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In multilocus association analysis, since some markers may not be associated with a trait, it seems attractive to use
penalized regression with the capability of automatic variable selection. On the other hand, in spite of a rapidly growing
body of literature on penalized regression, most focus on variable selection and outcome prediction, for which penalized
methods are generally more effective than their nonpenalized counterparts. However, for statistical inference, i.e.
hypothesis testing and interval estimation, it is less clear how penalized methods would perform, or even how to best apply
them, largely due to lack of studies on this topic. In our motivating data for a cohort of kidney transplant recipients, it is of
primary interest to assess whether a group of genetic variants are associated with a binary clinical outcome, acute rejection
at 6 months. In this article, we study some technical issues and alternative implementations of hypothesis testing in Lasso
penalized logistic regression, and compare their performance with each other and with several existing global tests, some of
which are specifically designed as variance component tests for high-dimensional data. The most interesting, and perhaps
surprising, conclusion of this study is that, for low to moderately high-dimensional data, statistical tests based on Lasso
penalized regression are not necessarily more powerful than some existing global tests. In addition, in penalized regression,
rather than building a test based on a single selected ‘‘best’’ model, combining multiple tests, each of which is built on a
candidate model, might be more promising. Genet. Epidemiol. 35:755–765, 2011. r 2011 Wiley Periodicals, Inc.
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INTRODUCTION

There has been an intensive research effort devoted to
developing and applying penalized regression methods,
especially for high-dimensional data. The main motivation
is that penalized methods, closely related to Bayesian and
shrinkage methods, generally lead to better point esti-
mates of parameters, e.g. measured by the mean squared
error (MSE), thus improve the predictive performance over
their nonpenalized counterparts. Furthermore, some
penalized methods, e.g. Lasso [Tibshirani, 1996], possess
the ability for variable selection, especially for high-
dimensional data, facilitating the interpretation of the
final selected and often largely simplified model. While
the majority of research on penalized methods focus on
prediction and variable selection [Kooperberg et al., 2010;
Ayers and Cordell, 2010], it is somewhat surprising that
little attention has been paid to inference with only a few
exceptions in methodology [Meinshausen et al., 2009;
Wasserman and Roeder, 2009; Zou and Qiu, 2010] and
applications [Malo et al., 2008; Guo and Lin, 2009; Tzeng
and Bondell, 2010], in which there is still a lack of
comparisons with other approaches. In many applications,
e.g. in genetic association analysis of genotypes [e.g. Wu
et al., 2010a,b] or gene set analysis of expression data [e.g.

Goeman et al., 2004; Liu et al., 2008; Nettleton et al., 2008],
one can argue that a primary statistical task is inference:
we are not only interested in selecting a subset of important
variables, but more so in assessing their statistical
significance. In this article, we focus on global testing on
a group of variables. In our motivating example, we are
interested in validating whether a group of about 20
genetic variants, mostly single nucleotide polymorphisms
(SNPs), are associated with a binary outcome, acute
rejection (AR), in a study of kidney transplant patients.
All these genetic variants were reported to be associated
with acute rejection or related clinical outcomes in the
previous, though often much smaller, studies. With a
much larger sample size here, a univariate analysis
identified two SNPs with P-values between 0.02 and 0.05
while there were several between 0.05 and 0.1, and none
would be significant after adjusting for multiple testing.
Since it is well known that typical effect sizes of common
genetic variants on complex phenotypes, as AR here, are
expected to be small, a global test on the whole group of
SNPs might be more powerful than single-SNP analysis or
testing each SNP separately [Pan, 2009]. As to be shown,
some powerful global tests did indicate marginal signifi-
cance. On the other hand, due to possible interactions
among SNPs (i.e. epistasis), it might be more powerful to
consider interactions. Although the number of SNPs, k,

r 2011 Wiley Periodicals, Inc.



relative to the sample size of n 5 550 is not large, adding
interaction terms into a model would lead to a much larger
number of parameters, thus motivating variable selection
by penalized regression. Nevertheless, it is unclear whether
a variable selection-based approach would be more power-
ful than some existing global tests developed specifically
for high-dimensional data. Furthermore, it is not clear how
to most effectively construct tests in the framework of
penalized regression. These are key issues to be addressed
here. Motivated by the kidney data, we focus on situations
with kon, though k/n may be relatively large.

Malo et al. [2008] showed an application of ridge
regression to association analysis of multiple SNPs in
strong linkage disequilibrium. Since in our motivating
example and in many other applications, one does not
expect all the predictors (e.g. SNPs) to be significant, it
may be reasonable to assume that a penalized method
with the capability of variable selection, such as Lasso, is
preferred. Since Lasso is perhaps most widely used with
fast computational algorithms [Efron et al., 2004; Friedman
et al., 2007], treating Lasso as a representative for
penalized methods, we restrict our attention to Lasso
throughout this article. Although Lasso is most widely
used for variable selection based on its nonzero parameter
estimates, such a use does not control the Type I error rate,
and more importantly, often introduces too many false
positives [Devlin et al., 2003]. A typical approach to
hypothesis testing with Lasso (or other penalized meth-
ods) is to first select the tuning parameter based on cross-
validation (CV) or some model selection criteria, then
conduct a likelihood ratio test (LRT) and use permutations
to estimate its P-value [Guo and Lin, 2009]. There are two
potential issues. First, since tuning parameter selection is
well known to be unstable [Meinshausen and Buhlmann,
2010], it is possible for such a procedure to end up with a
suboptimal tuning parameter, leading to loss of power.
Recognizing this limitation, Zou and Qiu [2010] consid-
ered using multiple tuning parameters and then combin-
ing them. The above two approaches correspond to
‘‘model selection’’ and ‘‘model averaging’’, respectively,
in the well-studied literature of variable selection for
prediction. Second, by default the standard LRT or Wald
(or score) statistic is used, which however is well known to
be nonoptimal for high-dimensional data [Goeman et al.,
2006; Chen et al., 2010]. Pan [2009] proposed a modified
score (or Wald) test statistic, called sum of squared score
(SSU) (or sum of squared betas, SSB), while ignoring the
nondiagonal elements of its covariance matrix, which is
closely related to Goeman et al.’s [2006] test for high-
dimensional data. Treating the parameters as random
effects from a distribution, Goeman’s test is a score test on
the variance component of the random effects, reminiscent
of homogeneity tests [Neyman and Scott, 1966; Zelterman
and Chen, 1988]. As an approach to gene set analysis,
Goeman et al.’s [2004] test is powerful in analyzing high-
dimensional microarray data. Even for low-dimensional
SNP data, Goeman’s test and SSU test have been shown
empirically to be often more powerful than the usual score
test [Chapman and Whittaker, 2008; Pan, 2009]. Hence, in
addition to the standard score statistic, we also consider
the use of the SSU statistic. Chen et al. [2010] used a test
statistic similar to the SSB, which is asymptotically
equivalent to SSU.

We study the performance of various methods with
simulated data that mimic the real kidney transplant data.

The main conclusion, perhaps surprisingly, is that tests
based on model selection or penalized regression do not
necessarily outperform some existing global tests pro-
posed for high-dimensional data, which is true across all
our simulation setups for low to moderately high dimen-
sional data. Furthermore, for Lasso, tests based on
combining multiple SSU statistics corresponding to multi-
ple tuning parameters generally perform better than those
based on a single selected tuning parameter.

METHODS

To be concrete, we consider conducting a global test on a
set of predictors to assess their effects on a binary outcome.
Specifically, suppose that we have n iid observations
ðYi;XiÞ for i ¼ 1; . . . ; n, where Yi 5 0 or 1 is a binary
outcome/response variable while Xi ¼ ðXi1; . . . ;XikÞ

0 is a
k-dimensional vector of predictors. We assess the effects of
the predictors on the outcome based on logistic regression:

Logit PrðYi ¼ 1Þ ¼ b01
Xk

j¼1

Xijbj: ð1Þ

We aim to conduct a global test on the null hypothesis
H0: b ¼ ðb1; . . . ; bkÞ

0
¼ 0 vs.a general alternative H1: b6¼0.

Our primary goal is to find a test such that it has as high
power as possible to reject H0 when H0 does not hold,
while of course controlling the Type I error rate within a
specified significance level a; we use the usual a5 0.05
throughout.

TESTS BASED ON (UNPENALIZED) LOGISTIC
REGRESSION

The most widely used statistical tests are three asymp-
totically equivalent ones: the score test, Wald’s test, and
LRT, all based on maximum likelihood. Since the score test
is computationally simplest, we adopt the score test and its
modifications throughout. For model (1), under H0, the
score vector and its covariance matrix are

U ¼
Xn

i¼1

ðYi � �YÞXi;

V ¼CovðUÞ ¼ �Yð1� �YÞ
Xn

i¼1

ðXi � �XÞðXi � �XÞ0;

where �Y¼
Pn

i¼1 Yi=n and �X¼
Pn

i¼1 Xi=n. The (multivariate)
score test statistic is

TScore ¼ U0V�1U;

which has an asymptotic w2 distribution with degrees of
freedom (DF) k (or more generally DF 5 rank(V) and V�1 is
possibly a generalized inverse). If k is large, the score test
may not have high power. Note that the score test is
asymptotically equivalent to Hotelling’s T2 test [Clayton
et al., 2004].

Another potential problem with the score test is that for
high-dimensional data, it will be problematic to estimate
its large covariance matrix V. An alternative is to conduct a
univariate (i.e. marginal) test on each individual predictor,
and then combine the univariate tests by taking the
minimum of their P-values. This is the so-called (univariate)
min P (UminP) test, most popular in genome-wide
association studies). The corresponding UminP score test
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statistic is

TUminP ¼ max
j¼1;...;k

U2
j =vj;

where Uj is the jth element of U and vj is the (j,j)th
diagonal element of V. To obtain its P-value, the Bonferroni
adjustment or a permutation method is most commonly
used, which however is conservative or computationally
demanding. An asymptotically ‘‘exact’’ method based on
the asymptotic normality of the score vector is to calculate
the P-value by numerical integration with respect to a
multivariate normal density [Conneely and Boehnke,
2007], which we use throughout.

Pan [2009] proposed two tests, called the SSU and sum
of weighted squared score (SSUw) tests:

TSSU ¼ U0U; TSSUw ¼ U0V�1
d U with Vd ¼ DiagðVÞ:

Under H0, each of the two test statistics has an asymptotic
distribution of a mixture of w2

1 ’s, which can be approxi-
mated by a scaled and shifted w2 distributions [Pan, 2009].
Compared to the score test, the SSU and SSUw tests ignore
the nondiagonal elements of V, i.e. correlations among the
components of U, which is known to be advantageous for
high-dimensional data [Chen and Qin, 2010]. More
importantly, as shown in Pan [2009], the SSU test is
equivalent to the permutation-based version of Goeman
et al.’s [2006] test, which is derived as a score test on a
variance component for a random-effects logistic regres-
sion model. Specifically, in model (1), if we assume bj’s to
be random effects drawn from a distribution with E(b) 5 0
and Cov(b) 5 tI, then Goeman’s permutation-based score
test on H0: t5 0 is equivalent to the SSU test. Interestingly,
though derived for high-dimensional data, the good
performance of SSU and SSUw for low-dimensional SNP
data has also been empirically confirmed [Chapman and
Whittaker, 2008; Pan, 2009]. Goeman et al. [2006] showed
that their test has the highest local power averaged over the
alternative space of b6¼0 satisfying the conditions of
E(b) 5 0 and Cov(b) 5 tI, implying that the SSU test is
also nearly optimal in the above sense. Pan [2009] also
showed that SSUw can be regarded as an estimated most
powerful test. In particular, Pan [2009, Fig. 1] showed that
when the components of b are close to each other in
absolute values, the SSU (or SSB) tends to be more
powerful than the score and UminP tests.

A class of nonparametric regression techniques called
logistic kernel machine regression (LKMR) are closely
related to the SSU test. The LKMR model is

Logit PrðYi ¼ 1Þ ¼ b01hðXi1; . . . ;XikÞ; ð2Þ

where hð:Þ is an unknown nonparametric function, which
is determined by a user-specified positive and semi-
definite kernel function K(Xi,Xj) [Liu et al., 2008]. K(Xi,Xj)
measures the similarity of the predictors for subjects i
and j. Some commonly used kernels include linear and
quadratic kernels. By the representer theorem of Kimeldorf
and Wahba [1971], hi ¼ hðXiÞ ¼

Pn
j¼1 gjKðXi;XjÞ for some

g1; . . . ; gn. To test the null hypothesis of no association
between the predictors and the outcome, one can simply
test H0: h ¼ ðh1; . . . ; hnÞ

0
¼ 0. Denote K as the n� n matrix

with the (i,j)th element as KðXi;XjÞ and g ¼ ðg1; . . . ; gnÞ
0,

then we have h ¼ Kg. Treating h as subject-specific random
effects with mean 0 and covariance matrix tK, testing H0:
h 5 0 is equivalent to testing H0: t5 0. The corresponding

score test on the variance component has a statistic of

Q ¼ ðY� �Y1Þ0KðY� �Y1Þ;

whose asymptotic null distribution is a mixture of w2
1 ’s,

which can be approximated by a scaled w2 distributions
[Wu et al., 2010b].

As shown in Pan [2011], LKMR can be formulated as a
SSU test on H0: b 5 0 in a new logistic regression model:

Logit PrðY ¼ 1Þ ¼ b01Zb; ð3Þ

where K 5 ZZ0. A special case is that, if the linear kernel is
used, then Z 5 X and thus the SSU and LKMR test
statistics are equal, but there is a minor difference in
approximating their (common) asymptotic distribution:
the SSU is based on a shifted-scaled w2 distribution,
whereas LKMR is based on a scaled w2 distribution.
In general, the difference between the SSU test for model
(1) and LKMR is only in the functional forms of the
predictors being used; both tests are actually an SSU test
applied to two different regression models. Pan [2011]
showed that the above SSU and LKMR are closely related
to other genomic-distance-based regression methods in
genetic association analysis [Wessel and Schork, 2006;
Schaid, 2010a,b].

TESTS BASED ON LASSO LOGISTIC REGRESSION

The Lasso estimate bL(l) is based on a penalized
log-likelihood

bLðlÞ ¼ arg max
b
flog LðbÞ � lkbk1g;

where the penalty is the l1-norm of the regression
coefficients b with a penalization parameter l. A useful
property of Lasso is that, if l is large enough, some or all
components of bL(l) will be exactly zero, automatically
realizing variable selection.

The tuning parameter l is typically chosen based on CV
or some model selection criterion, e.g. Akaike’s [1973]
information criterion (AIC) [Guo and Lin, 2009], by
searching in a set of its candidate values, say L;
throughout this article, we used five fold CV with 21 grid
points in L, whose values were default from R function
glmnet(). Denote the selected tuning parameter as l̂. Guo
and Lin [2009] proposed the LRT to test for disease-
haplotype association based on the Lasso estimate.
Following the same line, we can construct a LRT statistic as

TSel;LRT ¼ 2 log Lðbðl̂ÞÞ � 2 log Lð0Þ:

To assess its statistical significance, we use permutations:
we permute the original phenotypes to obtain a permuted
data set, say bth data set, then apply the Lasso method to

obtain a new test statistic TðbÞSel;LRT; the abobe process is

repeated for b ¼ 1; . . . ;B. Then the permutation P-value isPB
b¼1 IðTSel;LRT4TðbÞSel;LRTÞ=B. Depending on whether we fix

l ¼ l̂ or use CV to re-select l for each permuted data set,
we have two versions of the LRT, called TSel;LRT;fixed and
TSel;LRT;tuning, respectively. The latter is expected to better
control the Type I error rate, but may be computationally
too demanding for large or high-dimensional data.

Alternatively, to mimic the global tests based on the
score vector, we do not use bL(l) directly; rather, we use
Lasso for variable selection and then construct the
corresponding test statistics. Specifically, suppose that
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the component of the score vector corresponding to the
nonzero components of bL(l) is U(l), then

TSSUðlÞ ¼ UðlÞ0UðlÞ; TScoðlÞ ¼ UðlÞ0V�1ðlÞUðlÞ;

where VðlÞ ¼ ðUðlÞÞ, a submatrix of V ¼ ðUÞ. We use
fivefold CV to minimize the deviance as the model
selection criterion to select l̂, based on which we obtain
the test statistics for the selection approaches:

TSel;SSU ¼ TSSUðl̂Þ; TSel;Sco ¼ TScoðl̂Þ:

Now we investigate how to combine test statistics for
multiple tuning parameters. The basic idea is to construct
a test statistic for each tuning parameter, say T(l), then
combine them. There are two technical issues. First, since
the distributions of TðliÞ may vary with li, it may be a
good idea to standardize T(li)’s before combining them.
For example, for any given li, if we ignore the effects of
variable selection, TSco(li) is approximately distributed as
w2

di
with DF di ¼ dimðUðliÞÞ, which in general is a

decreasing function of li. If we simply combine TðliÞ’s,
the combined statistic may be dominated or unduly
influenced by a few ones with larger values of di. Hence,
we standardize TðliÞ’s by using their P-values based on
their approximate w2

di
distributions. Note that the validity

of our procedure does not depend on whether the
approximate distribution of T(li) holds, since we will use
permutations to derive a final P-value. Second, there are
various methods of combining P-values, though no single
one is expected to be uniformly best. We consider three
representative ones based on taking the minimum (Min)
P-value, Fisher’s [1932] method, and truncated product
method (TPM) [Zaykin et al., 2002], respectively. The Min
method is similar to that of Zou and Qiu [2010] and is in
the same spirit of model selection. Here, we argue that
more than one li is informative, motivating the use of
Fisher’s method. On the other hand, depending on the
choice of candidate set L, some li’s, e.g. those correspond-
ing to shrink all b’s to be or close to be 0 for a true non-null
model, may not be informative. Thus, it may be a good
idea to use multiple, but not necessarily all, li’s in
combining; TPM is such an approach, though other
approaches, e.g. selecting a few most significant compo-
nents, are also possible. More generally, we may want to
assign different weights to different P-values based on the
performance of their corresponding models (indexed by
their li’s), as proven useful in the context of prediction
with model averaging [Yang, 2001; Shen and Huang, 2006],
though we do not pursue it here.

Specifically, if the SSU (or score) statistic is used, for any
liAL, we construct TSSUðliÞ and derive its P-value, say
PSSUðliÞ. Then

TAve;SSU;Min ¼min
li2L

PSSUðliÞ;

TAve;SSU;Fisher ¼
Y

li2L

PSSUðliÞ;

TAve;SSU;TPM ¼
Y

li2L

PSSUðliÞ
IðpSSUðliÞ�a0Þ;

where we used a0 5 0.05 throughout in TPM [Zaykin et al.,
2002]. Similarly, we construct the tests based on the score
(or any other test) statistic.

We use permutations to obtain the P-value for each of
the above tests. For example, for TAve;SSU;Min, we permute
the outcomes Y to obtain YðbÞ, then we apply the same

procedure to the new data ðX;YðbÞÞ to obtain a new test

statistic TðbÞAve;SSU;Min. We repeat the above process for

b ¼ 1; 2; . . . ;B. The P-value for TAve;SSU;Min is simplyPB
b¼1 IðTAve;SSU;Min4TðbÞAve;SSU;MinÞ=B. To save computing

time, we used a relatively small B 5 100 in simulations,
though we used larger B 5 500 for real data.

For the selection approaches, we tried both fixing l ¼ l̂ in
permuted data and choosing l for each permuted data set,
denoted as TSel;SSU;fixed and TSel;SSU;tuning for the SSU. While
the second is computationally more demanding, there may
be concerns on possibly inflated Type I error rates for the
former. It turned that the former (with our chosen score or
SSU statistic) could control the Type I error rates in our
simulations, as shown in previous studies [Chen et al., 2010].
Hence, we skip the discussion of the latter.

As a comparison, we also consider a two-stage
procedure called screening and cleaning (SC) [Wasserman
and Roeder, 2009]. In the SC test, one first splits the data
into (almost) equally sized two parts, uses one part to
select a final model (with a selected l̂ by CV), say M̂, then
applies the selected model M̂ to the second part of the data
to obtain a P-value for each covariate included in M̂. To be
consistent with our aim of global testing, we apply the LRT
to M̂ with the second part of the data. The SC test is
attractive for its nice theoretical properties, low computing
cost, and its unique ability to assess statistical significance
of each individual parameter; here, we only restrict to
global testing. In addition, an improvement based on
multiple splitting has been proposed [Meinshausen et al.,
2009]. Nevertheless, as demonstrated in statistical infer-
ence after model selection [Faraway, 1992] and genetic
association analysis [Skol et al., 2006], we suspect that the
two-step procedure based on data-splitting as adopted by
SC may be too costly with much reduced sample sizes (i.e.
only a half of the original sample size) for model selection
and significance testing, respectively, leading to reduced
power as to be confirmed.

RESULTS

EXAMPLE

Data. The identification genetic variants that predis-
pose individuals to adverse outcomes associated with
kidney allograft transplantation, including acute rejection
(AR), could help personalized treatment of kidney
allograft recipients. A number of genetic variants asso-
ciated with risk of AR have been identified. The protein
products of the identified genes are often involved in the
regulation and responsiveness of the immune system.
However, there is a lack of reproducibility of identified
genetic variants associated with AR. It could be due to
typically small sample sizes, often less than 150, and also
heterogeneous study populations. It is also expected that,
as for other complex traits, the effect sizes of associated
genetic variants for AR are small. Hence, a validation
study was conducted with a much larger sample size of
more than 550 patients transplanted at the University of
Minnesota Transplant Center. All the genetic variants,
mostly SNPs and a few insertions/deletions (In/Del) (all
called SNPs for simplicity in this article), are candidate
variants suggested from previous studies to be associated
with AR in kidney allografts or with poor outcomes after
transplantation [Marder et al., 2003; Pavarino-Bertelli et al.,
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2004; Goldfarb-Rumyantzev and Naiman, 2008; Kruger
et al., 2008; Nickerson, 2008]. After removing patients with
missing genotypes and SNPs either with minor allele
frequency (MAF) lower than 1% or for which Hardy-
Weinberg equilibrium did not hold, we had n 5 550
patients and 23 SNPs. Among the 550 patients, 69 patients
experienced AR at 6 months. Three SNPs had MAFs
between 1.1 and 3.7%, whereas others had between 10.3
and 48.8%. We used an additive genetic model to code
each SNP: SNP i is coded as Xi 5 0, 1 or 2, representing the
number of its minor alleles. Our primary goal is to test
whether these SNPs, either individually or collectively,
and if latter, either additively or interactively, are
associated with AR at 6 months.

Analysis. First, we consider only main effects.
Although the dimension k 5 23 is much smaller than the
sample size n 5 550, testing on the 23 regression coeffi-
cients for the 23 SNPs simultaneously may not be as simple
as it appears, partly because of the challenge in estimating
a 23� 23 covariance matrix for the score test. Hence, it may
be appealing to conduct variable selection first. We
adopted a commonly used stepwise procedure based on
the AIC for variable selection. It selected a model with
eight SNPs with the corresponding MLEs and their
standard errors shown in Table I. Some individual SNPs
as well as the whole group based on a global LRT were
statistically significant, but we may not want to trust the
given P-values since they did not take account of the effect
of model selection (or equivalently, multiple testing). On
the other hand, if various global tests were directly applied
to the group of the 23 SNPs (without model selection), we
obtained the P-values ranging from marginally significant
to nonsignificant (Table IV). In particular, the SSU, SSUw
and LKMR, and Lasso-based tests of Ave-SSU-TPM and
Sel-SSU, all yielded marginally significant P-values around
0.05. A natural question is which tests should be trusted
more. As to be shown in our simulation studies, since the
SSU, SSUw, LKMR, and Lasso-Ave-SSU-TPM tended to
have higher power than other tests, we believe that there

was some, albeit not highly significant, statistical evidence
to support an overall association between the group of the
SNPs and the outcome, acute rejection. It is noted that
neither the UminP nor the multivariate score test gave a
significant P-value.

Since the main-effects model did not include any
possible interactions among the SNPs (i.e. epistatic
effects), it might fail to capture some complex association
between the genotypes and trait [e.g. Zhang et al., 2003;
Zhang and Liu, 2007; Zheng et al., 2006]. Thus, it is
tempting to consider both the main effects and some
interaction terms. However, adding all interaction terms
will dramatically increase the number of parameters to be
tested, leading to possible loss of power. Given the sample
size n 5 550, it is perhaps unwise to consider all two-way
interactions (and other high-order interactions). Hence, we
made a compromise by considering only 28 two-way
interactions among the eight ‘‘significant’’ SNPs selected
by the stepwise procedure in the main-effects model. We
acknowledge that, albeit popular in practice, this approach
may give too optimistic (i.e. more significant) results than
the (unknown) truth. By considering both 23 main effects
and 28 two-way interaction terms, a stepwise procedure
based on the AIC selected a model with eight terms: four
main effects and four 2-way interactions (Table II), for
which we did not impose a hierarchical principle.
Compared to the final main-effects model, the majority
of the SNPs selected in the current model also appeared in
the former. Note that the most significant SNP IL10592
(rs1800872 in gene IL10) was highly correlated with
IL10819 selected in the previous model: their Pearson
correlation was 0.8, and both were in the promoter region
of the interleukin 10 gene (IL10). Based on the MLEs,
multiple terms are statistically significant; however, since
the MLEs were based on the selected model and did not
take account of any model selection effects, the conclusion
based on the MLEs might be misleading. Hence, alter-
natively, we applied the global tests to the full model with
all the 23 main effects and 28 two-way interaction terms
(i.e. without model selection); their results are shown in
Table IV. The more powerful SSU and LKMR seemed to
give more significant P-values, lending some, but not
conclusive, evidence to support the association between
the SNPs and the outcome.

Finally, to avoid missing some important interactions
between the SNPs, we considered a model with a large
number of two-way interactions. Excluding three SNPs
with MAF less than 5%, we used the remaining 20 SNPs to
form their pairwise two-way interactions. Hence, the
model contained 23 main effects and 190 two-way
interactions with a moderately high dimension of
k 5 213. A stepwise procedure selected a model with seven
main-effects and three interactions, for which the MLEs
are shown in Table III. All seven main-effects appeared in
Model 1 in Table I, and the three interactions were formed
by three of the seven main-effects, in which both CCR5
and GNB3825 appeared twice. There were some signifi-
cant individual SNPs, especially much significant IL10819
as before (or as its highly correlated IL10592). When the
global tests were applied to the full model with all k 5 213
parameters (i.e. no variable selection), the P-values were
generally less significant than those in the previous two
full models (i.e. the main-effects only model and the
model with the main-effects and 28 two-way interactions),
possibly due to the cost of the large number of parameters

TABLE I. MLEs of the regression coefficients b for
the main-effects model (k 5 23) selected by a stepwise
variable selection procedure based on AIC for the
kidney data

Predictor

Variable Gene SNP b̂M SE P-value

Intercept – – �1.91 0.34 2.62e�8
CCR5 CCR5 rs333 �0.84 0.41 0.039
IL10819 IL10 rs1800871 0.41 0.21 0.048
END1198 END1 rs5370 �0.43 0.25 0.081
MTHFR677 MTHFR rs1801133 0.35 0.20 0.075
F7353 Factor VII (F7) rs6046 �0.55 0.35 0.116
GNB3825 GNB3 rs5443 �0.36 0.20 0.079
AGT235 AGT rs699 0.28 0.19 0.148
TNFA308 TNF-a rs1800629 �0.33 0.24 0.163
Global test: 5.93e�5

MLE, maximum likelihood estimates; AIC, Akaike information
criterion; TNF, tumor necrosis factor; MTHFR, methylenetetra-
hydrofolate; GNB3, G protein B3 subunit; AGT, angiotensinogen;
IL-10, interleukin-10; END1, endothelin-1; CCR5, chemokine (C-C
motif) receptor 5; SE, standard error. AIC 5 408.2.
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and perhaps a sparse true model. However, in agreement
with the previous results, the SSU, SSUw, and LKMR gave
marginally significant P-values, suggesting possible asso-
ciation between the SNPs and the outcome.

SIMULATIONS WITH THE KIDNEY DATA

Simulation setups. To mimic real data and to be as
practical as possible, we used the genotypes (i.e. Xi’s) from
the kidney data to generate a binary outcome. We
considered three scenarios with small to moderately
large dimension k, corresponding to the three selected
models for real data as shown in Tables I–III. Specifically,
in a data-generating logistic regression model (1), the true
regression coefficients were chosen to be proportional to

the MLE in the corresponding selected model in

Tables I–III: b ¼ cb̂M; that is, bj ¼ cb̂j;M if predictor j was

chosen in the selected model, and otherwise bj 5 0. Hence,
we had n 5 550 and k 5 23, 51, and 213 for the three
scenarios, respectively. We used c 5 0 and c40 to assess
the test size and power properties of various procedures.
For each simulation setup, we generated 1,000 simulated
data sets to estimate the Type I error rates and power.

For larger k, the asymptotic distributions for the score
and SSU tests may not apply, so we also calculated their
P-values using B 5 100 permutations; the two tests are
denoted as Sco-P and SSU-P.

Type I error and power. As shown in Table V, for the
low-dimensional case with k 5 23, there seemed to be not
much difference between using the score test and SSU,
though SSUw had a slight edge. More importantly, the model
selection-based approaches were not more powerful than the
global SSU and LKMR methods that were not based on
model selection. Among the Lasso-based tests, the averaging
approaches seemed to be more powerful than the selection
methods, though the differences were small; and among the
averaging methods, those based on Fisher’s method and
TPM seemed to be more powerful than the Min method. The
Lasso-selection-based LRT with a fixed tuning parameter for
permuted data sets seemed to have a slightly inflated Type I
error rate; both versions of the Lasso-selection-based LRT
performed similarly to other Lasso-based methods.

As shown in Table VI, for the intermediate dimension of
k 5 51, the global SSU test was clearly more powerful than
the usual score test: their absolute power difference was as
large as 15%. Overall, the SSUw, SSU, and LKMR were
most powerful, outperforming model selection-based
methods. Among the model selection-based method, the

TABLE II. MLEs of the regression coefficients b for a
model with both main-effects and a subset of two-way
interactions (k 5 51) selected by a stepwise variable
selection procedure based on AIC for the kidney data

Predictor b̂M SE P-value

Intercept �2.22 0.27 4.04e�16
IL10592 0.84 0.28 0.003
END1198 �0.43 0.25 0.080
MTHFR677 0.49 0.21 0.023
F7353 �0.52 0.36 0.147
CCR5�EBD1198 �1.90 0.95 0.046
IL10592�END1198 �0.79 0.31 0.011
MTHFR677�AGT235 �0.36 0.24 0.128
END1198�TNFA308 0.35 0.16 0.024
Global test: 0.0014

MLE, maximum likelihood estimates; AIC, Akaike information
criterion; TNF, tumor necrosis factor; MTHFR, methylenetetra-
hydrofolate; GNB3, G protein B3 subunit; AGT, angiotensinogen;
IL-10, interleukin-10; END1, endothelin-1; CCR5, chemokine (C-C
motif) receptor 5; SE, standard error. AIC 5 400.3.

TABLE III. MLEs of the regression coefficients b for a
model with all main-effects and all two-way interactions
(k 5 213) selected by a stepwise variable selection
procedure based on AIC for the kidney data

Predictor b̂M SE P-value

Intercept �1.94 0.34 1.10e�8
CCR5 �0.60 0.56 0.280
IL10819 0.78 0.29 0.008
END1198 �0.44 0.25 0.070
MTHFR677 0.36 0.19 0.065
F7353 �0.55 0.36 0.121
GNB3825 0.13 0.29 0.649
TNFA308 �0.48 0.26 0.065
CCR5�GNB3825 �1.76 1.04 0.091
CCR5�TNFA308 1.07 0.63 0.092
IL10819�GNB3825 �0.53 0.33 0.113
Global test: 3.24e�4

MLE, maximum likelihood estimates; AIC, Akaike information
criterion; TNF, tumor necrosis factor; MTHFR, methylenetetra-
hydrofolate; GNB3, G protein B3 subunit; AGT, angiotensinogen;
IL-10, interleukin-10; END1, endothelin-1; CCR5, chemokine (C-C
motif) receptor 5; SE, standard error. AIC 5 404.9.

TABLE IV. P-values of the global tests on H0: b 5 0 for
the main-effects model (k 5 23), a model with both main-
effects and a subset of two-way interactions (k 5 51), and
a model with both main-effects and all two-way
interactions (k 5 213) for the kidney data

Var
selection Test Main-effects

Some
two-way

int.

All
two-way

int.

No Sco 0.215 0.497 0.362
No Sco-P 0.224 0.496 0.335
No UminP 0.346 0.366 0.708
No SSU 0.069 0.086 0.095
No SSU-P 0.062 0.087 0.105

No SSUw 0.068 0.105 0.100
No LKMR-Linear 0.064 0.081 0.088

No LKMR-Quad 0.092 0.408 0.204
Lasso Ave, SSU, Min 0.190 0.336 0.120
Lasso Ave, SSU, Fisher 0.094 0.172 0.220
Lasso Ave, SSU, TPM 0.059 0.296 0.225
Lasso Ave, Sco, Min 0.310 0.401 0.805
Lasso Ave, Sco, Fisher 0.239 0.467 0.720
Lasso Ave, Sco, TPM 0.284 0.471 0.705
Lasso Sel, SSU 0.048 0.322 0.715
Lasso Sel, Sco 0.208 0.333 0.715
Lasso 2-stage, SC 0.842 0.934 0.965

Bold characters refer to more significant P values.
SSU, sum of squared score; LKMR, logistic kernel machine regression;
SSUw, sum of weighted squared score; SC, screening and cleaning.
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averaging methods based on Fisher’s or TPM were more
powerful than others, especially the selection methods. For
the averaging methods, using SSU statistic gained over
using the traditional score statistic, but they performed
similarly in the selection method; note possibly a large
difference between Ave-SSU-TPM and Ave-Score-TPM.

We draw similar conclusions for the moderately high-
dimensional case of k 5 213, though the overall trends
manifest more clearly, as shown in Table VII. We note that
the score test was low-powered, partly because it was too
conservative; even if its permutation distribution, not its
asymptotic one, was used to calculate its P-value, its
power was still much lower than others. For the SSU test,
its asymptotic version and permutation-based version
gave similar results. The UminP had an inflated Type I
error rate (perhaps due to the poor asymptotic approx-
imation here), and its power was still lower than that of
SSU. Again the SSUw test seemed to have a slight edge
over SSU. The SSU and LKMR with a linear kernel
performed similarly, but LKMR with a quadratic kernel
worked less well. For the Lasso-based tests, using the SSU
statistic gave much higher power than using the score statistic.

For the third scenario, we also considered mis-specified
candidate models. Although the data-generating model
included some interaction terms, we only considered
candidate models with the 23 main-effects. This represents
a common strategy adopted in practice: even if a true model
is believed to contain some complex high-order terms, it may
be more practical to consider some much simpler candidate
models. It is confirmed that indeed such a strategy yielded
much higher power for every test (Table VIII). In particular,
the tests based on the score statistic performed much better
for this low-dimensional scenario.

Parameter estimation. We compared the perfor-
mance of the three methods for parameter estimation: the

TABLE V. Empirical Type I error rates (c 5 0) and power
(c40) based on 1,000 replicates for the main-effects
model with k 5 23 SNPs

Variable Test
C

selection statistics 0 0.75 0.9 1 1.1 1.25

No Sco 0.049 0.489 0.699 0.805 0.884 0.963
No Sco-P 0.051 0.483 0.682 0.797 0.873 0.952
No UminP 0.059 0.302 0.463 0.553 0.657 0.780
No SSU 0.048 0.519 0.714 0.821 0.865 0.972
No SSU-P 0.056 0.509 0.713 0.813 0.882 0.962
No SSUw 0.052 0.546 0.739 0.839 0.902 0.976

No LKMR-Linear 0.053 0.532 0.723 0.826 0.888 0.975
No LKMR-Quad 0.057 0.486 0.689 0.789 0.858 0.948
Lasso Ave, SSU, Min 0.055 0.444 0.655 0.768 0.844 0.944
Lasso Ave, SSU, Fisher 0.040 0.469 0.672 0.783 0.861 0.952
Lasso Ave, SSU, TPM 0.054 0.485 0.686 0.797 0.864 0.955
Lasso Ave, Sco, Min 0.051 0.445 0.624 0.761 0.843 0.946
Lasso Ave, Sco, Fisher 0.041 0.440 0.630 0.761 0.853 0.952
Lasso Ave, Sco, TPM 0.047 0.462 0.653 0.780 0.870 0.957
Lasso Sel, SSU 0.057 0.451 0.642 0.756 0.849 0.934
Lasso Sel, Sco 0.052 0.415 0.635 0.752 0.845 0.942
Lasso Sel, LRT, fixed 0.072 0.487 0.689 0.805 0.874 0.948
Lasso Sel, LRT, tuning 0.057 0.454 0.645 0.749 0.841 0.922
Lasso 2-stage, SC 0.018 0.121 0.204 0.304 0.386 0.520

Bold characters refer to highest power.
SSU, sum of squared score; LKMR, logistic kernel machine regression;
SSUw, sum of weighted squared score; TPM, truncated product
method; LRT, likelihood ratio test; SC, screening and cleaning.

TABLE VI. Empirical Type I error rates (c 5 0) and power
(c40) based on 1,000 replicates for the model with the
main effects and some two-way interactions (k 5 51)

Variable Test
c

selection statistics 0 0.75 0.9 1 1.1 1.25

No Sco 0.044 0.281 0.487 0.617 0.751 0.907
No Sco-P 0.042 0.282 0.480 0.608 0.741 0.908
No UminP 0.081 0.236 0.354 0.424 0.520 0.677
No SSU 0.057 0.464 0.656 0.772 0.874 0.961
No SSU-P 0.056 0.461 0.647 0.763 0.870 0.957
No SSUw 0.049 0.477 0.680 0.808 0.898 0.973

No LKMR-Linear 0.067 0.483 0.672 0.787 0.891 0.965
No LKMR-Quad 0.060 0.304 0.480 0.571 0.687 0.862
Lasso Ave, SSU, Min 0.051 0.338 0.488 0.606 0.718 0.877
Lasso Ave, SSU, Fisher 0.046 0.395 0.579 0.695 0.813 0.933
Lasso Ave, SSU, TPM 0.051 0.425 0.605 0.723 0.833 0.944
Lasso Ave, Sco, Min 0.049 0.311 0.515 0.613 0.778 0.916
Lasso Ave, Sco, Fisher 0.036 0.287 0.488 0.610 0.764 0.910
Lasso Ave, Sco, TPM 0.035 0.289 0.489 0.615 0.759 0.912
Lasso Sel, SSU 0.054 0.355 0.501 0.580 0.706 0.870
Lasso Sel, Sco 0.057 0.321 0.500 0.610 0.760 0.905
Lasso 2-stage, SC 0.011 0.147 0.239 0.347 0.444 0.610

Bold characters refer to highest power.
SSU, sum of squared score; LKMR, logistic kernel machine regression;
SSUw, sum of weighted squared score; TPM, truncated product
method; LRT, likelihood ratio test; SC, screening and cleaning.

TABLE VII. Empirical Type I error rates (c 5 0) and
power (c40) based on 1,000 replicates for the model with
the main effects and all two-way interactions (k 5 213)

Variable Test
c

selection statistics 0 0.75 0.9 1 1.1 1.25

No Sco 0.021 0.039 0.056 0.079 0.109 0.181
No Sco-P 0.039 0.073 0.100 0.135 0.186 0.260
No UminP 0.075 0.233 0.313 0.396 0.462 0.595
No SSU 0.048 0.411 0.564 0.699 0.802 0.907
No SSU-P 0.047 0.399 0.571 0.692 0.792 0.899
No SSUw 0.047 0.466 0.649 0.774 0.847 0.941

No LKMR-Linear 0.053 0.441 0.597 0.734 0.825 0.917
No LKMR-Quad 0.063 0.199 0.286 0.362 0.444 0.594
Lasso Ave, SSU, Min 0.053 0.304 0.466 0.582 0.687 0.814
Lasso Ave, SSU, Fisher 0.033 0.286 0.455 0.556 0.664 0.805
Lasso Ave, SSU, TPM 0.034 0.310 0.469 0.579 0.687 0.829
Lasso Ave, Sco, Min 0.047 0.088 0.150 0.219 0.291 0.426
Lasso Ave, Sco, Fisher 0.030 0.105 0.171 0.239 0.325 0.491
Lasso Ave, Sco, TPM 0.030 0.105 0.171 0.239 0.324 0.491
Lasso Sel, SSU 0.046 0.280 0.454 0.562 0.658 0.797
Lasso Sel, Sco 0.041 0.178 0.267 0.316 0.431 0.576
Lasso 2-stage, SC 0.018 0.095 0.144 0.183 0.255 0.342

Bold characters refer to highest power.
SSU, sum of squared score; LKMR, logistic kernel machine regression;
SSUw, sum of weighted squared score; TPM, truncated product
method; LRT, likelihood ratio test; SC, screening and cleaning.
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Lasso, the ridge, and the MLE applied to the full model
with k 5 51 regression coefficients for each simulated data
set. The application of the penalized methods was the
same as before except that we generated a separate tuning
data set to select the tuning parameters. We measured the
performance of each method based on the MSE of its
parameter estimates in the linear predictor scale. That is,
for a method, suppose bðsÞ is its estimate of true b from
data set s, and X is the design matrix (i.e. genotypes), then
its MSE is defined as

MSE ¼
X1;000

s¼1

ðXbðsÞ � XbÞ0ðXbðsÞ � XbÞ=1; 000

¼
X1;000

s¼1

ðbðsÞ � bÞ0ðbðsÞ � bÞ=1; 000:

As shown in Table IX, for all c40, the Lasso performed
best with the smallest MSEs, and the MLE did not work
well at all. This confirms the advantage of penalized

regression, especially variable selection by Lasso, for
parameter estimation and thus outcome prediction.

SIMULATIONS WITH SIMULATED GENOTYPES

One may wonder whether the main conclusion depends
on the correlations among the predictors. In the kidney
data, some SNPs were highly correlated while others were
not. For example, for the main-effects model, the Pearson
correlation coefficients were distributed as the following:
the minimum, first quantile (Q1), median (Q2), third
quantile (Q3), and maximum were �0.498, �0.033, �0.007,
0.031, and 0.831, respectively; for the full model with
k 5 213 predictors, the Pearson correlation coefficients had
the minimum, Q1, Q2, Q3, and maximum as �0.498,
�0.028, 0.006, 0.057, and 0.927, respectively. To further
assess the effects of the correlations among the predictors,
we did more simulation studies with simulated predictors.

We generated genotypes based on a latent multivariate
Normal model as in Wang and Elston [2007]. Specifically, we
simulated a k-dimensional latent variate, say Z ¼ ðZ1; . . . ;ZkÞ

0,
from a multivariate Normal distribution with mean 0 and
covariance matrix AR1ðrÞ(i.e. CorrðZi;ZjÞ ¼ rji�jj). Then we
generate the k minor allele frequencies, say MAF1; . . . ;MAFk,
from a uniform distribution U(0.1,0.4). We dichotomized
Z into a haplotype, say H1 ¼ ðh11; . . . ; h1kÞ

0, with
h1j ¼ IðZjoMAFjÞ. Similarly, we generated another indepen-
dent haplotype H2. Combining the two haplotypes, we
obtained an individual’s genotype X 5 H11H2.

We considered two setups. In the first, we took k 5 40,
randomly chose k0 5 4 of the SNPs in X as causal and
generated the disease status Y of each individual based on
a main-effects logistic regression model (with a common

TABLE VIII. Empirical Type I error rates (c 5 0) and
power (c40) based on 1,000 replicates for a mis-specified
model with only the main effects (k 5 23), though the
true model contained both main-effects and two-way
interactions as shown in Table III

Variable Test
c

selection statistics 0 0.75 0.9 1 1.1 1.25

No Sco 0.046 0.481 0.664 0.766 0.850 0.942
No Sco-P 0.045 0.480 0.648 0.753 0.837 0.940
No UminP 0.062 0.284 0.416 0.502 0.594 0.740
No SSU 0.044 0.486 0.643 0.767 0.856 0.936
No SSU-P 0.050 0.465 0.646 0.756 0.849 0.930
No SSUw 0.045 0.548 0.714 0.820 0.884 0.959
No LKMR-Linear 0.046 0.499 0.664 0.779 0.859 0.939
No LKMR-Quad 0.054 0.432 0.578 0.717 0.809 0.906
Lasso Ave, SSU, Min 0.050 0.424 0.593 0.710 0.797 0.909
Lasso Ave, SSU, Fisher 0.041 0.423 0.612 0.715 0.812 0.918
Lasso Ave, SSU, TPM 0.049 0.444 0.617 0.732 0.823 0.923
Lasso Ave, Sco, Min 0.052 0.440 0.608 0.724 0.809 0.924
Lasso Ave, Sco, Fisher 0.041 0.429 0.607 0.725 0.818 0.927
Lasso Ave, Sco, TPM 0.040 0.445 0.622 0.744 0.828 0.934
Lasso Sel, SSU 0.058 0.418 0.590 0.702 0.791 0.900
Lasso Sel, Sco 0.052 0.442 0.606 0.717 0.795 0.910
Lasso 2-stage, SC 0.016 0.120 0.198 0.267 0.323 0.474

SSU, sum of squared score; LKMR, logistic kernel machine regression;
SSUw, sum of weighted squared score; TPM, truncated product
method; LRT, likelihood ratio test; SC, screening and cleaning.

TABLE IX. The MSEs of the parameter estimates based
on 1,000 replicates for the model with the main effects
and some two-way interactions (k 5 51) as in Table VI

Method c 5 0 0.75 0.9 1 1.1 1.25

Lasso 20.9 293.4 367.5 413.5 459.5 527.7
Ridge 18.2 303.1 406.4 483.1 562.1 689.8
MLE 7,394 99,680 98,700 116,700 77,850 75,100

MLE, maximum likelihood estimate; MSE, mean squared error.

TABLE X. Empirical Type I error rates (OR 5 1) and
power (OR 5 1.25) with various correlations (q40)
among k 5 40 SNPs; k0 5 4 causal SNPs were correlated
with the other 36 noncausal ones if q40

Variable Test
r5 0 r5 0.4 r5 0.8

selection statistics OR 5 1 1.25 1 1.25 1 1.25

No Sco 0.045 0.165 0.048 0.197 0.043 0.440
No Sco-P 0.054 0.174 0.056 0.207 0.059 0.451
No UminP 0.060 0.155 0.046 0.256 0.054 0.785
No SSU 0.048 0.184 0.054 0.342 0.050 0.863
No SSU-P 0.046 0.203 0.054 0.343 0.057 0.856
No SSUw 0.043 0.175 0.052 0.339 0.049 0.865
No LKMR-Linear 0.058 0.202 0.055 0.371 0.053 0.872

No LKMR-Quad 0.054 0.231 0.065 0.389 0.054 0.861
Lasso Ave, SSU, Min 0.054 0.211 0.050 0.353 0.057 0.837
Lasso Ave, SSU, Fisher 0.046 0.184 0.039 0.333 0.044 0.846
Lasso Ave, SSU, TPM 0.045 0.190 0.048 0.333 0.048 0.849
Lasso Ave, Sco, Min 0.051 0.185 0.054 0.266 0.065 0.606
Lasso Ave, Sco, Fisher 0.046 0.170 0.051 0.225 0.055 0.565
Lasso Ave, Sco, TPM 0.049 0.172 0.049 0.223 0.055 0.540
Lasso Sel, SSU 0.063 0.204 0.053 0.319 0.049 0.828
Lasso Sel, Sco 0.056 0.189 0.058 0.283 0.068 0.684

Bold characters refer to highest power.
Each simulation setup was based on 1,000 replicates. SSU, sum of
squared score; LKMR, logistic kernel machine regression; SSUw,
sum of weighted squared score; TPM, truncated product method;
LRT, likelihood ratio test; SC, screening and cleaning; SNP, single
nucleotide polymorphism.
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odds ratio, OR, for each causal SNP). In the second, we
generated two independent genotype blocks, say X0 and
X1, with k0 5 4 and k1 5 36 SNPs, respectively; we then
used X0 as causal SNPs to generate Y as in the first case.
We supplied the combined genotypes X ¼ ðX0;X1Þ to each
data set. In both cases, we had k 5 40 SNPs, but in the first,
the causal and noncausal ones were correlated for r40,
whereas in the second they were independent. We
followed the typical case-control design: in each data set,
we had n 5 200 cases and n 5 200 controls.

The simulation results are shown in Tables X and XI. In
the first case (Table X), LKMR-Quad and LKMR-Linear
were winners, closely followed by SSU, SSUw, and the
Lasso-Ave-SSU-Min; the other Lasso methods with
the SSU statistic also performed well. The score test and
the Lasso methods with the score statistic were all low
powered for r40. In the second case, since the true model
was sparse with the causal SNPs independent of the
noncausal ones, two minP methods, UminP and Lasso-
Ave-SSU-Min were the winners. In both cases, it was
confirmed that Lasso-based methods did not outperform
some global tests.

DISCUSSION

The most interesting, and perhaps surprising, conclu-
sion of this study is that, for our experimental data with
small to moderately high dimensions, the tests based on
Lasso for variable selection did not perform better than
some global tests, i.e. the SSU, SSUw, and LKMR. This is
not the first negative report on penalized regression for

genetic association analysis; see Croiseau and Cordell
[2009] for a case study and Martinez et al. [2010] for
disappointing performance of penalized regression in
a different context. Note that in our simulations, the
data-generating models were indeed sparse, favoring
variable selection by Lasso while the random-effects
assumption utilized by the SSU, SSUw, and LKMR was
violated; if the true models contained many more nonzero
and small coefficients, the SSU, SSUw, and LKMR
methods would be expected to perform even better.
Possible reasons are the following. First, model selection
is difficult. For our examples, there was no or only weak
marginal effect of any single predictor, rendering low
accuracy of model selection, thus degrading the perfor-
mance of any test based on model selection. Second,
although intuitively it is beneficial to eliminate noninfor-
mative variables to reduce the number of parameters to be
tested (i.e. reduced DF), e.g. by variable selection, in
addition to possibly low selection accuracy, there is always
some cost associated with model selection: any test statistic
after variable selection is expected to have a null
distribution with heavier tails than that without model
selection, leading to possible loss of power [Han and Pan,
2010]. In other words, there is always a trade-off between a
gain with eliminating noninformative variables (i.e.
reduced DF) and a loss due to model searching as
measured by inflated generalized DF [Shen and Ye,
2002]. Hence, at the end, the gain may not outweigh the
loss. Third, the winning global tests were all developed for
high-dimensional data based on testing some variance
component in a random-effects model; hence, they are
robust to large numbers of parameters to be tested. In fact,
there is a close connection between penalized methods and
random-effects models: first, a random-effects model can
be regarded as a Bayesian model, whose posterior
distribution can be interpreted as a penalized likelihood;
second, the marginal quasi-likelihood of a generalized
linear mixed model can be approximated as a penalized
quasi-likelihood based on Laplace’s method [Breslow and
Clayton, 1993]. Hence, in this sense the global tests such as
SSU and LKMR can be also regarded as penalized methods.

One of our main motivations for this study was to
combine the strengths of variable selection and powerful
test statistics for high-dimensional data. We have proposed
and studied such approaches, e.g. ‘‘Ave-SSU-Fisher’’ and
‘‘Ave-SSU-TPM.’’ Although the proposed methods per-
formed better than the standard methods based on
selecting a single penalization parameter and/or the usual
score statistic, they did not outperform the global tests of
SSU, SSUw, and LKMR. Of course, we do not claim that it
is impossible for model selection-based methods to
outperform the global tests, but further studies are needed.
The most important message of this report is that,
although penalized regression (via variable selection and
parameter shrinkage) can often improve parameter esti-
mation and outcome prediction over its nonpenalized
counter-parts, it is not clear whether, if yes how, penalized
regression can also improve power in hypothesis testing.
Even only within the framework of penalized regression,
in addition to the choice of the test statistic, there is
another critical issue of choosing between averaging over
multiple penalization parameters and selecting a single
‘‘best’’ penalization parameter. Our numerical study here
seemed to indicate better performance of the averaging
approaches. Nevertheless, there may not be a single

TABLE XI. Empirical Type I error rates (OR 5 1) and
power (OR 5 1.25) with various correlations (q) among
k0 5 4 causal SNPs, and among 36 non-causal SNPs, but
there was no correlation between any causal and
noncausal ones

Variable Test
r5 0 r5 0.4 r5 0.8

selection statistics OR 5 1 1.25 1 1.25 1 1.25

No Sco 0.048 0.168 0.042 0.366 0.047 0.749
No Sco-P 0.056 0.184 0.052 0.376 0.058 0.755
No UminP 0.049 0.148 0.060 0.682 0.060 0.992

No SSU 0.050 0.200 0.053 0.652 0.057 0.867
No SSU-P 0.058 0.208 0.059 0.657 0.052 0.858
No SSUw 0.055 0.193 0.053 0.631 0.058 0.876
No LKMR-Linear 0.059 0.217 0.067 0.672 0.060 0.882
No LKMR-Quad 0.058 0.228 0.065 0.598 0.061 0.610
Lasso Ave, SSU, Min 0.063 0.208 0.066 0.700 0.062 0.986
Lasso Ave, SSU, Fisher 0.050 0.197 0.053 0.676 0.040 0.955
Lasso Ave, SSU, TPM 0.053 0.194 0.058 0.663 0.046 0.925
Lasso Ave, Sco, Min 0.061 0.188 0.050 0.545 0.060 0.934
Lasso Ave, Sco, Fisher 0.048 0.172 0.044 0.481 0.051 0.913
Lasso Ave, Sco, TPM 0.050 0.175 0.047 0.440 0.056 0.880
Lasso Sel, SSU 0.062 0.192 0.053 0.692 0.055 0.984
Lasso Sel, Sco 0.071 0.181 0.048 0.574 0.057 0.964

Bold characters refer to highest power.
SSU, sum of squared score; LKMR, logistic kernel machine
regression; SSUw, sum of weighted squared score; TPM, truncated
product method; LRT, likelihood ratio test; SC, screening and
cleaning; SNP, single nucleotide polymorphism. Each simulation
setup was based on 1,000 replicates.
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uniform winner, in analogous to model averaging vs.
model selection studied in the context of variable selection
and prediction [Yang, 2003; Shen and Huang, 2006]. More
work is warranted.
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