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ABSTRACT. We extend the results about left-invariant Codazzi tensor fields on

Lie groups equipped with left-invariant Riemannian metrics obtained by d’Atri in

1985 to the setting of reductive homogeneous spaces G/H, where the curvature

of the canonical connection of second kind associated with the fixed reductive

decomposition g = h⊕m enters the picture. In particular, we show that invariant

Codazzi tensor fields on a naturally reductive homogeneous space are parallel.

Introduction

Whenever M is a smooth manifold equipped with a connection ∇, a twice-

covariant symmetric tensor field A on M is called a Codazzi tensor field if d∇A = 0,

where d∇ is the exterior derivative operator (defined with the aid of ∇) acting on

tensor bundles over M, and we regard A as a T∗M-valued 1-form. When ∇ is

torsionfree, A is a Codazzi tensor field if and only if

(†) (∇X A)(Y , Z) = (∇Y A)(X, Z), for all X, Y , Z ∈ X(M),

which is to say that the covariant differential ∇A, a three-times covariant tensor

field on M, is totally symmetric.

Codazzi tensors are ubiquitous in geometry, with the most prominent ex-

amples being the second fundamental form of a non-degenerate hypersurface

in a pseudo-Riemannian manifold with constant sectional curvature (due to the

Codazzi-Mainardi compatibility equation), and the Ricci or Schouten tensors of

a pseudo-Riemannian manifold with harmonic curvature or harmonic Weyl cur-

vature (due to the relations div R = d∇Ric and div W = d∇Sch). Whenever a

Riemannian manifold (M, g) has constant sectional curvature K, every Codazzi

tensor field locally has the form Hess f + K fg for some smooth function f , cf. [4].
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Both topological and geometric consequences of the existence of a nontrivial

Codazzi tensor field on a Riemannian manifold have been studied in [4, 7], and

the local structure of a Riemannian manifold carrying a Codazzi tensor field satis-

fying additional multiplicity assumptions on its spectra and eigendistributions is

obtained in [9]. Many such results are compiled in [3, §16.6–§16.22], which then

led to further work [5, 14].

In a different and more specific direction, left-invariant Codazzi tensor fields

on Lie groups equipped with left-invariant Riemannian metrics have been dis-

cussed in [6], with the goal of better understanding the harmonic curvature con-

dition in this setting. New results have been recently obtained in [1], where it is

shown that solvable Lie groups equipped with left-invariant Riemannian metrics

having harmonic curvature must necessarily be Ricci-parallel.

In this paper, we extend the results in [6] to the more general class of invariant

Codazzi tensor fields on reductive homogeneous spaces equipped with invariant

Riemannian metrics. Our approach to achieve this is straightforward: once a re-

ductive decomposition g = h⊕m for the homogeneous space G/H is fixed, we run

the computations done in [6] in the reductive complement m (a non-associative al-

gebra) instead of in the Lie algebra g. However, unlike in some results in [6] which

involve positivity and negativity of sectional and scalar curvatures, the curvatures

of (G/H, 〈·, ·〉) are now compared with curvatures of the canonical connection of

second kind associated with the decomposition g = h⊕m — with its flatness when

h = {0} and m = g explaining its absence in [6]. Full proofs are included for the

sake of completeness.

Organization of the text

We work in the smooth category and all manifolds considered are connected.

In Section 1, we gather some well-known standard facts regarding reductive

homogeneous spaces needed for the rest of the text, the most important ones be-

ing Nomizu’s Theorem [15] on invariant connections and Lemma 1.1. Section 2

generalizes [6, Proposition 1] to Proposition 2.1: the same compatibility condition

(2.3) ensures that a symmetric bilinear form on m reconstructed from prescribed

eigenspaces gives rise to a Codazzi tensor field on G/H.

Section 3 explores the effects of the existence of an invariant Codazzi tensor

field on curvature, generalizing [6, Propositions 3 and 4] and expressing the new

conclusions, Propositions 3.1 and 3.3, with the aid of the difference curvature tensor

introduced in (3.1). In particular, we conclude that every invariant Codazzi tensor

field on a naturally reductive homogeneous space is parallel.
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1. Preliminaries

The material in this section is standard and it is included for the convenience

of the reader. We refer to [13, Ch. X], [11, Ch. II], and [2, Ch. II–III] for more details.

Let G be a Lie group and H be a closed Lie subgroup of G, so that the quotient

space G/H admits a unique smooth structure for which the natural projection

π : G → G/H is a principal H-bundle. The group G acts transitively on G/H via

the “left translations” τg : G/H → G/H given by τg(aH) = (ga)H. Writing g

and h for the Lie algebras of G and H, we assume that G/H is reductive: there is a

vector space direct sum decomposition g = h⊕m such that m is Ad(H)-invariant.

We write (·)h : g → h and (·)m : g → m for the direct sum projections, and so

(m, [·, ·]m) becomes a non-associative algebra. The derivative dπe restricts to an

isomorphism m ∼= TeH(G/H) and, in addition,

(1.1)
for each h ∈ H, the derivative of τh : G/H → G/H at

the fixed point eH is nothing more than Ad(h) : m→ m.

Our guiding principle is that for any G-equivariant smooth fiber bundle E→ G/H,

(1.2)
G-equivariant sections of E are in one-to-one

correspondence with points of EeH fixed by H.

Indeed, any point φ ∈ EeH which is fixed by H defines a G-equivariant section ψ of

E via ψgH = g · φ. For example, taking E to be tensor powers of T∗(G/H) gives us

that G-invariant covariant tensor fields on G/H are in one-to-one correspondence

with Ad(H)-invariant covariant tensors on m, cf. [2, Proposition 5.1], while taking

E to be Grassmannian bundles over G/H yields that G-invariant distributions on

G/H are in one-to-one correspondence with Ad(H)-invariant vector subspaces of

m. In addition, it has been proved in [17] that

(1.3)
a G-invariant distribution P on G/H is involutive if

and only if the subspace PeH is closed under [·, ·]m.

We will also need Nomizu’s theorem [15, Theorem 8.1]:

(1.4)
G-invariant affine connections on G/H are in one-to-one corre-

spondence with Ad(H)-equivariant multiplications m×m→ m.

Following [8, Section 5.2], a G-invariant connection ∇ on G/H and an

Ad(H)-equivariant multiplication α in m related via (1.4) determine each other
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by the relation

(1.5) α(X, Y) = (∇X#Y#)|eH + [X, Y]m, for all X, Y ∈ m.

Here, we are using that every X ∈ g determines its corresponding action field

X# ∈ X(G/H), with X#
eH = Xm and whose complete flow is explicitly given by

(t, aH) 7→ τexp(tX)(aH). Note that the right-invariant vector field on G generated

by X is π-related to X#. For future reference, we also observe that this implies that

(1.6) LX#Θ = 0 for every X ∈ g and G-invariant tensor field Θ on G/H,

as the flow of X# leaves Θ invariant. The torsion and curvature of ∇ are given in

m in terms of α by

(1.7)
i) T(X, Y) = α(X, Y)− α(Y, X)− [X, Y]m,

ii) R(X, Y)Z = α(X, α(Y, Z))− α(Y, α(X, Z))− α([X, Y]m, Z)− [[X, Y]h, Z],

for all X, Y, Z ∈ m, cf. [15, formulas (9.1) and (9.6)] or [8, formula (22)].

LEMMA 1.1. For a G-invariant connection ∇ and a G-invariant k-times covariant

tensor field Θ on G/H, corresponding to α and θ on m under (1.4)–(1.5) and (1.2), the

covariant differential ∇Θ is also G-invariant and corresponds under (1.2) to α(·, θ) on m

given by

(1.8) α(X, θ)(Y1, . . . , Yk) = −
k

∑
i=1

θ(Y1, . . . , α(X, Yi), . . . , Yk)

for all X, Y1, . . . , Yk ∈ m.

PROOF. We will establish (1.8) when k = 1, with the general case being an

exercise in notation. The identity (∇XΘ)(Y) = (LXΘ)(Y) − Θ(∇XY − [X, Y ])

evaluated at the vector fields X = X# and Y = Y#, with X, Y ∈ m, reads as

(∇X#Θ)(Y#) = −Θ(∇X#Y# − [X#, Y#]) due to (1.6). As evaluating the relation

[X#, Y#] = −[X, Y]# at eH yields [X#, Y#]eH = −[X, Y]m, (1.8) follows from (1.5).

�

Lastly, whenever G/H is equipped with a G-invariant pseudo-Riemannian

metric 〈·, ·〉, α corresponding to the Levi-Civita connection under (1.4)–(1.5) is

called the Levi-Civita product of 〈·, ·〉. The Koszul formula for α becomes

(1.9) 2
〈
α(X, Y), Z

〉
=
〈
[X, Y]m, Z

〉
−
〈

X, [Y, Z]m
〉
−
〈
[X, Z]m, Y

〉
,

for all X, Y, Z ∈ m, cf. [8, Exercise 10].
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2. The Codazzi compatibility condition in m

In this section, let G/H be a homogeneous space admitting a reductive decom-

position g = h⊕m be equipped with a G-invariant Riemannian metric 〈·, ·〉 and its

Levi-Civita product α. By Lemma 1.1 and (†) in the Introduction, a twice-covariant

G-invariant symmetric tensor field A on G/H is Codazzi if and only if

(2.1) α(X, A)(Y, Z) = α(Y, A)(X, Z)

for all X, Y, Z ∈ m. As A is symmetric and g is positive-definite, the spectral

theorem allows us to write an orthogonal direct sum decomposition

(2.2)
m = m1⊕ · · ·⊕mr, where r ≥ 1 and each mi is the eigenspace of A

associated with the eigenvalue λi, ordered so that λ1 < · · · < λr.

We will also write (·)i : m→ mi for the corresponding direct sum projections.

A subalgebra of (m, [·, ·]m) is called totally geodesic if it is closed under α. By

(1.3) and (1.5), an Ad(H)-invariant totally geodesic subalgebra of (m, [·, ·]m) de-

termines a foliation of G/H by totally geodesic submanifolds. The next result

generalizes [6, Proposition 1].

PROPOSITION 2.1. Whenever A is a G-invariant Codazzi tensor field on G/H, all

the factors in decomposition (2.2) are Ad(H)-invariant totally geodesic subalgebras of

(m, [·, ·]m), and the compatibility condition

(2.3) (λi − λk)
2〈[Xi, Yj]m, Zk

〉
+ (λj − λi)

2〈[Xi, Zk]m, Yj
〉
= 0

holds for all X, Y, Z ∈ m and i, j, k ∈ {1, . . . , r}. Conversely, if a direct sum decompo-

sition m = m1 ⊕ · · · ⊕mr into mutually orthogonal Ad(H)-invariant vector subspaces

is given and (2.3) holds, any choice of mutually distinct real constants λ1, . . . , λr gives

rise to a G-invariant Codazzi tensor field on G/H via A =
⊕r

i=1 λi〈·, ·〉|mi×mi . In addi-

tion, ∇A 6= 0 if and only if there exists a triple (i, j, k) of mutually distinct indices with

〈Xi, [Yj, Zk]m〉 6= 0, in which case A has at least three distinct eigenvalues.

PROOF. That each mi is Ad(H)-invariant follows from Ad(H)-invariance of

both A and 〈·, ·〉. Namely, if X ∈ mi, h ∈ H, and Y ∈ m, we have

A(Ad(h)X, Y) = A(X, Ad(h−1)Y) = λi〈X, Ad(h−1)Y〉 = λi〈Ad(h)X, Y〉,

so that Ad(h)X ∈ mi. Next, as (1.9) is manifestly skew-symmetric in the pair

(Y, Z), we see that α(X, ·) ∈ so(m, 〈·, ·〉) for every X ∈ m, from which the relation

(2.4) − α(Zk, A)(Xi, Yj) = (λi − λj)
〈

Xi, α(Zk, Yj)
〉

follows for all X, Y, Z ∈ m. The Codazzi condition (2.1) now reads

(2.5) (λi − λj)
〈

Xi, α(Zk, Yj)
〉
= (λk − λj)

〈
Zk, α(Xi, Yj)

〉
.
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Using (1.9) twice and rearranging terms, (2.5) becomes

(λi − λk)
〈
[Xi, Yj]m, Zk

〉
+

+ (λi − λk)
〈
[Zk, Yj]m, Xi

〉
+ (λi + λk − 2λj)

〈
[Xi, Zk]m, Yj

〉
= 0.

(2.6)

Permuting elements, we also have

(λj − λi)
〈
[Yj, Zk]m, Xi

〉
+

+ (λj − λi)
〈
[Xi, Zk]m, Yj

〉
+ (λj + λi − 2λk)

〈
[Yj, Xi]m, Zk

〉
= 0,

(2.7)

and so (λj−λi)(2.6)+(λi−λk)(2.7) = 0 becomes precisely (2.3). Making i = j 6= k

on (2.3) leads to [Xi, Yi]m ∈ m⊥k for all k 6= i, so that [Xi, Yi]m ∈ mi. Then, mak-

ing j = k 6= i on (2.3) gives us that
〈
[Xi, Yj]m, Zj

〉
+
〈
[Xi, Zj]m, Yj

〉
= 0, which

combined with (1.9) implies that each mi is closed under α.

Conversely, to verify that A =
⊕r

i=1 λi〈·, ·〉|mi×mi defines a Codazzi tensor

field whenever (2.3) holds, it suffices to note that it implies (2.6) (and hence (2.5),

due to (1.9)). Indeed: (2.3) becomes (2.6) when i = k 6= j while, if i 6= j, adding to

(2.3) the expression obtained from it after permuting (i, j, k) 7→ (j, k, i) yields (2.7)

(and hence (2.6)).

Finally, (2.3) also implies

(2.8)
i)
〈
[Xi, Zk]m, Yj

〉
= − (λi − λk)

2

(λj − λi)2 〈[Xi, Yj]m, Zk〉,

ii)
〈

Xi, [Yj, Zk]m
〉
=

(λj − λk)
2

(λj − λi)2

〈
[Xi, Yj]m, Zk

〉
,

whenever i 6= j. Substituting (2.8) into (1.9) and simplifying it with the aid of (2.4),

we obtain

(2.9)
〈
α(Xi, Yj), Zk〉 =

λi − λk
λi − λj

〈
[Xi, Yj]m, Zk

〉
, i 6= j,

which directly implies the last assertions regarding ∇A. �

REMARK 2.2. The use of the spectral theorem to obtain (2.2) relies crucially

on positive-definiteness of the Riemannian metric 〈·, ·〉. When 〈·, ·〉 has indefinite

metric signature, we have Milnor’s indefinite spectral theorem [10, p. 256]:

(2.10)

if a self-adjoint endomorphism T of a pseudo-Euclidean space

(V, 〈·, ·〉) with dim V ≥ 3 satisfies that 〈Tv, v〉 6= 0 for every null

v ∈ V r {0}, then T is diagonalizable in an orthonormal basis of V.

To justify (2.10), it suffices to choose Φ = 〈T·, ·〉 and Ψ = 〈·, ·〉 in the notation

of [10, p. 256]. With (2.10) in place, we see that A gives rise to (2.2) and satisfies

(2.3) even when 〈·, ·〉 has indefinite metric signature, provided that dimm ≥ 3 and

A(X, X) 6= 0 whenever X ∈ mr {0} is null. On the other hand, that (2.2) and
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(2.3) together give rise to G-invariant Codazzi tensor fields on G/H remains true

without any additional assumptions.

As pointed out in [6], there is a simple interpretation for the compatibility

relation (2.3). For each k ∈ {1, . . . , r}, considering the inner product 〈〈·, ·〉〉k on m

defined by1

〈〈X, Y〉〉k =
r

∑
j=1

(δjk + (λj − λk)
2)〈Xj, Yj〉, X, Y ∈ m,

it follows that 〈〈[Zk, X]m, Y〉〉k + 〈〈X, [Zk, Y]m〉〉k = 0 for all Z ∈ mk and X, Y ∈ m⊥k .

Indeed, it suffices to apply (2.3), assuming that X ∈ mi and Y ∈ mj with i, j 6= k.

This means that, writing adm(X)(Y) = [X, Y]m for every X, Y ∈ m and denoting

by π⊥k the projection of m onto m⊥k , the composition (π⊥k ◦ adm)|mk is a represen-

tation of mk on (m⊥k , 〈〈·, ·〉〉k) by skew-adjoint operators. Here, the representa-

tion is a representation of the vector space mk, not of the non-associative algebra

(mk, [·, ·]k). As a consequence:

(2.11)
for each Zk ∈ mk, the chararacteristic roots of the

operator π⊥k ◦ adm(Zk)|m⊥k are all purely imaginary.

Recall that a non-associative algebra a is:

(a) nilpotent [16, p. 18] if there is a positive integer t such that the product of t

elements in a, no matter how associated, equals zero.

(b) split-solvable (cf. [12, p. 21]) if there is a sequence a = a0 ⊇ · · · ⊇ ap = 0 of

ideals of a with dim(ai/ai+1) = 1 for every i = 0, . . . , p− 1.

Following [6], we call a G-invariant Codazzi tensor field A on G/H essential if

∇A 6= 0 and none of the eigenspaces mi is an ideal of (m, [·, ·]m). Note that mk is

an ideal of (m, [·, ·]m) if and only if π⊥k ◦ adm(Zk)|m⊥k = 0 for every Zk ∈ mk. Using

the above, we obtain:

PROPOSITION 2.3. If G/H has a G-invariant essential Codazzi tensor field A, then

(m, [·, ·]m) cannot be nilpotent or split-solvable.

PROOF. As in the Lie category, one may define a ‘Killing form’ β for (m, [·, ·]m)
via β(X, Y) = tr(adm(X) ◦ adm(Y)) for all X, Y ∈ m. A direct computation shows

that, for every Zk ∈ mk, the relation

(2.12) β(Zk, Zk) = βk(Zk, Zk) + tr
[
(π⊥k ◦ adm(Zk)|m⊥k )

2
]

holds, where βk stands for the Killing form of (mk, [·, ·]k).

1Beware of the typo in [6, formula (7)]: the formula there has 〈X, Y〉 instead of 〈Xj, Yj〉.
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Let Zk ∈ mk be arbitrary, and assume that (m, [·, ·]m) is nilpotent. It follows

that both operators adm(Zk) and adm(Zk)|mk are nilpotent, and so both β(Zk, Zk)

and βk(Zk, Zk) vanish. In particular, (2.12) leads to tr
[
(π⊥k ◦ adm(Zk)|m⊥k )

2
]
= 0.

Together with (2.11), this implies that π⊥k ◦ adm(Zk)|m⊥k = 0.

Now, assume instead that (m, [·, ·]m) is split-solvable. By [12, Corollary 1.30],

whose ‘necessity’ implication does not rely on the Jacobi identity, the characteristic

roots of each adm(Zk), for Zk ∈ mk, are real. Combined with (2.11), it follows that

π⊥k ◦ adm(Zk)|m⊥k = 0 yet again. �

3. Codazzi tensors versus difference curvatures

In this section, we continue to work with a homogeneous space G/H equipped

with a reductive decomposition g = h⊕m, G-invariant Riemannian metric 〈·, ·〉,
and Levi-Civita product α.

We will also need the canonical connection of second kind induced by given re-

ductive decomposition, that is, the affine connection ∇0 on G/H corresponding

under (1.4)–(1.5) to the zero product in m. By (1.7-ii), the curvature tensor R0 of∇0

is given simply by R0(X, Y)Z = −[[X, Y]h, Z], for all X, Y, Z ∈ m. It follows from

the Jacobi identity

∑
cyc

[[X, Y]h, Z] + ∑
cyc

[[X, Y]m, Z]m = 0, X, Y, Z ∈ m,

and Ad(H)-invariance of 〈·, ·〉 that:

i) (m, [·, ·]m) is a Lie algebra if and only if R0 satisfies the Bianchi identity,

ii) the expression 〈R0(X, Y)Z, W〉 is skew-symmetric in the pair (Z, W).

The Ricci tensor Ric0 of ∇0 is defined by Ric0(Y, Z) = tr(X 7→ R0(X, Y)Z),

with no reference to the metric 〈·, ·〉, and it is only guaranteed to be symmetric if

R0 satisfies the Bianchi identity. We also consider the sectional and scalar curvature

functions K0 and s0 associated with ∇0 and 〈·, ·〉: for any plane Π ⊆ m we let

K0(Π) = 〈R0(X, Y)Y, X〉, where {X, Y} is any orthonormal basis for Π (with its

choice being immaterial due to (ii) above), and s0 = tr〈·,·〉 Ric0.

The results in this section are most conveniently stated and proved in terms of

(3.1)
the difference curvature tensor Rd = R − R0 and the corresponding

notions of sectional, Ricci, and scalar curvatures: they are respec-

tively defined by Kd = K− K0 , Ricd = Ric−Ric0 , and sd = s− s0.

As setup for the next result, observe that whenever A is a G-invariant Codazzi

tensor field on G/H and m is decomposed as in (2.2), an equivalent formulation to
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(2.9) is

(3.2) α(Xi, Yj) =
r

∑
k=1

λi − λk
λi − λj

[Xi, Yj]k, i 6= j.

Applying (3.2) to separately compute each term in the curvature relation (1.7-ii)

for (X, Y, Z) = (Xi, Yj, Yj), with i 6= j, we obtain
〈
α(Xi, α(Yj, Yj)), Xi

〉
= 0 and

(3.3)
〈
α(Yj, α(Xi, Yj)), Xi

〉
=
〈
α([Xi, Yj]m, Yj), Xi

〉
=

r

∑
k=1
k 6=j

λk − λi
λj − λk

〈
[Yj, [Xi, Yj]k]i, Xi

〉
.

Choosing Z = [Xi, Yj]k and switching the roles of X and Y in (2.3) leads to

−(λj − λk)
2‖[Xi, Yj]k‖2 + (λj − λi)

2〈[Yj, [Xi, Yj]k]i, Xi
〉
= 0

which, when combined with (3.3), implies that

(3.4)
〈

Rd(Xi, Yj)Yj, Xi
〉
=

2
(λi − λj)2

r

∑
k=1
k 6=j

(λi − λk)(λj − λk)‖[Xi, Yj]k‖2.

We are ready to generalize [6, Proposition 3]:

PROPOSITION 3.1. If G/H has a G-invariant Codazzi tensor field A with∇A 6= 0,

the difference sectional curvature Kd assumes both positive and negative values.

PROOF. We claim that

(3.5)

there is a smallest integer 2 ≤ ρ ≤ r− 1, as well as

integers 1 ≤ µ < ν ≤ r, such that (a) m1⊕ · · · ⊕mρ

and (b) mµ⊕mν are not subalgebras of (m, [·, ·]m).

If either (3.5-a) or (3.5-b) fails to hold, then 〈[Xi, Yj]m, Zk〉 = 0 whenever i, j, k are

mutually distinct, so that ∇A = 0 by Proposition 2.1. Indeed, if (a) fails then

〈[Xi, Yj]m, Zk〉 = 0 whenever k > max{i, j} as [mi,mj]m ⊆ m1 ⊕ · · · ⊕ mmax{i,j}
is orthogonal to mk, and we may apply (2.3). If (b) fails instead, then again

[mi,mj]m ⊆ mi ⊕mj is orthogonal to mk whenever i, j, k are mutually distinct. This

proves (3.5).

For ρ as in (3.5-a), minimality of ρ implies that [mi,mj]ρ = 0 whenever i, j < ρ,

and so [mi,mρ]j = 0 for distinct i, j < ρ by (2.3) with k = ρ. Hence, (2.2) and (3.4)

yield

Kd(Π) =
2

(λi − λρ)2

r

∑
k=ρ+1

(λi − λk)(λρ − λk)‖[Xi, Yρ]k‖2 > 0

for Π = RXi ⊕RYρ with i < ρ, ‖Xi‖ = ‖Yρ‖ = 1, and [Xi, Yρ]m 6= 0.

Lastly, for µ, ν as in (3.5-b) chosen so that the difference ν− µ is maximal, we

have that mi ⊕mj is a subalgebra of (m, [·, ·]m) for 1 ≤ i ≤ µ < ν ≤ j ≤ r, provided

that i 6= µ or j 6= ν. This implies that [mk,mµ]ν = [mν,mk]µ = 0 whenever k < µ
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or k > ν, and thus [mµ,mν]k = 0 by (2.3) with (µ, ν) = (i, j). Choosing unit vectors

Xµ and Yν with [Xµ, Yν]` 6= 0, for some ` 6= µ, ν, it follows from (2.2) and (3.4) that

Kd(Π) =
2

(λµ − λν)2

ν

∑
k=µ

(λµ − λk)(λν − λk)‖[Xµ, Yν]k‖2 < 0

for Π = RXµ ⊕RYν, as required. �

EXAMPLE 3.2. Recall that a homogeneous space G/H with a G-invariant Rie-

mannian metric 〈·, ·〉 is called naturally reductive if it admits a reductive decompo-

sition g = h⊕m with the additional property that 〈[X, Y]m, Z〉+ 〈Y, [X, Z]m〉 = 0,

for all X, Y, Z ∈ m. Rearranging the formula in [2, Proposition 5.7] we see that, in

this case, Kd(Π) = ‖[X, Y]m‖2/4 ≥ 0, where {X, Y} is any orthonormal basis for

Π. By Proposition 3.1, every G-invariant Codazzi tensor field on such a naturally

reductive homogeneous space is necessarily parallel.

For the next result, which generalizes [6, Proposition 4], we let Mi be the

leaf passing through eH of the eigendistribution of A associated with λi, so that

TeH Mi = mi. Each Mi is a totally geodesic submanifold of G/H equipped either

with the Levi-Civita connection of 〈·, ·〉 (by Proposition 2.1), or with the canonical

connection ∇0. This allows us to consider the difference Ricci and scalar curva-

tures Ricd
i and sd

i in (3.1) for each Mi. More precisely, given Yi, Zi ∈ mi, the endo-

morphism X 7→ Rd(X, Yi)Zi of m restricts to an endomorphism of mi, whose trace

is Ricd
i (Yi, Zi). Then, the trace of Ricd

i computed with 〈·, ·〉|mi×mi is sd
i .

PROPOSITION 3.3. If G/H has a G-invariant Codazzi tensor field, then:

i) Ricd(Yj, Yj) ≤ Ricd
j (Yj, Yj) for j ∈ {1, r} and all Y ∈ m.

ii) sd
1 + · · ·+ sd

r = sd.

PROOF. First, observe that the cyclic identity

(λi − λk)(λj − λk)

(λi − λj)2 〈[Xi, Yj]m, Zk〉2 +
(λj − λi)(λk − λi)

(λj − λk)2 〈[Yj, Zk]m, Xi〉2+

+
(λk − λj)(λi − λj)

(λk − λi)2 〈[Zk, Xi]m, Yj〉2 = 0

(3.6)

holds for all X, Y, Z ∈ m whenever i, j and k are mutually distinct, as a direct

consequence of (2.8). Now, writing di = dimmi and letting {Ei,a}
di
a=1 be an or-

thonormal basis for mi, for each i = 1, . . . , r, it follows from the definition of Ricd
j

and (3.4) that

(3.7) Ricd(Yj) = Ricd
j (Yj) + 2

r

∑
i=1
i 6=j

di

∑
a=1

r

∑
k=1
k 6=j

dk

∑
b=1

(λi − λk)(λj − λk)

(λi − λj)2 〈[Ei,a, Yj]m, Ek,b〉2
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for every Yj ∈ mj. Here, we write Ricd(Yj) as a shorthand for Ricd(Yj, Yj), and

similarly for Ricd
j . The summand in the right side of (3.7) vanishes when k = i

and, relabeling dummy indices (i, a) � (k, b) in one of the two copies of such

summation, we see that (3.6) leads to

(3.8) Ricd(Yj) = Ricd
j (Yj)−

r

∑
i=1
i 6=j

di

∑
a=1

r

∑
k=1
k 6=j

dk

∑
b=1

(λk − λj)(λi − λj)

(λk − λi)2 〈[Ek,b, Ei,a]m, Yj〉2.

Using (2.2) and the fact that (λk−λj)(λi−λj) is a product of positive (or, negative)

factors when j = 1 (or, j = r) for all i and k, (i) follows. Finally, setting Yj = Ej,c in

(3.8) and summing over 1 ≤ c ≤ dj and 1 ≤ j ≤ r, we conclude that (ii) holds: the

difference sd
1 + · · ·+ sd

r − sd equals the sum over mutually distinct indices i, j, k of

terms appearing in (3.6), and therefore it must vanish.

�

A last consequence of Proposition 3.3 is the counterpart to [6, Proposition 5]:

COROLLARY 3.4. Suppose that Ricd itself is a Codazzi tensor field on G/H, with

∇Ricd 6= 0. If sd
i ≥ 0 for 1 ≤ i ≤ r− 1, then sd

r 6= 0. In particular, not all eigenspaces of

Ricd can be Abelian subalgebras of (m, [·, ·]m).

PROOF. Item (i) of Proposition 3.3 for A = Ricd reads Ricd(Yr, Yr) ≥ λr for all

unit vectors Yr ∈ mr, so averaging over an orthonormal basis yields sd
r /dr ≥ λr.

If it were to be sd
r = 0, (2.2) would imply that λ1 < · · · < λr ≤ 0, and hence

sd = d1λ1 + · · ·+ drλr < 0. However, it is clear from sd
i ≥ 0, for 1 ≤ i ≤ r − 1,

and item (ii) of Proposition 3.3, that sd ≥ 0. The last claim now follows as Rd
i = 0

(and thus sd
i = 0) whenever mi is Abelian, as α|mi×mi = 0 in view of (1.9) and

Proposition 2.1. �
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