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Abstract. We study ECS manifolds, that is, pseudo-Riemannian manifolds

with parallel Weyl tensor which are neither conformally flat nor locally sym-

metric. Every ECS manifold has rank 1 or 2, the rank being the dimension of

a distinguished null parallel distribution discovered by Olszak, and a rank-one

ECS manifold may be called translational or dilational, depending on whether

the holonomy group of a natural flat connection in the Olszak distribution is

finite or infinite. Some such manifolds are in a natural sense generic, which

refers to the algebraic structure of the Weyl tensor. Various examples of com-

pact rank-one ECS manifolds are known: translational ones (both generic and

nongeneric) in every dimension n ≥ 5, as well as odd-dimensional nonge-

neric dilational ones, some of which are locally homogeneous. As we show,

generic compact rank-one ECS manifolds must be translational or locally ho-

mogeneous, provided that they arise as isometric quotients of a specific class

of explicitly constructed “model” manifolds. This result is relevant since the

clause starting with “provided that” may be dropped: according to a theorem

which we prove in another paper, the models just mentioned include the isome-

try types of the pseudo-Riemannian universal coverings of all generic compact

rank-one ECS manifolds. Consequently, all generic compact rank-one ECS

manifolds are translational.

Introduction

By ECS manifolds [3] one means those pseudo-Riemannian manifolds of dimen-

sions n ≥ 4 which have parallel Weyl tensor, but not for one of two obvious reasons:

conformal flatness or local symmetry. Both their existence, for every n ≥ 4, and

indefiniteness of their metrics, are results of Roter [13, Corollary 3], [2, Theorem 2].

Their local structure has been completely described in [4].

The acronym ‘ECS’ stands for essentially conformally symmetric. On every

ECS manifold (M, g) there exists a naturally distinguished null parallel distribution

2020 Mathematics Subject Classification. Primary 53C50.

The first author’s research was supported in part by a FAPESP-OSU 2015 Regular Research

Award (FAPESP grant: 2015/50265-6). The authors wish to thank the anonymous referee, whose

suggestions allowed us to improve the exposition.

1



2 A. Derdzinski & I. Terek

D, known as the Olszak distribution [12], [4, p. 119]. Its dimension, necessarily

equal to 1 or 2, is referred to as the rank of (M, g). We call a rank-one ECS

manifold translational, or dilational, when the holonomy group of the flat connection

in D, induced by the Levi-Civita connection, is finite or, respectively, infinite.

Examples of compact rank-one ECS manifolds are known [5, 6] to exist for

every dimension n ≥ 5. They are all geodesically complete, translational, and none

of them is locally homogeneous. Quite recently [9] we constructed dilational-type

compact rank-one ECS manifolds, including locally-homogeneous ones, in all odd

dimensions n ≥ 5. It remains an open question whether a compact ECS manifold

may have rank two, or be of dimension four.

In Section 3 we describe specific rank-one ECS model manifolds [13, p. 93],

representing all dimensions n ≥ 4 and all indefinite metric signatures. Some of

them are generic, which refers to a self-adjoint linear endomorphism A of a pseu-

do-Euclidean vector space used in constructing the model manifold, and means that

there are only finitely many linear isometries commuting with A. (In Remark 3.4

we point out that this genericity is an intrinsic geometric property of the metric,

and not just a condition imposed on the construction.)

The dilational examples of [9], mentioned earlier, are all nongeneric, while

among the translational ones in [5, 6], some are generic, and others are not, which

raises an obvious question: Can a dilational-type compact rank-one ECS manifold

be generic? Theorem C of the present paper, combined with results of [8] mentioned

below, answers this question in the negative:

(0.1) all generic compact rank one ECS manifolds are translational.

Here are some details. Since the Olszak distribution D is a real line bundle over

the compact rank-one ECS manifold in question, the holonomy group K of the flat

connection in D induced by the Levi-Civita connection is a countable multiplicative

subgroup of IR r {0} (see Section 1), and we will repeatedly refer to

(0.2) the positive holonomy group K+ = K∩ (0,∞) of the flat connection in D.

Our first main result, established in Section 8, can be stated as follows.

Theorem A. In a generic compact isometric quotient of a rank-one ECS model

manifold, the group K+ in (0.2) is not infinite cyclic.

The next fact, which we prove at the very end of Section 2, holds in a more

abstract setting, with no reference to either genericity or model manifolds.

Theorem B. Given a compact rank-one ECS manifold (M, g), with K+ in

(0.2) not infinite cyclic, K+ may be trivial, which makes (M, g) translational, or

else K+ is dense in (0,∞), and then (M, g) must be locally homogeneous.

The third result trivially follows from Theorems A and B.
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Theorem C. Every generic compact isometric quotient of a rank-one ECS

model manifold is either translational or locally homogeneous.

In the locally-homogeneous case the group (0.2) is dense in (0,∞).

According to the final clause of our Theorem 2.3, compact locally homogeneous

rank-one ECS model manifolds are necessarily dilational. Theorem C thus has the

following consequence.

Corollary D. For a generic compact rank-one ECS manifold arising as an

isometric quotient of a model manifold, the property of being dilational is equivalent

to local homogeneity.

Both Theorem C and Corollary D do not really require assuming that the

manifold is an isometric quotient of a model. Namely, as we show in [8, Corollary

D], the pseudo-Riemannian universal covering of any generic compact rank-one

ECS manifold is necessarily isometric to one of the model manifolds.

Furthermore, according to another result (Theorem E) of the same paper [8],

a generic compact rank-one ECS manifold cannot be locally homogeneous. Thus,

the final clause of our Theorem C is actually vacuous, and (0.1) follows. However,

Theorem C, precisely as stated here, is a crucial step in the arguments of [8].

The paper is organized as follows. Sections 2 and 3, dealing with rank-one

ECS manifolds, are followed by some material from linear algebra and algebraic

number theory (genericity of nilpotent self-adjoint linear endomorphisms of pseu-

do-Euclidean spaces, and the cyclic root-group condition for GL(ZZ)-polynomi-

als), in Sections 4 and 6. Those two are separated by a section devoted to sub-

spaces of certain spaces E of vector-valued functions on (0,∞), invariant under an

operator CT : E→ E which is relevant to the existence question for generic compact

isometric quotients of rank-one ECS model manifolds. After Section 7, presenting

a combinatorial argument (Theorem 7.1) needed to establish Theorem A, comes

the final Section 8, where we prove Theorem A by contradiction, assuming that

its hypotheses hold and yet K+ in (0.2) is infinite cyclic. Lemma 8.2 provides the

first important consequence of this assumption: the existence of a CT-invariant

vector subspace, of the type discussed in Section 5, with the additional properties

(8.5). Such a subspace necessarily satisfies further conditions, listed in Lemma 8.4,

and leading – for reasons stated at the very end of Section 8 – to a combinatorial

structure, the existence of which contradicts Theorem 7.1.

1. Preliminaries

Unless stated otherwise, manifolds and mappings are smooth, the former con-

nected. The group Af f (IR) of affine transformations t 7→ qt + p of IR, with real p

and q 6= 0, has the index-two subgroup Af f+(IR) = {(q, p) ∈ Aff (IR) : q > 0}, and

(1.1) nontrivial finite subgroups of Af f (IR) have the form {(1, 0), (−1, 2c)}
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with any center c ∈ IR of the reflection (−1, 2c). In fact, the square of any (q, p) in

such a subgroup Ξ lies in the intersection Ξ ∩Aff+(IR), which due to its finiteness

must consist of translations, and hence be trivial.

Every (q, p) ∈ Aff+(IR) r {(1, 0)} is either a translation (q = 1), or has a

unique fixed point c (and then we call it a dilation with center c, since by choosing

c as the new origin we turn c into 0 and (q, p) into (q, 0)). Now,

(1.2)
any Abelian subgroup of Af f+(IR) consists of

translations, or of dilations with a single center,

as two commuting self-mappings of a set preserve each other’s fixed-point sets, and

so in Af f+(IR)r {(1, 0)} two dilations with different centers cannot commute with

each other or with a translation.

Lemma 1.1. Let (·, ·) be a symmetric bilinear form in a real vector space.

If a coset S of a (·, ·)-null one-dimensional subspace Q is not contained in the

(·, ·)-orthogonal complement of Q, then S contains a unique (·, ·)-null vector.

In fact, S is parametrized by t 7→ x = v+tu, where u spans Q and (v, u) 6= 0,

so that (x, x) = (v, v) + 2t(v, u) vanishes for a unique t ∈ IR.

Let a group Γ act on a manifold M̂ freely by diffeomorphisms. One calls the

action of Γ properly discontinuous if there exists a locally diffeomorphic surjective

mapping π : M̂ →M onto some manifold M such that the π-preimages of points

of M coincide with the orbits of the Γ action. One then refers to M as the

quotient of M̂ under the action of Γ and writes M = M̂/Γ.

For π, M̂,M,Γ as above and a flat linear connection ∇ in a vector bundle Z

over M, let Ẑ and ∇̂ be the π-pullbacks of Z,∇ to M̂. If M̂ is also simply

connected, the vector space F of all ∇̂-parallel sections of Ẑ trivializes Ẑ, and a

homomorphism Γ → GL(F), known as the holonomy representation of ∇, assigns

to γ ∈ Γ the composite isomorphism

(1.3) F → Ẑy → Zx → Ẑγ(y) → F,

described with the aid of any given y ∈ M̂ and x = π(y), where the two middle

arrows denote the identity automorphism of Ẑy = Zx = Ẑγ(y), and the first/last one

is the evaluation operator or its inverse. Note that (1.3) does not depend on the

choice of y ∈ M̂, being locally (and hence globally) constant as a function of y. To

see this, we choose connected neighborhoods Û of y in M̂ and U of x = π(y)

in M such that Z restricted to U is trivialized by the space FU of its ∇-parallel

sections and π maps Û diffeomorphically onto U. The isomorphism F → FU

arising as the restriction to Û followed by the “identity” identification via π then

allows us to apply (1.3) to a fixed section from F, using all y ∈ Û at once.
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When Z is a real line bundle, with the multiplicative group GL(F) = IR r {0},

(1.4)
for any x ∈ M, the image of the holonomy representation

Γ→ IRr{0} coincides with the holonomy group of ∇ at x,

the latter meaning the group of the ∇-parallel transports Zx → Zx along all the

loops at x. In fact, if (1.3) assigns to γ ∈ Γ the multiplication by q ∈ IR r {0}
and y ∈ π−1(x) is fixed, the ∇-parallel transport Θ along the π-image of any

curve joining y to γ(y) in M̂ is F ← Ẑy ← Zx followed by IdF followed by

Zx ← Ẑγ(y) ← F, the reversed arrows representing the inverses of those in (1.3).

Writing IdF as q−1 times (1.3), we get Θ equal to q−1 times the identity of Zx.

Lemma 1.2. Suppose that q ∈ IR r {1,−1} and a diffeomorphism γ ∈ Diff M̂

of a manifold M̂ pushes a complete nontrivial vector field w forward onto qw.

If IR 3 t 7→ φ(t, · ) ∈ Diff M̂ denotes the flow of w, while a subgroup Γ ⊆ Diff M̂

contains γ and φ(t, · ) for some t 6= 0, then the action of Γ on M̂ cannot be

properly discontinuous.

Proof. The kth iteration γk of γ, for k ∈ ZZ, pushes w forward onto qkw,

giving γk ◦ φ(t, · ) = φ(qkt, · ) ◦ γk for all t and all k ∈ ZZ, so that φ(qkt, · ) ∈ Γ

with our fixed t. Choosing x ∈ M̂ such that wx 6= 0, and setting η = sgn(1− |q|),
we thus get a sequence φ(qηkt, x) with mutually distinct terms when k is large,

tending to x as k →∞, which obviously precludes proper discontinuity. �

The conclusion of Lemma 1.2 remains valid when, instead of φ(qt, · ) ∈ Γ

for some t, one assumes periodicity of the flow of w, and replaces the condition

γ, φ(t, · ) ∈ Γ with just γ ∈ Γ (and then uses t equal to the period of the flow).

Remark 1.3. A submersion from a compact manifold into a connected man-

ifold is a bundle projection, which is the compact case of Ehresmann’s fibration

theorem [10, Corollary 8.5.13].

2. Compact rank-one ECS manifolds

Throughout this section (M̂, ĝ) is the pseudo-Riemannian universal covering

space of a compact rank-one ECS manifold (M, g) of dimension n ≥ 4, defined

as in the Introduction, D stands for the (one-dimensional, null, parallel) Olszak

distribution on (M, g), and D⊥ for its orthogonal complement, while D̂, D̂⊥ are

the analogous distributions on (M̂, ĝ). Thus, M = M̂/Γ for a subgroup Γ of the

full isometry group Iso(M̂, ĝ) isomorphic to the fundamental group of M, and

acting on M̂ freely and properly discontinuously via deck transformations. The

connection in D̂ induced by the Levi-Civita connection ∇̂ of (M̂, ĝ) is always flat

[7, Sect. 9]. Thus, due to simple connectivity of M̂,

(2.1)
D̂ is spanned by the parallel gradient

∇̂t of a surjective function t : M̂ → I
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onto an open interval I ⊆ IR (which is the case even without assuming the existence

of a compact quotient). The Olszak distribution being a local geometric invariant

of the ECS metric in question [4, Sect. 2], (2.1) determines ∇̂t and t uniquely

up to multiplication by nonzero constants and, respectively, affine substitutions,

meaning replacements of t with qt+ p, where (q, p) ∈ Aff (IR) (for Af f (IR) as in

Section 1: q, p ∈ IR and q 6= 0). Consequently, we have group homomorphisms

(2.2) a) Iso(M̂, ĝ) 3 γ 7→ (q, p) ∈ Aff (IR), b) Iso(M̂, ĝ) 3 γ 7→ q ∈ IR r {0},

characterized, for any γ ∈ Iso(M̂, ĝ), by t ◦ γ = qt+ p and γ∗dt = q dt, that is,

(2.3) (dγ)∇̂t = q−1∇̂t.

According to [7, formula (5.4) and the end of Sect. 11],

(2.4)
D̂⊥ = Ker dt, the levels of t : M̂ → I are all

connected and coincide with the leaves of D̂⊥.

Lemma 2.1. The above hypotheses imply that the image of Γ under (2.2-a) is

infinite, while its image under (2.2-b) coincides with the holonomy group of the flat

connection in D.

Proof. The first image, if finite, would, lie within some {(1, 0), (−1, 2c)}, cf.

(1.1), causing (t − c)2 to descend to a nonconstant function with at most one

critical value on the compact manifold M. The second claim follows from (1.4): by

(2.1) and (2.3), the action (1.3) of any γ ∈ Γ on the parallel section ∇̂t spanning

D̂ equals the multiplication by the corresponding q−1. Namely, the two middle

arrows in (1.3) now are restrictions of dπy and [dπγ(y)]
−1, so that their composite

Ẑy→ Zx→ Ẑγ(y) equals dγy. (From π ◦ γ = π we get dπγ(y) ◦ dγy = dπy.) Thus,

(1.3) takes w = ∇̂t first to wy, then (two successive arrows) to dγywy which – by

(2.3) – equals q−1wγ(y), the evaluation at γ(y) of q−1w. �

The translational/dilational dichotomy of the Introduction, meaning finite-

ness/infiniteness of the holonomy group of the flat connection in D induced by

the Levi-Civita connection of g, can now be summarized in terms of the homomor-

phism (2.2-b) restricted to Γ. Specifically, by Lemma 2.1, the two cases are

(2.5)
a) translational: |q| = 1 for each γ ∈ Γ,

b) dilational: |q| 6= 1 for some γ ∈ Γ.

Lemma 2.2. With the assumptions and notations as above,

(a) the parallel vector field ∇̂t on M̂, spanning D̂, is complete,

(b) in case (2.5-b), φ(t, · ) /∈ Γ for all t ∈ IR r {0},
IR 3 t 7→ φ(t, · ) ∈ Diff M̂ being the flow of ∇̂t.

In fact, (a) appears in [7, the second italicized conclusion in Sect. 11], while

(b) follows from (a) and Lemma 1.2 combined with (2.3).
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The remainder of this section uses the assumptions preceding (2.1) along with

(2.6) transversal orientability of D⊥ which, by (2.4), reads Γ ⊆ Iso+(M̂, ĝ),

for the normal subgroup Iso+(M̂, ĝ) forming the (2.2-b)-preimage of (0,∞). This

can always be achieved by replacing (M, g) (or, Γ) with a two-fold isometric cover-

ing (or, an index-two subgroup), and has an obvious consequence: the translational

case then means precisely that the holonomy group is trivial.

Theorem 2.3. In the dilational case (2.5-b), with (2.6), the image of Γ under

(2.2-a) consists of dilations with a single center. The replacement of t in (2.1) by

a suitable affine function of t then makes this center appear as t = 0, the interval

I as (0,∞), and all (q, p) in the (2.2-a)-image of Γ as having p = 0.

Then the image of Γ under (2.2-a), always an infinite multiplicative subgroup

of (0,∞), must be infinite cyclic unless (M̂, ĝ) is locally homogeneous.

On the other hand, (2.5-b) follows if one assumes local homogeneity of (M̂, ĝ).

Proof. As shown in [7, the beginning of Sect. 11], (2.6) implies the existence

of a C∞ function ψ : M̂ → (0,∞) such that the 1-form ψ dt is π-projectable onto

M (in other words, Γ-invariant), and closed. According to (2.4), the t-levels in

M̂ are all connected, and so closedness of ψ dt makes t globally a function of t,

with ψ = χ ◦ t for some C∞ function χ : I→ (0,∞). A fixed antiderivative φ of

χ thus constitutes a strictly increasing C∞ diffeomorphism φ : I → J onto some

open interval J ⊆ IR, while Γ-invariance of d(φ ◦ t) = ψ dt means that Γ acts on

φ ◦ t by translations: φ ◦ t ◦ γ = φ ◦ t + a with constants a ∈ IR depending on

γ ∈ Γ. The mappings t : M̂ → I and φ ◦ t : M̂ → J are Γ-equivariant relative to Γ

acting on I and J via the homomorphisms (2.2-a), restricted to Γ, and γ 7→ a. As

the diffeomorphism φ : I → J makes the two mappings equivariantly equivalent,

the two homomorphisms have the same kernel Σ ⊆ Γ, leading to an isomorphism

(q, p) 7→ γΣ 7→ a between the images of the two homomorphisms. The former

image must thus be Abelian (as that of γ 7→ a is a group of translations) and

so, due to (2.5-b) and (1.2), it consists of dilations with a single center. An affine

substitution of t turns this center into 0, and elements of the (2.2-a)-image of Γ

into pairs (q, p) with q > 0 and p = 0. As a result, for our open interval I,

(i) 0 lies in the closure of I, but not in I itself.

The first claim of (i) is obvious: by (2.5-b) – (2.6), for some q ∈ (0,∞) r {1},
(ii) I is closed under multiplications by powers of q with integer exponents.

To verify the second one, note that, as shown in [7, formulae (5.6) – (5.8)], some

nonconstant C∞ function f : M̂ → IR has

(iii) f ◦ γ = q−2f for all γ ∈ Γ and (q, p) ∈ Aff+(IR) with t ◦ γ = qt+ p.

This f is also globally a function of t [7, the end of Sect. 11]. Treating f, infor-

mally, as a function I → IR, and noting that all (q, p) in the (2.2-a)-image of Γ
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now have q > 0 and p = 0, we get f(t) = q2f(qt) for such q, while these q, due

to Lemma 2.1, form an infinite subgroup of (0,∞). Thus, 0 /∈ I, or else, fixing any

t in the equality f(t) = q2f(qt) and letting q → 0, we would get f(t) = 0, even

though f is nonconstant.

By (i) and (ii), I equals (0,∞) or (−∞, 0) and, replacing t with −t if

necessary, we get I = (0,∞), proving the first assertion of the theorem.

To establish the second one, suppose that the (2.2-a)-image of Γ, infinite as a

consequence of Lemma 2.1, is not cyclic. This makes the image dense in (0,∞), so

that, from continuity of f, our equation f(t) = q2f(qt) holds for all t, q ∈ (0,∞).

Setting t = 1, we get f(q) = f(1)/q2. The resulting linearity of the function

|f |−1/2 amounts – see [7, Theorem 6.3] – to local homogeneity of (M̂, ĝ).

Finally, suppose that (M̂, ĝ) is locally homogeneous. The preceding lines now

yield linearity of |f |−1/2, that is, f(t) = f(1)/t2 for all t ∈ (0,∞), and so f

is unbounded on (0,∞). This gives (2.5-b), since (2.5-a) would, by (iii), imply

Γ-invariance of f, leading to its boundedness, as M = M̂/Γ is compact. �

Proof of Theorem B. Due to Lemma 2.1 we may, without loss of generality,

assume (2.5-b) and (2.6). Our claim now follows from Theorem 2.3. �

3. The rank-one ECS model manifolds

In this section we fix the data f, I, n, V , 〈·, ·〉, A consisting of

(3.1)

an integer n ≥ 4, a real vector space V of dimension n − 2,

a pseudo Euclidean inner product 〈·, ·〉 on V, a nonzero, trace

less, 〈·, ·〉 self adjoint linear endomorphism A of V, and a non

constant C∞ function f : I → IR on an open interval I ⊆ IR.

Treating 〈·, ·〉 as a flat (constant) metric on V , and following [13], we define the

simply connected n-dimensional pseudo-Riemannian manifold

(3.2) (M̂, ĝ) = (I× IR× V , κ dt2 + dt ds + 〈·, ·〉),

where t, s are the Cartesian coordinates on I × IR, we identify dt, ds and 〈·, ·〉
with their pullbacks to M̂, and the function κ : M̂ → IR is defined by κ(t, s, v) =

f(t)〈v, v〉+ 〈Av, v〉. Thus, translations in the s direction are isometries of (M̂, ĝ).

It is well known [4, Theorem 4.1] that (3.2) is a rank-one ECS manifold. To

describe its isometry group, we need two ingredients. The first is

(3.3)

the subgroup S of Af f (IR)×O(V ) formed by

triples (q, p, C) such that CAC−1 = q2A,while

qt+ p ∈ I and f(t) = q2f(qt+ p) for all t ∈ I,

O(V ) being the group of linear 〈·, ·〉-isometries C : V → V .
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The second ingredient is the 2(n− 2)-dimensional real

(3.4)

vector space E of all solutions u : I→ V to the second order or

dinary differential equation ü = fu+Au, carrying the symplectic

form Ω : E× E→ IR given by Ω(u+, u−) = 〈u̇+, u−〉 − 〈u+, u̇−〉.

Note that q, (q, p), C all depend homomorphically on the triple σ = (q, p, C), and

S acts from the left on C∞(I, V ) via

(3.5) [σu](t) = Cu((t− p)/q),

while the operator u 7→ σu leaves the solution space E invariant.

Theorem 3.1. For (M̂, ĝ) and S as in (3.1) – (3.3), the full isometry group

Iso(M̂, ĝ) is isomorphic to the set G = S × IR × E ⊆ Aff (IR) × O(V ) × IR × E

endowed with the group operation

(3.6)

(q, p, C, r, u)(q̂, p̂, Ĉ, r̂, û)

= (qq̂, qp̂+ p, CĈ, −Ω(u, (q, p, C)û) + r + r̂/q, (q, p, C)û+ u)

or, in the notation of (3.4) − (3.5), with σ = (q, p, C),

(σ, r, u)(σ̂, r̂, û) = (σσ̂, Ω(σû, u) + r + r̂/q, σû+ u).

The required isomorphism amounts to the following left action on M̂ by the group

G with the operation (3.6):

(3.7)
(q, p, C, r, u)(t, s, v)

= (qt+ p,−〈u̇(qt+ p), 2Cv + u(qt+ p)〉+ r + s/q, Cv + u(qt+ p)).

Proof. This is precisely [1, Theorem 2], plus [1, p. 24, formula (22)] describing

the group operation, except for the fact that [1] assumes real-analyticity of f

along with I = IR, and it is because of these assumptions that |q| = 1 whenever

(q, p, C) ∈ S, cf. (3.3). If one ignores the last conclusion and the assumptions that

led to it, the proof in [1] repeated almost verbatim in our case yields our assertion.

However, the resulting right-hand side in (3.7) is not ours, but instead reads

(qt+ p,−〈u̇(t), 2Cv + u(t)〉+ r + s/q, Cv + u(t))

due to the fact that u, instead of E, now lies in the solution space Eq of the q-de-

pendent equation ü = fu+ q2Au. We reconcile both versions by observing that the

replacement of u with t 7→ u(qt+ p) defines an isomorphism Eq → E.

The notation of [1] differs from ours: our q, p, C, r, u, t, s, v, V , f, κ,A, 〈·, ·〉, Ω
correspond to ε, T,Hλ

µ , r, C
λ, x1, 2xn, IRn−2, A, ϕ, aλµ, kλµ, 2ω in [1]. �

By (3.6), G 3 γ = (σ, r, u) 7→ σ ∈ S is a group homomorphism, leading to

(3.8) the normal subgroup H = {(1, 0, Id)} × IR× E of G.

The group operation (3.6) restricted to H becomes

(a) (1, 0, Id, r̂, û)(1, 0, Id, r, u) = (1, 0, Id, Ω(u, û) + r̂ + r, û+ u),
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and the action (3.7) of H on M̂ is explicitly given by

(b) (1, 0, Id, r, u)(t, s, v) = (t, −〈u̇(t), 2v + u(t)〉+ r + s, v + u(t)).

Treating the vector space E as an Abelian group we get, from (a), an obvious

(c) group homomorphism H 3 (1, 0, Id, r, u) 7→ u ∈ E.

Also, as stated in [7, formula (5.5)], with a suitable affine substitution,

(d) t in (3.2) can always be made equal to t chosen as in (2.1),

so that, in view of (3.6) – (3.7),

(e) the homomorphism G 3 (q, p, C, r, u) 7→ (q, p) coincides with (2.2-a).

Furthermore, according to [6, the lines following formula (3.6)], ∇̂t in (2.1) equals

twice the coordinate vector field in the s coordinate direction, and so

(f) the flow of ∇̂t on M̂ is given by IR 3 r 7→ (1, 0, Id, 2r, 0) ∈ H ⊆ G.

In other words, cf. (b), the flow acts on M̂ via (τι, (t, s, v)) 7→ (t, s+ 2τι, v). Also,

(g) σ∗Ω = q−1Ω, as an obvious consequence of (3.4) – (3.5).

The subgroup H (canonically identified with IR × E) acts both on the product

I × IR × E, by left H-translations of the H ≈ IR × E factor, and on M̂, via (b).

The following mapping is H-equivariant for these two actions:

(3.9) I×IR×E 3 (t, z, u) 7→ (t, s, v) = (t, z − 〈u̇(t), u(t)〉, u(t)) ∈ M̂ = I×IR×V .

as one easily verifies using (a), (b) and the definition of Ω in (3.4).

Remark 3.2. It is useful to note that (σ, r, u)−1 = (σ−1,−qr,−σ−1u) in G,

which yields, for (σ, r̂, û) = (q, p, C, r̂, û) ∈ G and (1, 0, Id, r, u) ∈ H, the equality

(σ, r̂, û)(1, 0, Id, r, u)(σ, r̂, û)−1 = (1, 0, Id, 2Ω(σu, û) + r/q, σu).

Remark 3.3. Nondegeneracy of Ω gives dimL′= dim E−dimL for any vector

subspace L ⊂ E and its Ω-orthogonal complement L′. Thus, 2 dimL ≤ dim E

whenever L is isotropic in the sense that Ω(u, u′) = 0 for all u, u′ ∈ L.

Remark 3.4. We refer to a rank-one ECS model manifold (3.2) as generic

when so is A in (3.1), by which we mean that A commutes with only finitely

many linear 〈·, ·〉-isometries of V . Genericity of A in (3.1) is an intrinsic property

of the metric ĝ, rather than just a condition imposed on the construction (3.1) –

(3.2): as stated in [7, the paragraph following formula (6.3)], the algebraic type of

the pair 〈·, ·〉, A, up to rescaling of A, can be explicitly defined in terms of ĝ and

its Weyl tensor.

Remark 3.5. The relation CAC−1 = q2A in (3.3) with |q| 6= 1 implies nilpo-

tency of A, as all complex characteristic roots of A then obviously equal 0.
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4. Generic self-adjoint nilpotent endomorphisms

Throughout this section V denotes a real vector space of dimension m ≥ 2.

Given a pseudo-Euclidean inner product 〈·, ·〉 on V , we refer to 〈·, ·〉 as semi-

neutral if its positive and negative indices differ by at most one, and – following the

terminology of Remark 3.4 – call a 〈·, ·〉-self-adjoint endomorphism of V generic

when it commutes with only a finite number of linear 〈·, ·〉-isometries of V . As we

show below (Remark 4.4), for 〈·, ·〉-self-adjoint endomorphisms A of V which are

nilpotent, genericity is equivalent to having Am−1 6= 0 (while Am = 0).

Nilpotent endomorphisms are relevant to our discussion due to Remark 3.5.

Generally, for any endomorphism A of our vector space V and any integer

j ≥ 1, the inclusions KerAj−1 ⊆ KerAj allow us to define the quotient spaces

KerAj/KerAj−1, and then A obviously descends to injective linear operators

(4.1) A : KerAj+1/KerAj → KerAj/KerAj−1, j = 1, . . . ,m− 1.

Setting dj = dim [KerAj/KerAj−1] we thus have dj ≥ dj+1 and, if A is nilpotent,

(4.2) d1 ≥ . . . ≥ dm ≥ 0 and dimV = d1 + . . .+ dm ,

while, whenever j = 0, . . . ,m,

(4.3) dim KerAj = d1 + . . .+ dj , rankAj = dj+1 + . . .+ dm .

Thus, dm ≥ 1 in the case where A is nilpotent and Am−1 6= 0, and then, by (4.2),

(4.4) d1 = . . . = dm = 1 and (4.1) is an isomorphism for j = 1, . . . ,m− 1.

Theorem 4.1. Let a 〈·, ·〉-self-adjoint nilpotent endomorphism A of an m-

dimensional pseudo-Euclidean vector space V have Am−1 6= 0. Then the inner

product 〈·, ·〉 is semi-neutral and there exist exactly two bases e1, . . . , em of V ,

differing by an overall sign change, as well as a unique sign factor ε = ±1, such

that Aej = ej−1 and 〈ei, ek〉 = εδij for all i, j ∈ {1, . . . ,m}, where e0 = 0 and

k = m + 1 − j. Equivalently, the matrix representing A or, respectively, 〈·, ·〉 in

our basis has zero entries except those immediately above main diagonal, all equal

to 1 or, respectively, except those on the main antidiagonal, all equal to ε.

Conversely, if A and 〈·, ·〉 are of the above form in some basis e1, . . . , em of

V , then A is 〈·, ·〉-self-adjoint, nilpotent and Am−1 6= 0.

Proof. For j = 0, . . . ,m, the symmetric bilinear form (v, v′) 7→ 〈Ajv, v′〉 on

V , briefly denoted by 〈Aj·, ·〉, and the subspaces Vj = Aj(V ) ⊆ V ,

(a) dimVj = m− j and Vj ⊆ Vj−1 if j ≥ 1,

(b) 〈Am−j·, ·〉 descends to the j-dimensional quotient space V/Vj ,

(a) being obvious from (4.3) – (4.4), and (b) from

(c) self-adjointness of A along with the relation Am = 0.
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As Am−1 6= 0, the form resulting from (b) on the line V/V1 is nonzero, and hence

positive or negative definite, which proves the existence and uniqueness of a sign

factor ε ∈ {1,−1} such that 〈Am−1v, v〉 = ε for some v ∈ V . More precisely, ε is

the semidefiniteness sign of 〈Am−1·, ·〉, and

(d) vectors with 〈Am−1v, v〉 = ε form a pair of opposite cosets of V1 in V .

We now prove, by induction on j = 1, . . . ,m, the existence of an ordered j-tuple

(S1, . . . , Sj) ∈ V/V1 × . . . × V/Vj of cosets such that Sj ⊆ . . . ⊆ S1 while, for ε in

(d) and every v ∈ Sj ,

(4.5) 〈Am−1v, v〉 = ε, 〈Am−2v, v〉 = . . . = 〈Am−jv, v〉 = 0,

along with uniqueness of (S1, . . . , Sj) up to its replacement by (−S1, . . . ,−Sj). As

(d) yields our claim for j = 1, suppose that it holds for some j − 1 ≥ 1. Since

Vj ⊆ Vj−1 ⊆ . . . ⊆ V1, cf. (a),

(e) the spaces Vj−1, . . . , V1 project onto subspaces Q1, . . . , Qj−1 of dimensions

1, . . . , j − 1 in the j-dimensional quotient Qj = V/Vj ,

and Q1 ⊆ . . . ⊆ Qj−1, while the cosets Sj−1, . . . , S1 of Vj−1, . . . , V1 in V , assumed

to exist (and be unique up to an overall sign), project onto an ascending chain of

cosets of Q1, . . . , Qj−1 in Qj . Let us fix a vector v ∈ Sj−1, denote by R̂1, . . . , R̂j−1
the latter cosets (of dimensions 1, . . . , j − 1), and by (·, ·) the symmetric bilin-

ear form on Qj induced by 〈Am−j·, ·〉 via (b). Since (4.5) is assumed to hold for

our v, with j replaced by j − 1, if we set vi = Aj−iv, i = 1, . . . , j, then, for all

i, k ∈ {1, . . . , j}, due to (c) and the first equality in this version of (4.5), (vi, vk) = 0

if i+ k ≤ j and (vi, vk) = ε when i+ k = j + 1. The j × j matrix of these (·, ·)-
inner products thus has the entries all equal to ε on the main antidiagonal, and all

zero above it. Due to the resulting nondegeneracy of the matrix and the presence

of the zero entries, v1, . . . , vj project onto a basis v̂1, . . . , v̂j of Qj , with v̂i ∈ Qi,
i = 1, . . . , j, and (·, ·) is a semi-neutral pseudo-Euclidean inner product in Qj .

Thus, v̂1 ∈ Q1 is (·, ·)-orthogonal to the basis v̂1, . . . , v̂j−1 of Qj−1, which makes

Qj−1 the (·, ·)-orthogonal complement of the (·, ·)-null line Q1. At the same time,

the coset R̂1 of Q1 is not contained in the (·, ·)-orthogonal complement Qj−1 of

Q1, since (v1, v) = (Aj−1v, v) = 〈Am−1v, v〉 = ε 6= 0 in the j − 1 version of (4.5),

and so the vector v = vj ∈ Sj−1, projecting onto v̂j ∈ R̂1, is not (·, ·)-orthogonal

to v̂1 spanning the line Q1. By Lemma 1.1, R̂1 intersects the (·, ·)-null cone at

exactly one point, and so does −R̂1. This “point” in the j-dimensional quotient

Qj = V/Vj is actually a coset Sj of Vj in V , contained in Sj−1, and its lying in

the (·, ·)-null cone amounts to 〈Am−jv, v〉 = 0 for all v ∈ Sj , which establishes the

inductive step and thus proves the existence and uniqueness claim about (4.5).

This last claim, for j = m, yields a unique (up to a sign) coset Sm of Vm = {0},
that is, a unique pair {v,−v} of opposite vectors in V , with

(4.6) 〈Am−1v, v〉 = ε and 〈Aiv, v〉 = 0 whenever i ≥ 0 and i 6= m− 1,
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the case of i < m − 1 being due to (4.5) for j = m, that of i ≥ m immediate

from (c). Note that Sm uniquely determines the other cosets Sj as Sm ⊆ . . . ⊆ S1.

Setting ei = Am−iv, i = 1, . . . ,m, we obtain an m-tuple of vectors leading to

matrices for A and 〈·, ·〉 described in the statement of the theorem, cf. (c) and (4.6).

Nondegeneracy of the latter matrix, along with the abundance of zero entries in it,

establishes both linear independence of e1, . . . , em and the semi-neutral signature

of 〈·, ·〉. Uniqueness of {v,−v} clearly implies uniqueness of e1, . . . , em up to their

replacement by −e1, . . . ,−em.

For the converse statement it suffices to note that the basis e1, . . . , em has the

form Am−1v,Am−2v, . . . , Av, v, and so self-adjointness of A amounts to requiring

that the matrix of 〈·, ·〉 have a single value of the entries in each antidiagonal. �

Corollary 4.2. The only linear isometries of a pseudo-Euclidean space of

dimension m commuting with a given generic nilpotent self-adjoint endomorphism

A such that Am−1 6= 0 are Id and −Id.

In fact, due the up-to-a-sign uniqueness of the basis in Theorem 4.1, such a

linear isometry must transform this basis into itself or its opposite.

Corollary 4.3. Let a nilpotent self-adjoint endomorphism A of a pseu-

do-Euclidean space V have Am−1 6= 0, where m = dimV . Then, for every

q ∈ (0,∞), there exists a unique pair {C,−C} of mutually opposite linear iso-

metries of V with CAC−1 = q2A.

Such C is diagonalized by a basis e1, . . . , em chosen as in Theorem 4.1, with

the respective eigenvalues qm−1, qm−3, . . . , q1−m, or their opposites, so that Cej =

±qm+1−2jej for j = 1, . . . ,m and some fixed sign ±.

Proof. Uniqueness is immediate from Corollary 4.2 since two such linear iso-

metries differ, composition-wise, by one commuting with A. Existence: defining the

linear automorphism C by Cej = ẽj , for ẽj = qm+1−2jej , we get the inner products

〈ẽi, ẽk〉 = εδij , and q2Aẽj = ẽj−1, for all i, j ∈ {1, . . . ,m}, with k = m+ 1− j and

ẽ0 = 0, as required. �

Remark 4.4. For a nilpotent self-adjoint endomorphism A of an m-dimen-

sional pseudo-Euclidean space V , five conditions are mutually equivalent:

(i) Am−1 6= 0.

(ii) rankA = m− 1 (in other words, dim KerA = 1).

(iii) ±Id are the only linear self-isometries of V commuting with A.

(iv) A is generic (commutes with only finitely many linear isometries).

(v) 0 is the only skew-adjoint endomorphism of V commuting with A.

In fact, (i) yields (ii) due to (4.3) – (4.4), and the converse is immediate as (ii)

and (4.2) – (4.3) force all dj to equal 1. The implications (i) =⇒ (iii) =⇒
(iv) =⇒ (v) are obvious from Corollary 4.2. Finally, (v) implies (ii) as any
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two vectors v, v′ ∈ KerA are linearly dependent: the skew-adjoint endomorphism

v ∧ v′ = 〈v, · 〉v′− 〈v′, · 〉v, where 〈·, ·〉 is the inner product, commutes with A.

5. Invariant subspaces

This section uses the following assumptions and notations.

First, we fix q ∈ (0,∞)r{1}, an integer m ≥ 2, a generic self-adjoint nilpotent

endomorphism A of an m-dimensional pseudo-Euclidean space V with the inner

product 〈·, ·〉, and a linear 〈·, ·〉-isometry C of V having positive eigenvalues and

satisfying the condition CAC−1 = q2A.

According to Remark 4.4, Theorem 4.1 and Corollary 4.3, the algebraic type

of the above quadruple (V , 〈·, ·〉, A,C) is uniquely determined by m, q and a sign

parameter ε = ±1. More precisely, we may choose a basis e1, . . . , em of V such

that, for some ε ∈ {1,−1} and all i, j ∈ {1, . . . ,m}, with e0 = 0 and k = m+1−j,

(5.1) Aej = ej−1 , 〈ei, ek〉 = εδij , Cej = qm+1−2jej .

Let the operator T act on functions (0,∞) 3 t 7→ u(t), valued anywhere, by

(5.2) [Tu](t) = u(t/q).

We also fix a C∞ function

(5.3) f : (0,∞)→ IR with q2f(qt) = f(t) whenever t ∈ (0,∞),

and define W,E to be the vector spaces of dimensions 2 and 2m formed by all

real-valued (or, V -valued) functions y (or, u) on (0,∞) such that

(5.4) i) ÿ = fy or, respectively, ii) ü = fu+ q2Au,

with ( )̇ = d/dt. The operator T obviously preserves W, and so we may select a

basis y+, y− of the space of complex-valued solutions to (5.4-i) having

(5.5) Ty+ = µ+y+ and Ty− equal to µ−y− plus a multiple of y+,

for some eigenvalues µ± ∈ C, the multiple being zero unless µ+ = µ− ∈ IR. Since

the formula α(y+, y−) = ẏ+y−− y+ẏ− (a constant!) defines an area form on W

such that T ∗α = q−1α, we have det T = q−1 in W. Consequently,

(5.6) µ+µ− = q−1.

In general, E is not preserved by either T or by C applied valuewise via u 7→ Cu.

Their composition CT = TC however, does leave E invariant:

(5.7) CT : E→ E,

as it coincides with the operator u 7→ σu in (3.5). The solution space E of (5.4-ii)

has an ascending m-tuple of CT-invariant vector subspaces:

(5.8) E1 ⊆ . . . ⊆ Em = E with dim Ej = 2j,
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each Ej consisting of solutions taking values in the space KerAj. (Note that, as a

consequence of (4.3) – (4.4), dim KerAj = j.)

Theorem 5.1. Given q,m, V , 〈·, ·〉, A,C, e1, . . . , em, T, f,W,E, y±, µ± introduced

earlier in this section, let L be any CT-invariant subspace of E.

Then in some basis u+1 , u
−
1 , . . . , u

+
m, u

−
m of the complexification EC of E, con-

taining a basis of LC, the matrix of CT is upper triangular with the diagonal

(λ+1 , λ
−
1 , . . . , λ

+
m, λ

−
m) where, for some combination coefficients (0,∞)→ C,

(5.9) λ±j = qm+1−2jµ± and u±j equals y±ej plus a combination of e1, . . . , ej−1,

j = 1, . . . ,m. If µ+, µ− ∈ IR, we may replace ‘complex-valued’ by ‘real-valued’ and

the complexifications C,EC,EC
j by the original real forms IR,E,Ej.

Proof. The equation ü = fu + Au imposed on u = y1e1 + . . . + yjej , with

1 ≤ j ≤ m and complex-valued functions y1, . . . , yj , reads

(5.10) ÿj = fyj and ÿi = fyi + yi+1 for i < j.

Since, by (5.1), e1, . . . , ej span KerAj, such u lie in EC
j , for Ej appearing in (5.8),

and we can now define u±j by (5.9), declaring yj in (5.10) to be y± and then

solving the equations ÿi = fyi + yi+1 in the descending order i = j − 1, . . . , 1,

with a 2(j − 1)-dimensional freedom of choosing the functions yi. As u±j /∈ EC
i

for i < j, the 2m solutions u±j are linearly independent, and hence constitute a

basis u+1 , u
−
1 , . . . , u

+
m, u

−
m of EC which makes CT upper triangular with the required

diagonal. More precisely, by (5.1) – (5.5), CTu+j (or, CTu−j ) equals qm+1−2jµ+u+j
(or, qm+1−2jµ−u−j plus a multiple of u+j ), plus a linear combination of u±i with

i < j, the multiple being 0 unless µ+ = µ− ∈ IR.

The freedom of choosing yi will now ensure that some u+1 , u
−
1 , . . . , u

+
m, u

−
m as

above also contains a basis of LC. Namely, for Lj = L ∩ Ej , we get inclusion-in-

duced, obviously injective operators Lj/Lj−1 → Ej/Ej−1, where 1 ≤ j ≤ m and

L0 = E0 = {0}, so that, by (5.8), δj ∈ {0, 1, 2}, with δj = dim(Lj/Lj−1). Our u±j
may now be left completely arbitrary, as before, when δj = 0. If j is fixed and

δj = 2, our operator Lj/Lj−1 → Ej/Ej−1 is an isomorphism, and so the cosets of

u±j , forming a basis of [Ej/Ej−1]C, are also realized as LC
j−1 cosets of solutions in

LC
j , which we select as the required modified versions of u±j . Finally, in the case

δj = 1, the embedded line [Lj/Lj−1]C in [Ej/Ej−1]C, due to its CT-invariance,

must be one of the two eigenvector cosets represented by u±j , and the latter can

thus be modified (within our 2(j − 1)-dimensional freedom) so as to lie in LC
j .

Since δj = dim(Lj/Lj−1), the total number of modified solutions, δ1 + . . . + δm,

equals dim L. Therefore, they form a basis of LC. �
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6. GL(ZZ)-polynomials

By a root of unity, or a GL(ZZ)-polynomial we mean here any complex number

z such that zk = 1 for some integer k ≥ 1 or, respectively, any polynomial

of degree d ≥ 1 with integer coefficients, the leading coefficient (−1)d, and the

constant term 1 or −1. It is well known, cf. [5, p. 75], that

(6.1)
GL(ZZ) polynomials of degree d are precisely the

characteristic polynomials of matrices in GL(d,ZZ).

Every complex root a of a GL(ZZ)-polynomial P is an invertible algebraic integer

and P, if also assumed irreducible, is the minimal monic polynomial of a. Then,

due to minimality, a is not a root of the derivative of P, showing that

(6.2) the complex roots of an irreducible GL(ZZ) polynomial are all distinct.

Irreducibility is always meant here to be over ZZ or, equivalently, over Q.

We say that a GL(ZZ)-polynomial has a cyclic root group if its (obviously

nonzero) complex roots generate a cyclic multiplicative group of nonzero complex

numbers. The goal of this section is to show that

(6.3)
the only irreducible GL(ZZ) polynomials with a cyclic

root group are the cyclotomic and quadratic ones.

We call an irreducible GL(ZZ)-polynomial cyclotomic if all of its roots are roots

of unity which, up to a sign, agrees with the standard terminology [11]. The

cyclic root-group condition clearly does hold for all cyclotomic polynomials and all

quadratic GL(ZZ)-polynomials.

First, if an irreducible GL(ZZ)-polynomial P has among its roots a and ak,

for some a ∈ C r {1,−1} and an integer k /∈ {0, 1,−1}, then

(6.4) every complex root of P is a root of unity.

In fact, if k ≥ 2, then, for such P, a, all λ ∈ C, all integers r ≥ 1, and some

GL(ZZ)-polynomial Q,

(6.5) P (λk
r

) = Q(λ)Q(λk) . . . Q(λk
r−1

)P (λ),

as one sees using induction on r, the case r = 1 being obvious as λ 7→ P (λk) has

a as a root, which makes it divisible by the minimal polynomial P of a, and the

induction step amounts to replacing λ in (6.5) by λk. Now (6.4) follows, or else P

would have infinitely many roots. The extension of (6.4) to negative integers k is

in turn immediate if one notes that (PQ)∗ = P ∗Q∗ and P ∗∗= P for the inversion

P ∗ of a degree d polynomial P, defined by P ∗(λ) = λdP (1/λ) or, equivalently,

P ∗(λ) = a0λ
d + . . . + ad−1λ + ad whenever P (λ) = a0 + a1λ + . . . + adλ

d. More

precisely, we then replace (6.5) with P (λk
r

) = Q∗(λ)Q(λk) . . . Q[r](λk
r−1

)P [r](λ),

where P [r] equals P or P ∗ depending on whether r is even or odd.
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Remark 6.1. If a GL(ZZ)-polynomial has the complex roots c1, . . . , cd, and k

is an integer, then ck1 , . . . , c
k
d are the roots of a GL(ZZ)-polynomial. (By (6.1), we

may choose the latter polynomial to be the characteristic polynomial of the kth

power of a matrix in GL(d,ZZ) with the characteristic roots c1, . . . , cd.)

Lemma 6.2. Let an irreducible GL(ZZ)-polynomial P of degree d have a root

ak for some a ∈ C r {1,−1} and an integer k 6= 0. Then

(6.6) a is an invertible algebraic integer

having some GL(ZZ)-polynomial S as its minimal polynomial, and the complex

roots c1, . . . , cr of S can be rearranged so that, with d ≤ r,

(6.7) P (λ) = (ck1 − λ) . . . (ckd − λ) and {ck1 , . . . , ckd} = {ck1 , . . . , ckr },

Proof. If k > 0, the polynomial λ 7→ P (λk) has the root a, which yields

(6.6) and the equality P (λk) = Q(λ)S(λ) for all λ ∈ C and some GL(ZZ)-poly-

nomial Q. Thus, the kth powers of all the roots c1, . . . , cr of S are roots of P.

The polynomial R with the roots ck1 , . . . , c
k
r is a GL(ZZ)-polynomial (Remark 6.1),

while each factor in its unique irreducible factorization has simple roots by (6.2),

which are also roots of P, and irreducibility of P thus implies that the factor must

equal P. In other words, R is a power of P, and (6.7) follows. When k < 0, the

preceding assumptions (and conclusions) hold with k, P replaced by |k|, P ∗ (and

a, S unchanged), so that P ∗(λ) = (c
|k|
1 − λ) . . . (c

|k|
d − λ), as required in (6.7). �

Lemma 6.3. If an irreducible GL(ZZ)-polynomial P has two roots of the form

ak and a` for a ∈ C r {1, 0,−1} and two distinct nonzero integers k, ` ≥ 2, then

all roots of P have modulus 1.

Proof. Let k > `. The two versions of (6.7), one for k and one for `, involve

the same roots c1, . . . , cr of the same polynomial S, so that

(6.8) {|c1|k, . . . , |cr|k} = {|c1|`, . . . , |cr|`}.

If the greatest (or, least) of the moduli |c1|, . . . , |cr| were greater (or, less) than 1,

its kth (or, `th) power would lie on the left-hand (or, right-hand) side of (6.8) and

be greater than any number on the opposite side, contrary to the equality in (6.8).

Thus, |c1| = . . . = |cr| = 1. �

Lemma 6.4. If all roots of an irreducible GL(ZZ)-polynomial P have modulus

1, then they are roots of unity, that is, P is cyclotomic.

Proof. A matrix in GL(d,ZZ) with the characteristic polynomial P, cf. (6.1),

treated as an automorphism of Cd is, in view of (6.2), diagonalized by a suitable

basis, with unit diagonal entries, so that its powers form a bounded sequence,

with a convergent subsequence. As these powers preserve the real form IRd ⊆ Cd,

the convergence takes place in GL(d, IR) and discreteness of the subset GL(d,ZZ)

makes the subsequence ultimately constant. �
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Proof of (6.3). Consider an irreducible GL(ZZ)-polynomial with a cyclic root

group generated by a ∈ C. By (6.2), we may assume that a /∈ {1, 0,−1}. If a is

(or is not) a root, our claim follows from (6.4) (or, Lemmas 6.3 – 6.4). �

7. The combinatorial argument

The main result of this section, Theorem 7.1, will serve as the final step needed

to prove Theorem A in Section 8.

Any m, k ∈ ZZ with m ≥ 2 give rise to functions E,Φ : ZZ → ZZ and integers

a0, a1 such that, for any a, b ∈ ZZ,

(7.1)

i) E(a) = m− (−1)ak − a, ii) Φ(a) = 2m− 2(−1)ak − a,
iii) E is bijective and Φ is an involution,

iv) E−1(b) = m− (−1)m+k+bk − b, v) Φ(a) = E−1(−E(a)),

vi) a1 = E−1(1) = m+ (−1)m+kk − 1,

vii) a0 = E−1(0) = m− (−1)m+kk, viii) a0 + a1 = 2m− 1.

Let integers m ≥ 2 and k be fixed, V = {1, . . . , 2m}, and | | denote cardinality.

Theorem 7.1. There is no set S ⊆ V with the following properties.

(a) a1 ∈ S and Φ(a1) /∈ S.

(b) a0 ∈ S if and only if m is even.

(c) If a, b ∈ V and a+ b = 2m+ 1, then exactly one of a, b lies in S.

(d) For every a ∈ Sr {a1} there exists b ∈ S with E(b) = −E(a).

(e) |S ∩ {1, 2, . . . , 2j}| ≤ j whenever j ∈ {1, . . . ,m}.

Proof. Equivalently, (c) states that S is a selector for the m-element family

{{a, b} ⊆ V : a+ b = 2m+ 1}. Hence |S| = m. In addition,

(7.2) i) |S| = m ≥ 3, ii) |k| ≤ m − 1, iii) Φ(Sr {a1}) = Sr {a1}.

In fact, as a1 6= a0 and a0 + a1 = 2m − 1 by (7.1-viii), having m = 2 in (7.2-i)

would, by (a) – (b), give S = {a0, a1} ⊆ {1, 2, 3, 4} and a0 + a1 = 3, implying that

S = {1, 2}, contrary to (e) for j = 1. Next, (d) and (7.1-v) give Φ(S r {a1}) ⊆
S r {a1}, cf. (7.1-iii), with the image not containing a1, as otherwise, by (7.1-iii),

Φ(a1) would lie in S, which contradicts (7.1-i); and (7.1-iii) makes the inclusion

an equality, proving (7.2-iii). Finally, using (7.2-i), we may fix a ∈ S r {a1, 2m}.
Thus, by (7.2-iii) and (7.1-ii), 1 ≤ Φ(a) = 2m − 2(−1)ak − a ≤ 2m. When a is

even (odd) this becomes 2 ≤ 2m− 2k − a ≤ 2m (or, 1 ≤ 2m+ 2k − a ≤ 2m− 1),

yielding 1−m ≤ k ≤ m− 2 (or 1−m ≤ k ≤ m− 1), and (7.2-ii) follows.

Let us now define c± ∈ ZZ by

(7.3) c± = m∓ k, so that 1 ≤ c± ≤ 2m− 1 due to (7.2 ii),

denote by V± (or, S±) the set of all a ∈ V (or, a ∈ Sr {a1}) having (−1)a = ±1

and, finally, given a, b ∈ V± with a ≤ b, set [a, b]± = [a, b] ∩ V±, referring to
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any such [a, b]± as an even/odd subinterval of V. Finally, we let R± stand for the

maximal even/odd subinterval of V which is symmetric about c±. Then

(7.4)

i) S = S+ ∪ S− ∪ {a1}, Φ(S±) = S± , S± ⊆ R± ,

ii) R+ = [2, 2m− 2k − 2]+ , R− = [2k + 1, 2m− 1]− if k ≥ 0,

iii) R+ = [−2k, 2m]+ , R− = [1, 2m+ 2k − 1]− if k < 0,

iv) Φ restricted to even/odd integers is the reflection about c±.

In fact, the first relation in (7.4-i) is obvious, the second immediate from (7.2-iii)

since, by (7.1-ii), Φ : ZZ → ZZ preserves parity, Also, (7.1-ii) yields (7.4-iv), which

in turns shows that S± = Φ(S±) is a (possibly empty) union of sets {a, b} having

c± as the midpoint, and so S± ⊆ R±. Finally, depending on whether c± = m∓ k
is less (or, greater) than the midpoint m+ 1/2 of V, one endpoint of R± must lie

in {1, 2} (or, in {2m − 1, 2m}), and the other endpoint added to this one must

yield 2c±, which proves (7.4-ii) – (7.4-iii).

Note that, as an obvious consequence of (7.4),

(7.5)

Sr {a1} fails to include specific integers from V, which are:

the lowest k odd and highest k + 1 even ones when k > 0,

the highest |k| odd and lowest |k| − 1 even ones for k < 0,

the integer 2m if k = 0.

Furthermore, one necessarily has

(7.6) k ∈ {0, −1}.

To see this, we begin by excluding the possibility that k ≥ 2 (or, k ≤ −3). Namely,

if this was the case, (7.5) would give 1, 3, 2m− 2, 2m /∈ Sr {a1} (when k ≥ 2), or

2, 4, 2m−3, 2m−1 /∈ Sr{a1} (for k ≤ −3). From the two pairs {1, 2m}, {3, 2m−2}
(or, {2, 2m− 1}, {4, 2m− 3}) we would choose one, {a, b}, having a1 /∈ {a, b} and

a+ b = 2m+ 1, as well as a, b /∈ S, which contradicts (c).

The next two cases that need to be excluded are k = 1 and k = −2. If one of

them occurred, (7.5) would give 1, 2m /∈ Sr{a1} (if k = 1), or 2, 2m−1 /∈ Sr{a1}
(for k = −2), which would again contradict (c), unless a1 ∈ {1, 2m} and k = 1, or

a1 ∈ {2, 2m− 1} and k = −2. However, each of the resulting four possible values

(1, 1), (2m, 1), (2,−2), (2m− 1,−2) for the ordered pair (a1, k) leads, via (7.1-vi),

to the immediate conclusion that m ≤ 1, contrary to (7.2-i), and so (7.6) follows.

As the next step, we write m = 2j (m even) or m = 2j + 1 (m odd), so that

j ≥ 1 by (7.2-i), and proceed to establish the inclusion

(7.7) S′ ∪ {a∗} ⊆ S ∩ {1, 2, . . . , 2j}, with |S′ ∪ {a∗}| = j + 1,

which will contradict (e), thus completing the proof of the theorem. Here S′ is

the j-element set consisting of all integers from {1, 2, . . . , 2j} with a specific parity

(even if k = −1, odd for k = 0), and a∗ = a0 (m even) or a∗ = a1 (m odd).
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To derive (7.7), we list various conclusions in two separate columns (one for

either possible value of k):

(A) k = 0 k = −1

(B) S′ = {1, 3, . . . , 2j − 1} S′ = {2, 4, . . . , 2j}
(C) a∗ = 2j ∈ S a∗ = 2j − 1 ∈ S

(D) a1 = m− 1 a1 = m− 1 + (−1)m

(E) a0 = m a0 = m− (−1)m

(F) 2m /∈ S 2m− 1 /∈ S

(G) 1 ∈ S 2 ∈ S.

In fact, (B) is the definition of S′, (E), (D), (C) follow from (7.1-vii) – (7.1-viii),

with a∗ ∈ S due to (a) – (b), while (F) is immediate from (7.5) for k ∈ {−1, 0},
and (G) from (F) and (c). What still remains to be shown, for (7.7), is the inclusion

(7.8) S′ ⊆ S,

as (7.8) combined with (B) – (C) obviously yields (7.7).

To this end, consider Ψ : ZZ → ZZ given by Ψ(a) = 2m + 1 − a, so that (c)

amounts to |S ∩ {a, Ψ(a)}| = 1 for all a ∈ V or, equivalently, Ψ(S) = V r S and

Ψ(Vr S) = S. Now, in our case, given an integer i,

(7.9) if 1 ≤ i < m− 2 and i ∈ S, then i+ 2 ∈ S.

Namely, for the sign ± such that (−1)i = ±1, (7.2-iii) and (7.4-iv) yield

i
in
−−→
Φ

2m∓ 2k − i
in

−−→
Ψ

i± 2k + 1
out

−−→
Φ

2m− i− 1
out

−−→
Ψ

i+ 2
in

,

‘in’ or ‘out’ meaning lying in S or in V r S. In fact, the four sums of pairs

of adjacent integers in the above displayed line are 2(m ∓ k) = 2c±, 2m + 1,

2(m ± k) = 2c∓, 2m + 1, as required in the definitions of the reflections Ψ and

Φ, the latter restricted to even/odd integers. On the other hand, the inequality

i < m− 2 implies, via (D), that i 6= a1 6= 2m− i− 1 (and so 2m− i− 1 /∈ S, for

otherwise i± 2k + 1 = Φ(2m− i− 1) would lie in S).

Now (7.9) combined with (G) and (B) proves (7.8) by induction on i. Specif-

ically, the highest value of odd (or, even) i such that this yields i ∈ S is the one

with i− 2 < m− 2 ≤ i, which is the required value 2j − 1 (or, 2j) except for even

m and k = −1. In the latter case, although we get 2j − 2 instead of 2j = m, we

have 2j = m = a1 ∈ S nevertheless, due to (D) and (a). �

8. Proof of Theorem A

We argue by contradiction. Suppose that, for some rank-one ECS model man-

ifold (M̂, ĝ) defined by (3.2), with (3.1), and for G as in Theorem 3.1, there exists

(8.1)
a subgroup Γ⊆G acting on M̂ freely and properly discontin

uously with a generic compact quotient manifold M = M̂/Γ,
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yet K+ in (0.2) is infinite cyclic. As K+ = K∩ (0,∞), by Lemma 2.1, for the image

K of the homomorphism Γ 3 (q, p, C, r, u) 7→ q, we get (2.5-b). Theorem 2.3 now

allows us to set I = (0,∞) in (3.1), and all (q, p, C, r, u) ∈ Γ have p = 0. We fix

(8.2) γ̂ = (q, 0, C, r̂, û) ∈ Γ such that q is a generator of K+.

From (3.3) and Theorem 3.1, we have (5.3) and CAC−1 = q2A, for f,A in (3.1).

Using the notations of (5.2) – (5.7), with m = n− 2, we replace Γ, without loss of

generality, by a finite-index subgroup Γ+, which allows us to assume that

(8.3) q ∈ (0,∞) r {1}, C has positive eigenvalues, and µ± ∈ C r (−∞, 0].

Namely, each of these additional requirements amounts to passing from Γ to a

subgroup of index at most 2 (or, equivalently, from M to the corresponding finite

isometric covering). Specifically, we successively intersect Γ with the kernels of the

homomorphisms Γ→ {1,−1} sending (q, 0, C, r, u) to sgn q and sgnC, the latter

sign accounting for positivity of negativity of the eigenvalues of C. (According to

Corollary 4.3, one of these cases must take place, and all C occurring in G form

an Abelian group.) The last condition (positivity of µ± when they are real) is

achieved by replacing γ̂, q, C, µ± with their squares and Γ with the corresponding

homomorphic preimage of the index-two subgroup of K+ generated by q2, which

is to be done only if µ± are real and negative, cf. (5.6). Finally, we define a linear

operator Π : IR× E→ IR× E by

(8.4) Π(r, u) = (2Ω(CTu, û) + r/q, CTu).

From the assumption that K+ is infinite cyclic we will derive, in Lemma 8.2, the

existence of a vector subspace L ⊆ E having the following properties.

(8.5)

(A) dimL = m, where m = n− 2.

(B) CT leaves L invariant.

(C) Π(Σ′) = Σ′ for some lattice Σ′ in IR× L.

(D) Ω(u, u′) = 0 whenever u, u′ ∈ L.

(E) u 7→ u(t) is an isomorphism L→ V for every t ∈ (0,∞).

Remark 8.1. For any rank-one ECS model manifold (3.1) – (3.2), with H and

the solution space E defined in (3.8) and (3.4), if a vector subspace L ⊆ E satisfies

(8.5-E), with any I instead of I = (0,∞), then, restricting (3.9) to (0,∞)× IR×L

we clearly obtain an H-equivariant diffeomorphism

I× IR× L → M̂ = I× IR× V ,

its bijectivity being due to (8.5-E), and smoothness of its inverse – to the smooth

dependence of the isomorphism L 3 u 7→ u(t) ∈ V on t along with real-analyticity

of the isomorphism-inversion operation.

Lemma 8.2. A vector subspace L ⊆ E with (8.5) exists if the conditions pre-

ceding (8.4) are all satisfied.
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Proof. The surjective submersion M̂ 3 (t, s, v) 7→ (log t)/(log q) ∈ IR, being

clearly equivariant relative to the homomorphism

(8.6) Γ+ 3 γ′ = (q′, 0, C ′, r′, u′) 7→ (log q′)/(log q) ∈ ZZ

along with the obvious actions of Γ on M̂, via (3.7) with p = 0, and ZZ on IR by

translations, descends to a surjective submersion M → S1 which is

(8.7) a bundle projection M̂/Γ+ → IR/ZZ = S1.

according to Remark 1.3. The kernel Σ of (8.6) equals Σ = {(1, 0, Id)} × Σ′ for

some set Σ′ ⊆ IR×E, since C ′ in (8.6), due to its positivity, (3.3) and Corollary 4.3,

is uniquely determined by q′. Thus, Σ ⊆ H, for H given by (3.8). As a consequence

of Lemma 2.2(b) and (f) in Section 3, the restriction to Σ of the homomorphism

(c) in Section 3 is injective, making Σ Abelian. Now (a) in Section 3 implies that

the image of Σ′ under the projection (r, u) 7→ u spans a vector subspace L ⊆ E

satisfying condition (8.5-D), and so Remark 3.3 gives dimL ≤ n − 2. Due to

(8.5-D) and (a) in Section 3, H′ = {(1, 0, Id)} × IR × L is an Abelian subgroup of

H, containing Σ, and the group operation in H′ identified with IR × L coincides

with the addition in the vector space IR× L.

At the same time, the (necessarily compact) fibre of the bundle (8.7) over

the ZZ-coset of (log t)/(log q) is obviously the quotient Mt = [{t} × IR × V ]/Σ.

Compactness of Mt implies surjectivity of the linear operator L 3 u 7→ u(t) ∈ V for

every t ∈ (0,∞), since otherwise a nonzero linear functional vanishing on its image,

composed with the projection {t}× IR× V → V , would descend – according to (b)

in Section 3 – to an unbounded function Mt → IR. Thus, dimL ≥ n− 2 = dimV

which, due to the opposite inequality in the last paragraph, gives both (8.5-A)

and (8.5-E). Remark 8.1 with I = (0,∞) and the italicized conclusion of the

preceding paragraph, combined with compactness of each of the quotients Mt (and

the obvious proper discontinuity of the action of Σ on {t}× IR×V ) show that Σ′

is a lattice in IR× L.

Finally, according to Remark 3.2, the right-hand side of (8.4) describes the

conjugation by our γ̂ in (8.2) applied to (1, 0, Id, r, u) ∈ Σ, which we identify here

with (r, u). As this conjugation obviously sends the kernel Σ onto itself, we get

(8.5-C), and so Π(IR × L) = IR × L (since Σ′ is a lattice in IR × L). Now (8.4)

yields (8.5-B), which completes the proof. �

Lemma 8.3. Under the hypotheses preceding (8.4), let a vector subspace L ⊆ E

satisfy (8.5-A) – (8.5-C), a basis u+1 , u
−
1 , . . . , u

+
m, u

−
m of EC containing a basis

u1, . . . , um of LC be chosen as in Theorem 5.1, and λ1, . . . , λm be the correspond-

ing complex characteristic roots of CT : E→ E selected from λ+1 , λ
−
1 , . . . , λ

+
m, λ

−
m

given by (5.9). Then

(i) λ0 = q−1 and λ1, . . . , λm form a GL(ZZ)-spectrum,
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in the sense that they are the complex roots of some GL(ZZ)-polynomial of degree

m+ 1, defined as in Section 6, and

(ii) the product λ1 . . . λm equals q or −q.

Furthermore, assuming in addition that

(iii) one of µ± is a power of q with a rational exponent,

we have the following conclusions.

(iv) Both µ± are powers of q with integer exponents.

(v) λ+1 , λ
−
1 , . . . , λ

+
m, λ

−
m are all distinct, real and positive.

(vi) Exactly one of λ1, . . . , λm equals q.

(vii) Just one, or none of λ1, . . . , λm equals 1 if n is even, or odd.

(viii) Those λ1, . . . , λm not equal to q or 1 form pairs of mutual inverses.

(ix) Ω(u±i , u
±
j ) = 0 for all i, j ∈ {1, . . . ,m} and both signs ±.

(x) Ω(u±i , u
∓
j ) 6= 0 if and only if i+ j = m+ 1,

Proof. Assertion (i) is immediate from (8.4) and (8.5-C) along with (6.1),

and (ii) from (i). Assuming (iii), we see – using (5.9), (5.6) and (6.3) – that, for

the GL(ZZ)-polynomial P with the roots λ0, . . . , λm,

(xi) the irreducible factors of P must all be linear or quadratic,

higher degree cyclotomic polynomials being excluded since the roots are all real.

Thus, one of λ1, . . . , λm equals q, to match λ0 = q−1, and (5.9) combined with

(5.6) yields (iv). Since |λ±j | is, for either sign ±, a strictly monotone function of

j, to prove (v) it suffices to consider the case qm+1−2jµ± = qm+1−2iµ∓, that is,

µ±/µ∓ = q2(j−i). Multiplied by µ±µ∓ = q−1, cf. (5.6), this makes (µ±)2 a power

of q with an odd integer exponent, contrary to (iv), so that (v) follows. From (iii)

and (xi) we now get (viii).

For our basis u±j of E, diagonalizing CT with the eigenvalues λ±j = qm+1−2jµ±,

(g) in Section 3 gives

q−1Ω(u±i , u
±
j ) = q2m+2−2i−2j(µ±)2Ω(u±i , u

±
j ),

q−1Ω(u±i , u
∓
j ) = q2m+2−2i−2jµ+µ−Ω(u±i , u

∓
j ).

Thus, the inequality Ω(u±i , u
±
j ) 6= 0 would, again, make (µ±)2 a power of q with

an odd integer exponent, contradicting (iv), which yields (ix). Similarly, assuming

that Ω(u±i , u
∓
j ) 6= 0, we now get, from (5.6), i+j = m+1. The converse implication

needed in (x) follows, via (ix), from nondegeneracy of Ω. �

Lemma 8.4. With the assumptions and notations of Lemma 8.3, let L this

time satisfy all of (8.5). Then conditions (i) – (x) in Lemma 8.3 all hold, so that

µ± and λ±j are all real, while

(i) the number of pluses is different from that of minuses
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among the ± superscripts of those λ+1 , λ
−
1 , . . . , λ

+
m, λ

−
m which form the character-

istic roots λ1, . . . , λm of CT : L→ L. Finally, for the basis B = {u1, . . . , um} of

L contained in the basis {u+1 , u
−
1 , . . . , u

+
m, u

−
m} of E, with | | denoting cardinality,

(ii) |B ∩ {u+1 , u
−
1 , . . . , u

+
j , u

−
j }| ≤ j whenever j = 1, . . . ,m,

(iii) |B ∩ {u+i , u
−
j }| = 1 if i, j ∈ {1, . . . ,m} and i+ j = m+ 1.

Proof. If (ii) failed to hold, the evaluation operator in (8.5-E), complexified

if necessary, would send {u1, . . . , uj+1} into the span of the vectors e1, . . . , ej ap-

pearing in (5.9), contrary to its injectivity. From (ii) we obtain

(iv) k(j) ≥ j for all j = 1, . . . ,m,

k(j) ∈ {1, . . . ,m} being such that uj = u±k(j) with some sign ±, since, otherwise,

B ∩ {u+1 , u
−
1 , . . . , u

+
k(j), u

−
k(j)} would have at least j > k(j) elements.

To prove (i), we now assume its negation, and evaluate the product of those

λ±j = qm+1−2jµ± in (5.9) which constitute λ1, . . . , λm. Both factors µ+, µ− appear

in this product the same number of times, m/2, which makes m even, and by (5.6)

their occurrences contribute to our product λ1 . . . λm a total factor of q−m/2. On

the other hand, the set {qm+1−2j : 1 ≤ j ≤ m} = {qm−1, qm−3, . . . , q1−m} is closed

under taking inverses, so that
∏m
j=1 q

m+1−2j = 1. Writing k(j) = j + `(j), with

`(j) ≥ 0 due to (iv), we now have

(8.8) λj = λ±k(j) = qm+1−2k(j)µ± = qm+1−2jµ±q−2`(j),

making λ1 . . . λm equal to 1 times q−m/2 times
∏m
j=1 q

−2`(j), that is, a power of

q with a negative exponent, contrary to Lemma 8.3(ii).

Next, (i) implies that µ± and λ±j are all real, for otherwise λj in (8.8), forming

along with λ0 = q−1 the spectrum of a real matrix, would come in nonreal conjugate

pairs, with the same number of positive real parts as negative ones. Thus, by (8.3),

µ± > 0. Using (i) and reality of µ± we now evaluate the product λ1 . . . λm = ±q
in Lemma 8.3(ii), observing that not all µ+, µ− undergo pairwise “cancellations”

(forming the product q−1), but instead Lemma 8.3(ii) equates some power of µ+

or µ−, with a positive integer exponent, to a power of q, and so positivity of µ±

yields condition (iii) in Lemma 8.3, which in turn implies (iv) – (x).

Finally, the m-element family P = {{u+i , u
−
j } : i + j = m + 1} forms a parti-

tion of {u+1 , u
−
1 , . . . , u

+
m, u

−
m} into disjoint two-element subsets, while the mapping

F : B→ P given by u ∈ F (u) is injective: |B ∩ {u+i , u
−
j }| ≤ 1 if i + j = m + 1,

or else Lemma 8.3(x) would contradict (8.5-D). As |B| = m, surjectivity of F thus

follows, proving (iii). �

We now complete the proof of Theorem A by observing that a vector subspace

L ⊆ E with (8.5) gives rise to a subset S of V = {1, . . . , 2m}, for m = n − 2,

satisfying conditions (a) – (e) in Theorem 7.1, which – according to Theorem 7.1 –

cannot exist. Namely, using Lemma 8.3(iv) we define k ∈ ZZ by µ+ = qk, so that,
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by (5.6), µ− = q−k−1. Next, the obvious order-preserving bijection

(8.9) V = {1, . . . , 2m} → {u+1 , u
−
1 , . . . , u

+
m, u

−
m}

(notation of Lemma 8.3) which, explicitly, sends a ∈ V to u−j when a = 2j is

even, or to u+j for odd a = 2j − 1, is used from now on to identify the two sets,

and we declare S to be the subset of V corresponding under (8.9) to the basis

B = {u1, . . . , um} of L. The function assigning to each u±j the corresponding

eigenvalue λ±j = qm+1−2jµ± treated, via (8.9), as defined on V, is now easily seen

to be given by V 3 a 7→ qE(a), with (7.1-i). Referring to (a) – (e) in Theorem 7.1

simply as (a) – (e), we observe that assertions (ii) and (iii) of Lemma 8.4 yield (e)

and (c), while (b), the first claim in (a) and (d) trivially follow from Lemma 8.3(vi)-

(viii) (the latter guaranteed to hold by Lemma 8.4). Finally, the relation Φ(a1) /∈ S

in (a) which, in view of (7.1-iii) and (7.1-v), amounts to q−1 /∈ {λ1, . . . , λm}, is thus

immediate since otherwise, due to Lemma 8.3(viii), the inverse q of q−1 would

occur on the list λ1, . . . , λm twice, contradicting Lemma 8.3(v).
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