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Abstract. We construct new examples of compact ECS manifolds, that is,

of pseudo-Riemannian manifolds with parallel Weyl tensor that are neither

conformally flat nor locally symmetric. Every ECS manifold has rank 1 or

2, the rank being the dimension of a distinguished null parallel distribution

discovered by Olszak. Previously known examples of compact ECS manifolds,

in every dimension greater than 4, were all of rank 1, geodesically complete,

and none of them locally homogeneous. By contrast, our new examples – all

of them geodesically incomplete – realize all odd dimensions starting from 5

and are this time of rank 2, as well as locally homogeneous.

Introduction

By an ECS manifold [4] – short for ‘essentially conformally symmetric’ – one

means a pseudo-Riemannian manifold of dimension n ≥ 4 having nonzero parallel

Weyl tensor W, and not being locally symmetric. Its rank d ∈ {1, 2} is the

dimension of its Olszak distribution [19], [5, p. 119], the null parallel distribution

D, the sections of which are the vector fields corresponding via the metric to 1-forms

ξ such that ξ∧[W (v, v′, · , · )] = 0 for all vector fields v, v′. (The term ‘conformally

symmetric’ should not be misconstrued as referring to conformal geometry.)

ECS manifolds are of obvious interest [1, 15, 18, 21, 13, 12] due to naturality

and simplicity of the condition ∇W = 0. Roter proved the existence of ECS

manifolds [20, Corollary 3] in all dimensions n ≥ 4 and showed that their metrics

are necessarily indefinite [3, Theorem 2]. Locally homogeneous ECS manifolds of

either rank exist [2] for all n ≥ 4. The local structure of ECS manifolds has been

completely described [5].

Examples of compact rank-one ECS manifolds are known [6, 10] in every di-

mension n ≥ 5. They are geodesically complete and not locally homogeneous,
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which raises three obvious questions: Can a compact ECS manifold have rank two,

or be locally homogeneous, or geodesically incomplete?

This paper answers all three in the affirmative, for every odd dimension n ≥ 5.

Just like in [6, 10], our examples are diffeomorphic to nontrivial torus bundles

over the circle, and arise as quotients of certain explicitly described simply con-

nected “model” manifolds M̂ under free and properly discontinuous actions on M̂

of suitable groups Γ of isometries. However, selecting such objects involves two

aspects, analytical for M̂ (the existence of a specific function f of a real variable)

and combinatorial for Γ, and it is here that our approach fundamentally differs

from [6] and [10]. Whereas in those two papers the combinatorial part was trivial,

and finding f required extensive work – a messy explicit construction in [6], only

good for dimensions n congruent to 5 modulo 3, and a deformation argument

applied to uninteresting constant functions in [10] – the situation here is the exact

opposite: f comes from the very simple formula (4.4), while the groups Γ arise

via combinatorial structures (ZZ-spectral systems), the existence of which we can

only establish, with some effort, in Theorem 2.2, for odd dimensions n.

Every ZZ-spectral system gives rise to a free Abelian group Σ of isometries in

each model manifold of a suitable type, associated with a narrow class of choices

of the function f, so that Σ satisfies conditions (3.9), which in turn allows us to

extend Σ to the required group Γ, leading to a compact quotient manifold. See

Theorem 5.1. (Our argument used to derive Theorem 5.1 from (3.9) is a modified

version of those in [6] and [10].) One such choice of f, namely, (4.4), makes the

resulting compact rank-two ECS manifolds locally homogeneous (Theorem 6.1).

They are also all incomplete, for rather obvious reasons (Remark 3.4).

The preceding sentence leads to a further question: For a compact ECS mani-

fold, can one have incompleteness without local homogeneity? We answer it in the

affirmative – with any f given by (4.4), there is an infinite-dimensional freedom of

deforming it, so that Theorem 5.1 still applies, giving rise to compact quotient ECS

manifolds which are still incomplete, but this time not locally homogeneous. They

belong to a wider class of compact rank-two ECS manifolds, called dilational. Since

they are arguably of less interest than the locally-homogeneous ones, we relegate

their presentation to Appendix B.

In [11, Theorem E] we show that neither local homogeneity nor the dilational

property can occur for a compact rank-one ECS manifold which satisfies a natural

genericity condition imposed on the Weyl tensor. In the case of our simply con-

nected “model” manifolds (Section 3) of dimensions n ≥ 4, genericity means that

rankA = n− 3, for a certain nonzero nilpotent endomorphism A of an (n− 2)-di-

mensional vector space used in constructing the model [11, formula (6.4)], [9, Re-

mark 5.4]. The models leading to our rank-two examples, in odd dimensions n ≥ 5,
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all have rankA = 1. See formula (1.3). They thus represent the maximum extent

of nongenericity possible in the category of nonzero nilpotent endomorphisms.

We do not know whether locally-homogeneous (or dilational) compact ECS

manifolds exist in any even dimension n ≥ 4. However, if they do, they cannot

be constructed by the same method as our odd-dimensional examples. Namely, as

we observe at the end of Section 2, for every ZZ-spectral system (m, k,E, J), the

integer m, corresponding to the dimension n = m+ 2, is necessarily odd.

1. Preliminaries

Lemma 1.1. Let q ∈ (0,∞)r {1} and q+ q−1 ∈ ZZ. If λ0, . . . , λm are powers

of q with integer exponents, forming pairs of mutual inverses, including the value

1 as its own inverse when m is even, then λ0, . . . , λm form the spectrum of a

matrix in GL(m+ 1,ZZ).

Proof. It suffices, cf. [6, p. 75], to show that λ0, . . . , λm are the roots of a

degree m+ 1 polynomial with integer coefficients which has the leading coefficient

(−1)m+1 and the constant term 1. This is immediate if m = 0 and λ0 = 1, or

m = 1 and (λ0, λ1) = (q, q−1), or m = 1 and (λ0, λ1) = (qa, q−a) with any positive

integer a. (The last claim is a well-known consequence of the preceding one, since

qa + q−a equals a specific monic degree a polynomial with integer coefficients,

evaluated on q+ q−1.) The required degree m+ 1 polynomial is the product of the

quadratic (and possibly linear) ones arising as above when m = 0 or m = 1. �

Remark 1.2. We call a pseudo-Euclidean inner product 〈·, ·〉 on an m-dimen-

sional real vector space V semi-neutral if its positive and negative indices differ by

at most one. Clearly, the matrix representing 〈·, ·〉 in a suitable basis e1, . . . , em
of V has zero entries except those on the main antidiagonal, all equal to some sign

factor ε = ±1, which for even m may be assumed equal to 1, but is unique for

odd m, as it then equals the difference of the two indices. Equivalently,

(1.1) 〈ei, ek〉 = εδij for all i, j ∈ {1, . . . ,m}, where k = m+ 1− j, and ε = ±1.

Given V, 〈·, ·〉, e1, . . . , em as above, q ∈ (0,∞), and (a(1), . . . , a(m)) ∈ IRm with

(1.2) a(1) = 1 and a(i) + a(j) = 0 whenever i+ j = m+ 1,

we define a nonzero, traceless, 〈·, ·〉-self-adjoint linear endomorphism A of V and

a linear 〈·, ·〉-isometry C : V → V such that CAC−1 = q2A by setting

(1.3) Aem = e1 , Aei = 0 if i < m, and Cei = qa(i)ei for all i.

In fact, as 〈Aem, em〉 is the only nonzero entry of the form 〈Aei, ej〉, the matrix

of A in our basis has zeros on the diagonal; CAC−1ei and q2Aei are both zero if

i < m and both q2e1 when i = m, while the spans of ei, ej with i+ j = m+ 1 form

an orthogonal decomposition of V into Lorentzian planes (and a line, for odd m

and i = j = (m+ 1)/2), and in each plane C acts as a Lorentzian boost.
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We phrase two more obvious facts as remarks, for easy reference.

Remark 1.3. Every family of eigenvectors of an endomorphism of a vector

space, corresponding to mutually distinct eigenvalues, is linearly independent.

Remark 1.4. If the s characteristic roots of an endomorphism Π of an s-

dimensional real vector space Y are all real, distinct, and form the spectrum of a

matrix Ξ in GL(s,ZZ), then Π(Σ) = Σ for some lattice Σ in Y. (This is true

for Π = Ξ and Y = IRs, with Σ = ZZs. The general case follows as the algebraic

equivalence type of a diagonalizable endomorphism is determined by its spectrum.)

2. ZZ-spectral systems

By a ZZ-spectral system we mean a quadruple (m, k,E, J) consisting of integers

m, k ≥ 2, an injective function E : V → ZZ r {−1}, where V = {1, . . . , 2m}, and a

function J : V→ {0, 1}, satisfying the following conditions for all i, i′ ∈ V.

(a) k + 1 = 2E(1) (and so k must be odd).

(b) E(i) + E(i′) = −1 and J(i) 6= J(i′) whenever i+ i′ = 2m+ 1.

(c) E(i)− E(i′) = k and J(i) 6= J(i′) if i′ = i+ 1 is even.

(d) The set Y = {−1} ∪ {E(i); i ∈ V and J(i) = 1} is symmetric about 0.

In terms of the preimage S = J−1(1) = {i ∈ V : J(i) = 1}, the requirements

imposed on J state that S is a simultaneous selector for the two families,

(2.1) {{i, i′} ∈ P2(V) : i+ i′ = 2m+ 1}, {{i, i′} ∈ P2(V) : i′ = i+ 1 is even},

of pairwise disjoint 2-element subsets of V, while J equals the characteristic func-

tion of S. Here P2(V) denotes the family of all 2-element subsets of V. Thus, as

E was assumed injective, with | | standing for cardinality,

(2.2) |S| = |E(S)| = m, Y = {−1} ∪ E(S), |Y | = m+ 1.

Remark 2.1. What makes ZZ-spectral systems relevant for our purposes is

the fact that, given any such system (m, k,E, J) and any q ∈ (0,∞) r {1} with

q+ q−1 ∈ ZZ, the (m+ 1)-element set {qa : a ∈ Y } forms, according to Lemma 1.1,

the spectrum of a matrix in GL(m+ 1,ZZ).

Theorem 2.2. There exist ZZ-spectral systems (m, k,E, J) having k = m+2,

which realize all odd values of m ≥ 3. Specifically, for m = 2r−3 and k = 2r−1,

with any given integer r ≥ 3, writing (i, i′) = (2j − 1, 2j) whenever i, i′ ∈ V and
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i′ = i+ 1 is even, we may set

(E(2j−1), E(2j)) =



(r, −r + 1) if j = 1,

(j − 1, −2r + j) if 1 < j < r − 1 and r is even,

(2r + j − 2, j − 1) if 1 < j < r − 1 and r is odd,

(r − 1, −r) if j = r − 1,

(j − 2r + 2, j − 4r + 3) if r − 1 < j < m and r is odd,

(j + 1, j − 2r + 2) if r − 1 < j < m and r is even,

(r − 2, −r − 1) if j = m,

and declare J(i) to be 1 or 0 depending on whether E(i) is odd or even, so that

Y in (d) obviously consists of −1 and all values of E which are odd :

(2.3) Y = {−1} ∪ [ZZodd ∩ E(V)], where ZZodd = ZZr 2ZZ.

Also, Y is the intersection of ZZodd with one, or a union of three, closed intervals:

(2.4)
Y = ZZodd ∩ [−2r + 3, 2r − 3] for even r while, if r is odd,

Y = ZZodd ∩ ([−3r + 4,−2r − 1] ∪ [−r, r] ∪ [2r + 1, 3r − 4]).

Proof. Once we establish (a) – (c) for E, (b) – (c) for J will follow: as

E(i), E(i′) in (a) – (c) have different parities, J(i) 6= J(i′) in {0, 1}.
Since k = 2r − 1, (a) and (c) for E are immediate, with (i, i′) = (2j − 1, 2j).

To verify (b) for E we display the definition of E in the matrix form:



1 2

2j − 1 2j

2j − 1 2j

2r − 3 2r − 2

2j′− 1 2j′

2j′− 1 2j′

2m− 1 2m


7→



E(1) E(2)

E(2j − 1) E(2j)

E(2j − 1) E(2j)

E(2r − 3) E(2r − 2)

E(2j′− 1) E(2j′)

E(2j′− 1) E(2j′)

E(2m− 1) E(2m)


=



r −r + 1

j − 1 −2r + j

2r + j − 2 j − 1

r − 1 −r
j′− 2r + 2 j′− 4r + 3

j′+ 1 j′− 2r + 2

r − 2 −r − 1


,

where rows 3 and 5 (or, 2 and 6) are to be ignored if r is even (or, odd), while the

ranges of j and j′ are 1 < j < r − 1 and r − 1 < j′ < m.

In the first matrix above two entries have the sum 2m+1 = 4r−5 if and only if

they lie symmetrically about the center of the matrix rectangle, with j+j′ = 2(r−1)

(that is, with j and j′ lying symmetrically about r−1). The same pairs of entries

in the third matrix above have the sum −1, proving (b) for E. Next,

(2.5) the range E(V) contains {1, . . . , r},
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as the values r − 2, r − 1, 1 appear in the first column of the third matrix, and

j − 1 for j = 2, . . . , r − 2 in row 2 or 3, depending on parity of r. Also,

(2.6) E(V) includes the r − 3 values

r + 1, . . . , 2r − 3 if r is even,

2r, 2r + 1, . . . , 3r − 4 if r is odd.

Namely, for even m we get j′+ 1 (row 6, with j′ = r, . . . ,m− 1 = 2r − 4) while,

if r is odd, row 3 provides 2r + j − 2, with j = 2, . . . , r − 2. In addition, by (b),

(2.7) E(V) is closed under the reflection i 7→ −i− 1 about −1/2.

Due to (2.5) – (2.6), E(V) contains at least m = 2r − 3 positive integers, and –

according to (2.7) – at least as many negative ones. Since V has the cardinality

2m, injectivity of E follows, and ‘at least’ in the last sentence amounts to exactly.

Thus, from (2.5) – (2.7), E(V) is the intersection of ZZ with the union of two or

four closed intervals: [−2r + 2,−2] ∪ [1, 2r − 3] for even r, or, if r is odd,

[−3r + 3,−2r − 1] ∪ [−r − 1,−2] ∪ [1, r] ∪ [2r, 3r − 4].

In particular, −1 /∈ E(V). Finally, (2.4) is a trivial consequence of this last descrip-

tion of E(V) and (2.3), and it clearly implies symmetry of Y about 0. �

In every ZZ-spectral system (m, k,E, J), the integer m must be odd. Namely,

since S has the simultaneous-selector property – see the line preceding (2.1) – when

i ∈ S is odd (or, even), 2m+1−i ∈ VrS will be even (or, odd), and so 2m−i ∈ S
(or, respectively, 2m+ 2− i ∈ S). In other words, if i ∈ S, then {i, i′} ⊆ S for the

unique i′ ∈ V having i ≡ i′ mod 2 and i+ i′ = 2m+ 1 + (−1)i. The resulting sets

{i, i′} form a partition of S and, clearly, i′ 6= i unless m is odd (with i′ = i equal

to m or m+ 1). If m were even, the m-element set S would thus be partitioned

into our m/2 disjoint 2-element sets {i, i′}. Oddness of k, due to (a), and (b) – (c)

would now give E(i) ≡ E(i′) mod 2 on each such {i, i′}, making
∑
i∈S E(i) even.

This contradicts the equality
∑
i∈S E(i) = 1, immediate, since E : V→ ZZr {−1}

is injective, from symmetry about 0 of Y = {−1} ∪ E(S), cf. (d) and (2.2).

3. Standard dilational models

We define a standard dilational ECS model to be an n-dimensional pseudo-

Riemannian manifold

(3.1) (M̂, ĝ) = ((0,∞)× IR× V , κ dt2 + dt ds + 〈·, ·〉),

built from the data q, n, V , 〈·, ·〉, A,C, f consisting of a real number q ∈ (0,∞)r{1}
with q + q−1 ∈ ZZ, an integer n ≥ 4, a real vector space V of dimension n − 2, a

pseudo-Euclidean inner product 〈·, ·〉 on V , a nonzero, traceless, 〈·, ·〉-self-adjoint
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linear operator A : V → V , a linear 〈·, ·〉-isometry C : V → V , and a nonconstant

C∞ function f : (0,∞)→ IR, satisfying the conditions

(3.2) a) CAC−1 = q2A, b) f(t) = q2f(qt) for all t ∈ (0,∞).

In (3.1) we identify dt, ds and the flat metric 〈·, ·〉 on V with their pullbacks to

M̂, the function κ : M̂ → IR is defined by κ(t, s, v) = f(t)〈v, v〉+ 〈Av, v〉, and (t, s)

are the Cartesian coordinates on (0,∞)× IR.

It is well known [5, Theorem 4.1], [7, Sect. 1] that (3.1) is an ECS manifold,

having rank one if rankA > 1, and rank two when rankA = 1.

The following text leading up to formula (3.6) repeats, almost verbatim, some

material from [9, Sect. 6], albeit in a special case characterized by (3.5); [9, Sect. 6]

also serves as a reference for it, and (3.1) stands, in the rest of this section, for the

standard dilational model associated with fixed data q, n, V , 〈·, ·〉, A,C, f.

We denote by W and E the vector spaces of dimensions 2 and 2(n − 2)

consisting of all C2 functions y : (0,∞)→ IR, or u : (0,∞)→ V , such that

(3.3) i) ÿ = fy or, respectively, ii) ü = fu+Au, where ( )̇ = d/dt.

Let the operator T act on functions (0,∞) 3 t 7→ u(t), valued anywhere, by

(3.4) [Tu](t) = u(t/q), so that (3.2 b) reads Tf = q2f.

Thus, T obviously preserves W. We now impose on f an additional requirement :

(3.5)
T : W →W has two distinct eigenvalues µ± ∈ (0,∞) with positive

eigenfunctions y+, y− ∈W, so that Ty± = µ±y± and µ+µ− = q−1,

the last equality (det T = q−1 in W) being immediate since the formula α(y+, y−) =

ẏ+y−− y+ẏ− (a constant!) defines an area form α on W and qT ∗α = α. The

space E is not, in general, preserved either by T or by C acting valuewise via

u 7→ Cu, but the composition CT = TC clearly leaves E invariant, leading to

(3.6) the operator CT : E→ E given by [(CT )u](t) = Cu(t/q).

Next, given (r̂, û), (r, u) ∈ IR× E, we define mappings γ̂, γ : M̂ → M̂ by

(3.7)
γ̂(t, s, v) = (qt,−〈ŵ(qt), 2Cv + û(qt)〉+ r̂ + s/q, Cv + û(qt)),

γ(t, s, v) = (t,−〈u̇(t), 2v + u(t)〉+ r + s, v + u(t)).

where ŵ = dû/dt. Both γ̂, γ lie in the isometry group Iso(M̂, ĝ) [9, formula

(4.7)]. We choose to treat (r̂, û) ∈ IR × E as fixed, while allowing (r, u) to range

over IR × E. The set of all γ arising via (3.7) from all (r, u) ∈ IR × E forms a
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normal subgroup H of Iso(M̂, ĝ) [9, formula (4.8)] and, as explained below,

(3.8)

i) (r, u)(r′, u′) = (Ω(u′, u) + r + r′, u+ u′),

ii) Π(r, u) = (2Ω(CTu, û) + r/q, CTu), where

iii) Ω : E× E→ IR is the symplectic form given by

Ω(u1, u2) = 〈u̇1, u2〉 − 〈u1, u̇2〉, and

iv) (CT )∗Ω = q−1Ω for the operator CT : E→ E in (3.6).

Here (3.8-i) describes the group operation of H under the obvious identification

H = IR×E, cf. [9, (a) in Sect. 4], the linear operator Π : IR×E→ IR×E in (3.8-ii)

equals H 3 γ 7→ γ̂γγ̂−1 ∈ H, the conjugation by γ̂, cf. [9, Remark 4.2], (3.8-iii) is

immediate as self-adjointness of A and (3.3-ii) imply constancy of Ω(u1, u2), and

(3.8-iv) is a consequence of (3.6).

Consider the following conditions imposed on two objects, L and Σ, with Π

as in (3.8-ii) for our fixed (r̂, û) ∈ IR× E.

(3.9)

(A) L ⊆ E is a vector subspace of dimension n− 2.

(B) CT in (3.6) leaves L invariant.

(C) Σ is a (full) lattice in IR× L and Π(Σ) = Σ.

(D) Ω(u, u′) = 0 whenever u, u′ ∈ L, with Ω as in (3.8 iii).

(E) u 7→ u(t) is an isomorphism L→ V for every t ∈ (0,∞).

Our choice of symbols has obvious reasons: H is a Heisenberg group, and L a

Lagrangian subspace of E.

The following remark and lemma use the hypotheses preceding (3.9).

Remark 3.1. As an obvious consequence of (3.8-i), whenever a vector subspace

L ⊆ E satisfies (3.9-D), IR×L is an Abelian subgroup of H = IR× E ⊆ Iso(M̂, ĝ)

and the group operation in IR× L coincides with the vector-space addition.

Lemma 3.2. Condition (3.9-E) for a vector subspace L ⊆ E implies that

(t, z, u) 7→ (t, s, v) = (t, z − 〈u̇(t), u(t)〉, u(t)) is an H-equivariant diffeomorphism

(0,∞)× IR× L → M̂.

Proof. This is a special case of [9, Remark 9.1]. �

Remark 3.3. As pointed out in [8, the lines following formula (7.2)], the co-

ordinate vector field ∂/∂s in (3.1) is null and parallel. Thus, ∂/∂s spans a one-

dimensional null parallel distribution P, contained, according to [7, Sect. 1], in the

Olszak distribution D, while ∇dt = 0 since dt = 2g(∂/∂s, · ). The mappings (3.7)

multiply t and its gradient 2∂/∂s by constants, and so P gives rise to distributions,

also denoted by P, on the compact quotients constructed in Sections 5 and 6.

Remark 3.4. A standard dilational model manifold (see Section 3) is never

geodesically complete. Namely, ∇dt = 0 in Remark 3.3. Thus, t restricted to

any geodesic is an affine function of its parameter, and so t itself serves as such
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parameter for a geodesic t 7→ x(t) through any point x with an initial velocity v

at x having dvt = 1. Our claim follows since t ranges over (0,∞).

4. From ZZ-spectral systems to conditions (3.9)

Suppose that (m, k,E, J) is a ZZ-spectral system (Section 2), q ∈ (0,∞)r{1}
has q + q−1 ∈ ZZ, while a C∞ function f : (0,∞) → IR satisfies both (3.2-b) and

(3.5) with µ± = q (−1±k)/2. We set n = m+ 2, choose a semi-neutral inner product

〈·, ·〉 on an m-dimensional real vector space V (see Remark 1.2), a basis e1, . . . , em
of V satisfying (1.1), and define A,C : V → V by (1.3) for a(1), . . . , a(m) with

(4.1) a(j) = E(2j − 1) + (1− k)/2, that is, a(j) = E(2j) + (1 + k)/2,

the equivalence of both descriptions, and (1.2), being due to (a) – (c) in Section 2,

which also easily imply that, for our µ± = q (−1±k)/2,

(4.2) (µ+qa(1), µ−qa(1), . . . , µ+qa(m), µ−qa(m)) = (qE(1), . . . , qE(2m)).

According to Remark 1.2, these data q, n, V , 〈·, ·〉, A,C, f have all the properties

preceding (3.2). Thus, they lead to a standard dilational model (M̂, ĝ) with (3.1).

Lemma 4.1. The assumptions just listed have the following consequences.

(a) Some ordered basis (u+1 , u
−
1 , . . . , u

+
m, u

−
m) = (u1, . . . , u2m) of E consists of

eigenvectors of CT : E → E, cf. (3.6), and the respective eigenvalues,

equal to qE(1), . . . , qE(2m), are pairwise distinct. With y± as in (3.5) and

suitable functions z± : (0,∞)→ IR, this basis may be obtained by setting

u±i = y±ei if i < m and u±m = y±em + z±e1.

(b) Ω(ui, uj) = 0 whenever i, j ∈ {1, . . . , 2m} and i+ j 6= 2m+ 1, the basis

(u1, . . . , u2m) and Ω being as in (a) and (3.8-iii).

Proof. Due to (3.5) and (1.3), u±i defined in (a) have CTu±i = µ±qa(i)u±i
if i < m, that is, by (4.2), CTuj = qE(j)uj whenever j ∈ {1, . . . , 2m − 2}. That

qE(1), . . . , qE(2m) are distinct follows as E : V→ ZZr {−1} is injective (Section 2).

Given functions x± : (0,∞)→ IR with ẍ± = fx±+ y±, (3.3-i) for y = y± and

(1.3) yield (3.3-ii) for u± = y±em +x±e1, so that u± ∈ E and, again by (3.5), (1.3)

and (4.2), w+ = [CT − qE(2m−1)]u+ and w− = [CT − qE(2m)]u− both lie in the

subspace Z of E spanned by the eigenvectors u1, u2 for the eigenvalues qE(1), qE(2).

(The scalars qE(2m−1), qE(2m) stand for the corresponding multiples of identity.)

Distinctness of the eigenvalues qE(1), . . . , qE(2m) implies that CT − qE(2m−1) and

CT − qE(2m) map Z isomorphically onto itself. We may now choose z± to be

the function such that CT − qE(2m−(1±1)/2) sends (x±− z±)e1 onto w±, and (a)

follows, with linear independence of u1, . . . , u2m due to Remark 1.3.

Next, by (3.8-iv) and (a), q−1Ω(ui, uj) = Ω(CTui, CTuj) = qE(i)+E(j)Ω(ui, uj)

which, in view of injectivity of E and (b) in Section 2, yields (b). �
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We also fix a pair (r̂, û) ∈ IR× E, as in the lines following (3.7), and denote by

Π the resulting linear operator IR× E→ IR× E of conjugation by γ̂, in (3.8-ii).

Lemma 4.2. With the data q, n, V , 〈·, ·〉, A,C, f and (r̂, û), Π chosen as above,

conditions (3.9) hold for suitable L and Σ.

Proof. Let L be the span of {ui : i ∈ S} for the basis (u+1 , u
−
1 , . . . , u

+
m, u

−
m) =

(u1, . . . , u2m) of E appearing in Lemma 4.1(a) and the set S associated with our

ZZ-spectral system (m, k,E, J) (see Section 2), that is, S = {i ∈ V : J(i) = 1}.
Now (3.9-A) – (3.9-B) follow since m = n − 2. As S is a selector for the second

family of (2.1), the basis {ui : i ∈ S} of L has the form

(4.3) (u
ε(1)
1 , . . . , uε(m)

m ) with some signs ε(1), . . . , ε(m).

For each fixed t ∈ (0,∞), the operator E 3 u 7→ u(t) ∈ V sends u±i to y±(t)ei if

i < m and u±m to y±(t)em+z±(t)e1, so that, restricted to L, it is represented in the

bases (4.3) and e1, . . . , em by an upper triangular matrix with all diagonal entries

positive in view of (3.5), which proves (3.9-E). Simultaneously, S is a selector for

the first family in (2.1), so that i + j 6= 2m + 1 if ui, uj ∈ L. Combined with

Lemma 4.1(b), this yields (3.9-D). Finally, the existence of a lattice Σ required in

(3.9-C) is immediate from Remarks 2.1 and 1.4. �

An example of a C∞ function f : (0,∞) → IR having both (3.2-b) and (3.5)

for µ± = q (−1±k)/2, as required at the beginning of this section, is provided by

(4.4) f(t) =
k2− 1

4t2
, with y±(t) = t(1∓k)/2 in (3.5).

For the resulting standard dilational model (M̂, ĝ), cf. the lines following (4.2),

(4.5) (M̂, ĝ) is locally homogeneous.

Namely, by (4.4), the expression (3.1) for g amounts to that for the metric gP in

[2, top of p. 170], our coordinate t being denoted there by u1. Our Remark 1.2

now clearly implies formula (10) in [2, p. 172] which, as stated there, guarantees

homogeneity of the metric gP on (0,∞)× IR× V , with V = IRn−2.

5. From conditions (3.9) to compact quotients

We now show that conditions (3.9) are sufficient for a standard dilational model

to admit compact isometric quotients. Specifically, let (m, k,E, J), q, f , along with

n = m+ 2 and V , 〈·, ·〉, e1, . . . , em, A,C, have the properties listed at the beginning

of Section 4, so that the data q, n, V , 〈·, ·〉, A,C, f give rise to a standard dilation-

al model (M̂, ĝ) with (3.1). We denote by P the one-dimensional null parallel

distribution on (M̂, ĝ), defined in Remark 3.3.
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Theorem 5.1. Under these assumptions, we also fix a pair (r̂, û) ∈ IR×E, cf.

the lines following (3.7), and define Π by (3.8-ii). If L and Σ are any objects

satisfying (3.9), then

(5.1) the group Γ⊆ Iso(M̂, ĝ), generated by γ̂ appearing in (3.7) and Σ,

acts on M̂ freely and properly discontinuously with a compact quotient manifold

M = M̂/Γ. In addition, M is the total space of a torus bundle over the circle,

with the leaves of P⊥ serving as the fibres, and its fundamental group Γ has no

Abelian subgroup of finite index, so that M cannot be diffeomorphic to a torus, or

even covered by a torus.

Proof. By Lemma 3.2, Remark 3.1 and (3.9-C), the action of Σ ⊆ H on each

t-level {t} × IR× V is, equivariantly,

(i) identified with the additive action of the lattice Σ on IR× L.

Since Π acts on Σ via conjugation by γ̂, cf. the lines following (3.8),

(ii) Σ is an Abelian normal subgroup of Γ,

where we again used Lemma 3.2, Remark 3.1 and (3.9-C). Thus, any element of

Γ, being a finite product of factors from the set Σ ∪ {γ̂, γ̂−1}, equals γ̂ rγ (written

multiplicatively) with some r ∈ ZZ and γ ∈ Σ. From (3.7), if (t, s, v) ∈ M̂,

(iii) (γ̂ rγ)(t, s, v) = (qrt, s′, v′) for some s′, v′, which also leads to

(iv) the homomorphism Γ 3 γ̂ rγ 7→ r ∈ ZZ,

and so Γ acts on M̂ freely: if γ̂ rγ has a fixed point (t, s, v), (iii) gives qrt = t.

Therefore, r = 0, and γ, having a fixed point, must equal the identity since, by (i),

the action of Σ on M̂ is free.

Consider now sequences with the terms (r, γ) ∈ ZZ × Σ and x = (t, s, v) ∈ M̂
such that x and γ̂r(γ(x)) both converge. Thus, (iii) implies convergence of the

sequence r (and hence its ultimate constancy). For the sequences γ′ = γ̂ rγγ̂−r in

Σ and x′ = γ̂r(x) ∈ M̂, with this “ultimate constant” r, writing γ′ = (r, u) and

x′ = (t′, s′, v′), we obtain convergence of both γ′(x′) = γ̂ r(γ(x)) and x′, so that (i)

implies eventual constancy of γ′ and – consequently – that of γ̂ rγ ∈ Γ.

The implication established in the last paragraph proves proper discontinuity

of the action of Γ on M̂. See [17, Exercise 12-19 on p. 337].

Next, M̂ has a compact subset K intersecting every orbit of Γ, which yields

compactness of the quotient manifold M = M̂/Γ. In fact, we may choose K to

be the image, under the H-equivariant diffeomorphism in (a), of J × K ′, where

J ⊆ (0,∞) is the closed interval with the endpoints 1, q, and K ′ a compact set in

IR×L which intersects all orbits of the lattice Σ acting on IR×L by vector-space

translations. We now modify any (t, s, v) ∈ M̂ by applying to it elements of Γ

twice in a row so as to end up with a point of K. First, γ̂ r(t, s, v) = (qrt, s′, v′), cf.

(iii), has qrt ∈ J for a suitable r ∈ ZZ (as the sum of log t and some multiple of
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log q lies between log q and 0). We may thus assume that t ∈ J . With this fixed

t, (i) allows us to choose γ′ ∈ Σ sending (t, s, v) into K.

The surjective submersion M̂ 3 (t, s, v) 7→ (log t)/(log q) ∈ IR, being clearly

equivariant relative to the homomorphism (iv) along with the obvious actions of Γ

on M̂, via (iii), and ZZ on IR, descends to a surjective submersion M → S1 which,

due to the compact case of Ehresmann’s fibration theorem [14, Corollary 8.5.13],

is a bundle projection. This leads, via (i), to the required conclusion about a torus

bundle over the circle. The claim about the fibres follows: the leaves of P⊥ in M̂

are the levels of t, since, according to Remark 3.3, P is spanned by the parallel

gradient of t.

Finally, a finite-index subgroup Γ′ of Γ would have a nontrivial image under

the homomorphism (iv) (the kernel of which, Σ, has an infinite index in Γ, and

hence cannot contain Γ′), and Γ′ ∩ Σ would clearly be a finite-index subgroup of

the lattice Σ spanning, consequently, the whole space IR × L. The conjugation

by any γ′ ∈ Γ′ r Σ would thus lead to the operator (3.8-ii) equal to the identity

on IR × L, and yet having the q-component different from 1. This contradiction

proves the final clause of the theorem. �

6. The locally-homogeneous case

Constructing compact rank-one ECS manifolds of dimension n via Theorem 5.1

is clearly reduced to finding two objects: a ZZ-spectral system (m, k,E, J), for

m = n − 2, and a C∞ function f : (0,∞) → IR with (3.2-b) and (3.5), for

q ∈ (0,∞) r {1} such that q + q−1 ∈ ZZ, and µ± = q (−1±k)/2. One now gets the

former from Theorem 2.2, as long as n ≥ 5 is odd, while an example of the latter

is then provided by formula (4.4).

The resulting existence theorem may be phrased as follows.

Theorem 6.1. Let n ≥ 5 be odd. Applying Theorem 5.1 to data that include

(m, k,E, J) of Theorem 2.2, where m = n − 2, and f given by (4.4), we obtain

the group Γ in (5.1) acting on M̂ freely and properly discontinuously with a locally

homogeneous and geodesically incomplete compact quotient rank-two ECS manifold

M = M̂/Γ of dimension n, forming the total space of a nontrivial torus bundle

over the circle, with the fibres provided by the leaves of P⊥, while its fundamental

group Γ has no finite-index Abelian subgroup.

In fact, for local homogeneity and incompleteness, see (4.5), and Remark 3.4.

Appendix A: Special spectra realized in function spaces

We fix q ∈ (0,∞) r {1}. For a continuous function f : (0,∞)→ IR satisfying

condition (3.2-b), recall from Section 3 that the two-dimensional space W of C2

solutions y : (0,∞)→ IR to the second-order ordinary differential equation (3.3-i)
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is obviously invariant under the translation operator T given by

(A.1) [Ty](t) = y(t/q), with det T = q−1 in W,

where det T = q−1 as in the line following (3.5). Clearly, (3.2-b) amounts to

periodicity, with the period log q, of the function IR 3 τι 7→ e2τιf(eτι). Therefore,

(A.2)
both the vector space F of continuous functions f satisfying (3.2 b)

and its subspace F0 = {f ∈ F : f(1) = 0} are infinite dimensional.

We will need such f with T having, for some c ∈ (0,∞), the spectrum

(A.3) q±c−1/2, that is, positive real eigenvalues and tr T = 2q−1/2cosh(c log q).

Examples of real-analytic functions f ∈ F with (A.3) are provided by

(A.4) fc(t) = (c2− 1/4)/t2, where c ∈ (0,∞).

In fact, an obvious basis of W for f = fc consists of y = y±c given by

(A.5) y±c (t) = t∓c+1/2, so that Ty±c = q±c−1/2y±c .

Theorem A.1. For any fixed q ∈ (0,∞) r {1} and c ∈ (0,∞) there exists

an infinite-dimensional manifold of smooth functions f : (0,∞)→ IR with (3.2-b)

such that the corresponding translation operator T : W → W has the eigenvalues

q±c+1/2, and some basis of W diagonalizing T consists of positive functions. The

same remains true if one replaces ‘smooth’ by real-analytic.

More precisely, for any f∗ ∈ F0 – see (A.2) – sufficiently C0-close to 0, there

exists a unique a close to c in IR such that f = f∗ + fa realizes the T-spectrum

{qc−1/2, q−c−1/2}, while the resulting assigment f∗ 7→ f is smooth and injective.

Proof. Define a mapping H : F0 × (0,∞) → IR by H(f∗, a) = tr T for T

arising from f = f∗ + fa. Smoothness of H follows since

(A.6) H(f∗, a) = y+(1/q) + q−1ẏ−(1/q).

where y+, y− are solutions to (3.3) with the initial conditions (y+(1), ẏ+(1)) = (1, 0)

and (y−(1), ẏ−(1)) = (0, 1). To verify (A.6) note that any y ∈W equals y(1)y+ +

ẏ(1)y−. For Ty rather than y this reads, by (A.1), Ty = y(1/q)y+ + q−1ẏ(1/q)y−

which, applied to y = y+ and y = y−, gives

(Ty+, Ty−) = (y+(1/q)y+ + q−1ẏ+(1/q)y−, y−(1/q)y+ + q−1ẏ−(1/q)y−),

showing that the matrix of T in the basis y+, y− of W has the trace claimed in

(A.6). Also, as each fc leads to the spectrum (A.3), H(0, a) = 2q−1/2cosh(a log q)

for all a > 0, including a = c. Since d[H(0, a)]/da 6= 0 at a = c, the implicit

mapping theorem [16, p. 18] provides neighborhoods of 0 in F and c in IR with

the required smooth mapping f∗ 7→ a sending 0 to c and having H(f∗, a) =

2q−1/2cosh(c log q). Injectivity of f∗ 7→ f∗ + fa follows: f(1) = fa(1) = a2 − 1/4

uniquely determines a > 0, and hence fa and f∗ as well.
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Finally, positivity of the functions (A.5) on the closed interval with the end-

points 1, q yields the same for functions C0-close to them that diagonalize T for

f close to fc. Being eigenvectors of the translation operator T, they thus remain

positive throughout (0,∞). �

Appendix B: Rank-two ECS manifolds of dilational type

The distribution P (see Remark 3.3) on every compact rank-two ECS manifold

(M, g) arising in Theorem 5.1 is a real line bundle over M with a linear connection

induced by the Levi-Civita connection of g. Due to its obvious flatness, the latter

connection has a countable holonomy group contained in IR r {0}.
All our examples (M, g) are dilational in the sense that this holonomy group

is infinite, which follows since the group Γ in (5.1) contains the element γ̂ defined

by (3.7) with q ∈ (0,∞) r {1}.
Theorem 6.1 now obviously remains valid if one replaces ‘given by (4.4)’ with

arising in Theorem A.1 for c = k/2, and ‘locally homogeneous’ with dilational :

Theorem B.1. Let n ≥ 5 be odd. Applying Theorem 5.1 to (m, k,E, J) of

Theorem 2.2, where m = n − 2, and f arising in Theorem A.1 for c = k/2, we

obtain the group Γ in (5.1) acting on M̂ freely and properly discontinuously with

a dilational and geodesically incomplete compact quotient rank-two ECS manifold

M = M̂/Γ of dimension n, forming the total space of a nontrivial torus bundle

over the circle, the fibres of which are the leaves of P⊥, and the fundamental group

Γ of M has no finite-index Abelian subgroup.

Geodesic incompleteness is immediate here from Remark 3.4. Also, most of the

examples resulting from Theorem B.1 have the dilational property without local

homogeneity, which is guaranteed by the infinite-dimensional freedom of choosing

f in Theorem A.1: in the locally-homogeneous case |f(t)|−1/2 must be – according

to [10, formula (3.3)] – an affine function of t. This restricts it to a finite-dimen-

sional moduli space.
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