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Abstract. We show that a Killing field on a compact pseudo-Kähler ddbar

manifold is necessarily (real) holomorphic. Our argument works without the

ddbar assumption in real dimension four. The claim about holomorphicity of

Killing fields on compact pseudo-Kähler manifolds appears in a 2012 paper

by Yamada, and in an appendix we provide a detailed explanation of why we

believe that Yamada’s argument is incomplete.

Introduction

By a pseudo-Kähler manifold we mean a pseudo-Riemannian manifold (M, g)

endowed with a ∇-parallel almost-complex structure J , for the Levi-Civita connec-

tion ∇ of g, such that the operator Jx : TxM → TxM is a linear gx-isometry (or is,

equivalently, gx-skew-adjoint) at every point x ∈ M. This implies integrability of

J (see the comment preceding Lemma 3.1). We then call (M, g) a pseudo-Kähler

∂∂ manifold if, in addition, the underlying complex manifold M has the following

∂∂ property, also referred to as the ∂∂ lemma:

(0.1)
every closed ∂ exact or ∂ exact (p, q) form

equals ∂∂λ for some (p− 1, q − 1) form λ.

It is well known that the ∂∂ property follows if M is compact and admits a

Riemannian Kähler metric [5, Prop. 6.17 on p. 144].

Theorem A. Every Killing vector field on a compact pseudo-Kähler ∂∂ man-

ifold is real holomorphic.

We provide two proofs of Theorem A, in Sections 2 and 3. The former is

derived directly from the ∂∂ condition; the latter, shorter, relies on the Hodge

decomposition, which is equivalent to the ∂∂ property [2, p. 269, subsect. (5.21)].

The Riemannian-Kähler case of Theorem A is well known, and straightforward

[1, the lines following Remark 4.83 on pp. 60–61]. See also Remark 1.2.
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For pseudo-Kähler surfaces, our argument yields a stronger conclusion.

Theorem B. In real dimension four the assertion of Theorem A holds without

the ∂∂ hypothesis.

The authors wish to express their gratitude to Kirollos Masood for bringing

Yamada’s paper [7] to the first author’s attention and discussing with him issues

involving Theorem B, formula (3.3), and the Appendix. We also thank Fangyang

Zheng for very useful suggestions about Lemma 2.1, and Takumi Yamada for a

brief but helpful communication.

1. Proof of Theorem B

All manifolds, mappings, tensor fields and connections are assumed smooth.

Lemma 1.1. Given a connection ∇ on a manifold M, let a vector field v on

M be affine in the sense that its local flow preserves ∇. Then, for any ∇-parallel

tensor field Θ on M, of any type, the Lie derivative £vΘ is ∇-parallel as well.

If Θ happens to be a closed differential form, £vΘ = d[Θ(v, · , . . . , · )].

Proof. Clearly, −£vΘ is the derivative with respect to the real variable t, at

t = 0, of the push-forwards [dφt]Θ under the local flow t 7→ φt of v. All [dφt]Θ

being ∇-parallel, so is £vΘ. For the final clause, use Cartan’s homotopy formula

£v = ıvd+ dıv for £v acting on differential forms [4, Thm. 14.35, p. 372]. �

Lemma 1.1 also follows from the Leibniz rule: £v(∇Θ) = (£v∇)Θ +∇(£vΘ).

Let (M, g) now be a fixed pseudo-Kähler manifold. If v is any vector field on

M then, with J and ∇v treated as bundle morphisms TM → TM,

(1.1) for B = ∇v and A= £vJ one has A = [J,B ] and JA = −AJ,

which is immediate from the Leibniz rule. For the Kähler form ω = g(J · , · ) of

(M, g) and any g-Killing vector field v, it follows from (1.1) and Lemma 1.1 that

(1.2)
i) A = £vJ and α = £vω are related by α = g(A· , · ), while

ii) A∗ = −A, JA = −AJ, ∇A = 0, ∇α = 0, and α is exact.

Given an exact p-form α on a compact pseudo-Riemannian manifold (M, g),

(1.3) α is L2 orthogonal to all parallel p times covariant tensor fields θ on M.

Namely, (θ, α) = (µ, α) = (µ, dβ) = (d∗µ, β) for β with α = dβ and the skew-

symmetric part µ of θ, while d∗µ = 0, as ∇µ = 0. Here ( , ) is the L2 inner

product, assigning to two tensor fields of the same type the integral over M of

their g-inner product, and d∗ denotes the g-divergence.

Remark 1.2. By (1.2-ii) and (1.3), for a Killing field v on a compact Riemann-

ian Kähler manifold, £vω is L2-orthogonal to itself, and so, as a consequence of

(1.2-i), v must be real holomorphic.
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Let (M, g) be, again, a pseudo-Kähler manifold. The vector bundle morphisms

C : TM → TM having C∗ = −C (that is, gx-skew-adjoint at every point x ∈M)

constitute the sections of

(1.4) the vector subbundle so(TM) of EndIR(TM) = HomIR(TM, TM).

We denote by E the vector subbundle of so(TM), the sections C of which are also

complex-antilinear (so that JC = −CJ , in addition to C∗ = −C). Then

(1.5)
E is a complex vector bundle of rank m(m− 1)/2, where m = dimCM,

with a pseudo Hermitian fibre metric having the real part induced by g.

In fact, C 7→ JC provides the complex structure for E. Nondegeneracy of g

restricted to E follows from g-orthogonality of the decomposition EndIR(TM) =

EndC(TM) ⊕ E⊕ D, the sections C of the subbundle D being characterized by

JC = −CJ and C∗ = C, with EndC(TM) orthogonal to E ⊕D since any anti-

linear morphism C : TM → TM is conjugate, via J , to −C, and so trIRC = 0.

The pseudo-Hermitian fibre metric in E arises by restricting 〈·, ·〉 − i〈J ·, ·〉 to E,

for the pseudo-Riemannian fibre metric 〈·, ·〉 in EndIR(TM) induced by g. The

rank m(m − 1)/2 follows since so(TM) = u(TM) ⊕ E, with u(TM) ⊆ so(TM)

characterized by having sections C : TM → TM that commute with J (which,

due to their g-skew-adjointness, makes them also gc-skew-adjoint, for gc = g− iω):

so(TM) and u(TM) have the real ranks m(2m− 1) and m2.

Proof of Theorem B. By (1.5), with m = 2, the pseudo-Hermitian fibre

metric in the line bundle E must be positive or negative definite. Hence so is its g-

induced real part. For any Killing field v, (1.2-ii) implies that A = £vJ is a section

of E which, due to (1.2) – (1.3), is L2-orthogonal to itself, and so £vJ = 0. �

The above proof does not extend to compact pseudo-Kähler manifolds (M, g)

of complex dimensions m > 2 with indefinite metrics. Namely, if the pair (j, k)

represents the metric signature of g, with j minuses and k pluses (both j, k even,

j + k = 2m), then the analogous signature of the real part (induced by g) of the

pseudo-Hermitian fibre metric in E is (jk/2, [j2 + k2 − 2(j + k)]/4), with both

components (indices) positive unless jk = 0 or j = k = 2.

One easily verifies this last claim, about the signature, by using a Jx-invari-

ant timelike-spacelike orthogonal decomposition of TxM, at any x ∈ M, to obtain

obvious three-summand orthogonal decompositions of both so(TM) and u(TM)

at x, two summands being spacelike, and one timelike.

2. Proof of Theorem A

We denote by Ωp,qM the space of complex-valued differential (p, q) forms on

a complex manifold M. On such M, as ∂ζ = 0 whenever dζ = 0,

(2.1) closedness of a (p, 0) form ζ implies its holomorphicity.
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Conversely, according to [2, p. 269, subsect. (5.21)] and [6, p. 101, Corollary 9.5], on

a compact complex ∂∂ manifold,

(2.2) all holomorphic differential forms are closed.

Since many expositions do not state what happens when, in the ∂∂ property (0.1),

p or q equals 0, we note that, as Fangyang Zheng pointed out to us, (0.1) for

(p, 0) forms easily follows from the case where p and q are positive.

Lemma 2.1. On a compact complex manifold M with the “positive (p, q) ver-

sion” of the ∂∂ property, if ξ ∈ Ωp,0M, for p ≥ 1, and ∂ξ is closed, then ∂ξ = 0.

Proof. As 0 = d∂ξ =∂∂ξ = −∂∂ξ, the “positive” ∂∂ lemma applied to the

closed ∂ -exact (p, 1) form ∂ξ gives ∂ξ =∂∂η for some η ∈ Ωp−1,0M. Being thus

holomorphic, ξ − ∂η ∈ Ωp,0M is closed by (2.2), and 0 = ∂ (ξ − ∂η) = ∂ξ. �

Lemma 2.1 implies, via complex conjugation, its analog for (0, q) forms. Also

by Lemma 2.1, on a compact complex manifold M with the ∂∂ property,

(2.3) the only exact (p, 0) form ζ on M is ζ = 0,

since exactness of ζ ∈ Ωp,0M amounts to its ∂ -exactness and implies its closedness.

For a pseudo-Kähler manifold (M, g), a bundle morphism A : TM → TM, and

the corresponding twice-covariant tensor field α = g(A· , · ), one clearly has

(2.4) α(J · , J ·) = ±α if and only if JA = ±AJ, with either sign ± .

Given a pseudo-Kähler manifold (M, g), vector fields u, v on M and sections

A,C of so(TM), cf. (1.4), may be used to represent a complex-valued 1-form ξ

and 2-form ζ on M, as follows,

(2.5) ξ = u+ iv, ζ = A+ iC,

meaning that ξ = g(u, · )+ ig(v, · ) and ζ = g(B · , · )+ ig(C · , · ). We prefer not to

think of (2.5) as sections of the complexifications of TM or so(TM). For a vector

field v treated via (2.5) as a real 1-form, and B = ∇v, our factor convention for

the exterior derivative gives

(2.6) dv = B − B∗, and so d(Jv) = ∇(Jv) − [∇(Jv)]∗ = JB +B∗J .

Remark 2.2. On a complex manifold, a real-valued 2-form α is the real part

of a complex-bilinear complex-valued 2-form ζ if and only if α(J · , J ·) = −α,

and then necessarily ζ = α − iα(J · , · ). (This clearly remains valid for arbitrary

twice-covariant tensor fields, without skew-symmetry.)

Remark 2.3. For a complex-valued 2-form ζ on a complex manifold M, hav-

ing bidegree (2, 0), or (0, 2), or (1, 1) clearly amounts to its being complex-bilin-

ear, or bi-antilinear or, respectively, J-invariant: ζ(J · , J ·) = ζ. Sums ζ of (2, 0)

and (0, 2) forms are similarly characterized by J-anti-invariance: ζ(J · , J ·) = −ζ.
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Thus, by (2.4), in the pseudo-Kähler case, ζ = A + iC in (2.5) is a (1, 1) form if

and only if A and C commute with J .

Lemma 2.4. For a Killing vector field v on a pseudo-Kähler manifold (M, g),

using the notation of (2.5), we have

(2.7)
ξ ∈ Ω 1,0M, ζ ∈ Ω 2,0M, ∂ξ = ζ , ∂ξ = i(JBJ −B), where

ξ = Jv − iv, ζ = A − iAJ , with A = [J,B ] for B = ∇v.

Proof. First, JBJ − B, as well as A = [J,B ] and AJ , are gx-skew-adjoint

at every point x ∈M, since so is B = ∇v, and A anticommutes with J , cf. (1.1).

Thus, ξ, ζ and γ = i(JBJ −B) are indeed differential forms of degrees 1, 2, 2.

Furthermore, ξ is complex-linear, and ζ complex-bilinear. This is immediate

for ξ. For ζ, note that ζ = α − iα(J · , · ), where α = g(A· , · ), while (1.1) and

(2.4) give α(J · , J ·) = −α. Now we can use Remark 2.2.

Thus, ξ ∈ Ω 1,0M. Also, according to Remark 2.3, ζ ∈ Ω 2,0M and γ ∈ Ω 1,1M,

since JBJ − B obviously commutes with J . Finally, for A = [J,B ], (2.6) with

B∗ = −B gives dξ = A − 2iB = [A − i(JBJ + B)] + i(JBJ − B), while the

summands A − i(JBJ + B) = A − iAJ = ζ and i(JBJ − B) = γ lie in Ω 2,0M

and Ω 1,1M, which completes the proof. �

Proof of Theorem A. By (1.2) and (2.4), the ∂ -exact (2, 0) form ζ = ∂ξ

in (2.7) is parallel, and hence closed. Lemma 2.1 now gives ζ = 0, so that £vJ =

A = 0 due to (1.1) and (2.7). �

3. Another proof of Theorem A

On a compact complex manifold M with the ∂∂ property, every cohomology

space Hk(M,C) has the Hodge decomposition [2, p. 269, subsect. (5.21)]:

(3.1) Hk(M,C) = Hk,0M ⊕Hk−1,1M ⊕ . . .⊕H1,k−1M ⊕H0,kM,

with each Hp,qM consisting of cohomology classes of closed (p, q) forms. The

complex conjugation of differential forms descends to a real-linear involution of

Hk(M,C), the fixed points of which obviously are the real cohomology classes (those

containing real closed differential forms). In terms of the decomposition (3.1), a

complex cohomology class

(3.2)
is real if and only if, for all p and q, its Hq,p com

ponent equals the conjugate of its Hp,q component.

The standard formula N(u, v) = [u, v]+J [Ju, v]+J [u, Jv]− [Ju, Jv], for the Nijen-

huis tensor N of an almost-complex structure J on a manifold M and any vector

fields u, v, clearly becomes

(3.3) N(u, v) = [∇JvJ ]u − [∇JuJ ]v + J [∇uJ ]v − J [∇vJ ]u
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when one uses any fixed torsionfree connection ∇ on M. We call ∇ a Kähler

connection for the given almost-complex structure J if it is torsionfree and ∇J = 0.

By (3.3), J then must be integrable. This implies integrability of J in any pseudo-

Kähler manifold, as one then has ∇J = 0 for the Levi-Civita connection ∇.

Lemma 3.1. For any ∇-parallel real 2-form α on a complex manifold M

with a Kähler connection ∇, such that α(J · , J ·) = −α, the complex-valued 2-

form ζ = α − iα(J · , · ) is holomorphic. If, in addition, M is also compact and

has the ∂∂ property, while α is exact, then α = 0.

Proof. The relation α(J · , J ·) = −α amounts to complex-bilinearity of ζ,

and so ζ ∈ Ω 2,0M (Remarks 2.2 – 2.3). Being ∇-parallel, ζ is closed, and hence

holomorphic due to (2.1). The final clause: exactness of α makes [iζ] ∈ H2,0M a

real cohomology class, so that, by (3.2), ζ is exact, and (2.3) gives ζ = 0. �

Another proof of Theorem A. Given a Killing field v, the differential 2-

form α = £vω is parallel and exact by (1.2), while (1.2) gives JA = −AJ for

A = £vJ , related to α via α = g(A· , · ), and so α(J · , J ·) = −α due to (2.4).

Lemma 3.1 and (1.2-i) now yield £vω = α = 0 and £vJ = 0. �

We do not know whether – aside from Theorem B and the Riemannian case –

Theorem A remains valid without the ∂∂ hypothesis. For possible future reference,

let us note that, as shown above, one has the following conclusions about a Killing

field v on a compact pseudo-Kähler manifold, whether or not the ∂∂ property is

assumed. First, for α = £vω, the complex-valued 2-form ζ = α − iα(J · , · ) is

parallel and holomorphic (see the preceding proof and Lemma 3.1). Also, by (1.2),

α is exact, while A = £vJ : TM → TM is parallel and complex-antilinear, as well

as nilpotent at every point. This last conclusion follows since the constant function

trIRA
k, with any integer k ≥ 1, has zero integral as a consequence of (1.3) applied

to α = g(A· , · ) and θ = g(Ak−1· , · ).

Appendix: Yamada’s argument

Yamada’s claim [7, Proposition 3.1] that on a compact pseudo-Kähler manifold,

Killing fields are real holomorphic, has a proof which reads, verbatim,

(A.1)

Let X be a Killing vector field. From Propositions 1.2 and

2.12, Z = X −
√
−1 JX is holomorphic. Because the real

part of a holomorphic vector field is an infinitesimal auto

morphism of the complex structure,we have our proposition.

Proposition 1.2 of [7], cited from Kobayashi’s book [3], amounts to the well-known

harmonic-flow condition satisfied by Killing fields v on pseudo-Riemannian man-

ifolds. Thus, 2.12 in (A.1) should read 2.14, since Propositions 1.2 and 2.14 refer
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to the Ricci tensor quite prominently, while 2.12 does not mention it at all; also,

Proposition 2.14 contains, in its second part, a holomorphicity conclusion.

In the ninth line of the proof of the second part of Proposition 2.14, it is

established – correctly – that, for every (1, 0) vector field Y , and Z in (A.1), ∇′′Z
is L2-orthogonal to ∇′′Y . Then an attempt is made to conclude that ∇′′Z = 0,

arguing by contradiction: if ∇′′Z 6= 0 at some point z0, one can – again correctly

– find Y having g(∇′′Z,∇′′Y ) 6= 0 everywhere in some neighborhood of z0. As a

next step, it is claimed that a contradiction arises: cited verbatim,

(A.2)
By considering a cut off function, we see that there exists

a complex vector field Y such that
∫
M
g(∇′′Z,∇′′Y ) dv 6= 0.

It is here that the argument seems incomplete: such a cut-off function ϕ equals

1 on some small “open ball” B centered at z0, and vanishes outside a larger

“concentric ball” B′, and after the original choice of Y has been replaced by ϕY ,

there is no way to control the integral of g(∇′′Z,∇′′(ϕY )) over B′rB (while the

integrals over B and M r B′ have fixed values). More precisely, the sum of the

three integrals must be zero, ∇′′Z being L2-orthogonal to all ∇′′Y .
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