

is a normalization factor that takes into account the variable total coverage for 
different square bins.

Computing average cis profiles. To generate cis-contact enrichment profiles 
around a predefined (for example, active or inactive) set of TSSs, we first 
extracted the set of restriction fragments that have at least one fragment end 
within 5 kb from a TSS in the set and are completely located upstream (defin-
ing the ‘upstream’ profile) or downstream (defining the ‘downstream’ profile) 
of the site. The resulting set of fragment ends defined two sets of the TSS- 
associated fragment ends. We then estimated contact enrichment as a function 
of chromosomal distances for each set of TSS-associated fragment ends as  
follows: (i) computing the observed number of contacts connecting TSS- 
associated fragment ends with fragment ends within bins of chromosomal dis-
tances (defining distances using restriction fragments centers and binning them 
as shown in Figs. 3 and 4); (ii) normalizing the observed contacts profile by the 
number of contacts expected given the probabilistic model described above, 
trained using intrachromosomal contacts that are distant by more than 1 Mb  
(Supplementary Fig. 1); (iii) dividing the resulting normalized cis-contact  
curves, which represent a near-exponential decay in contact probability as a 
function of the distance, by control curves that were derived analogously but 

using random instead of the TSS-associated fragment ends; the result is the 
contact enrichment profile (as in Fig. 3c,d); and (iv) estimating the standard 
deviation of the resulting ratios (used for the confidence intervals in Fig. 3c,d) 
by propagating the binomial errors on the expected number of contacts at each 
spatial bin through the enrichment formula.

To define the active TSS landmarks, we used TSSs from the UCSC known 
gene table with H3K4me3 occupancy in the 30% top percentiles, resulting in 
approximately 17,000 and 19,000 fragment ends upstream and downstream, 
respectively, of the TSS. Inactive TSS landmarks were defined as the bottom 60%, 
resulting in 43,000 and 48,000 fragment ends upstream upstream and down-
stream, respectively, of the TSS. An identical approach was applied to CTCF 
binding sites. CTCF peaks were defined as the top 0.5% coverage percentiles, 
resulting in approximately 92,000 fragment ends (same number for upstream and 
downstream), and were handled similarly to TSSs, with the only exception being 
that the strand of CTCF sites was always considered to be the plus strand.

Clustering algorithm. We adapted the standard k-means clustering algorithm 
to perform trans-contact clustering. The input of the algorithm is the nor-
malized genome-wide contact map D defined above. The matrix represents 
proximity between 1-Mb chromosomal segments, and it is used to define a 
distance D[i, j] between 1-Mb chromosomal segments i, j that are on different 
chromosomes. The distances between chromosomal segments on the same 
chromosome are undefined and are ignored by the algorithm. The distance 
between a segment i and a cluster of segments J is defined to be the average dis-
tance between i and the segments in J (ignoring undefined values). Given these 
definitions, the algorithm works like standard k-means clustering, initializing 
clusters using k random segments and repeatedly reassigning segments to the 
cluster with minimal distance until convergence.
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