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1 January 11th

In this class we will deal with several variables (where “several” will usually be two
or three), such as

f (x, y) = x2 + y, f (x, y, z) = xey + sin z, f (x, y, z, w) = exyz2 cos w,

as opposed to the functions f (x) of a single variable studied in previous classes. The
main program then was to find the critical points of a given function and study their
local nature (that is, whether they’re local maxima, local minima, or saddle/inflection
points). The main tools to do so, in turn, were derivatives. For functions of several
variables, we have partial derivatives

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

,
∂ f
∂w

, ...

These are computed from the usual rules from single-variable calculus (product rule,
quotient rule, chain rule), by freezing (hence treating as constants) all the variables
except for the one on which the differentiation process is acting.

The mantra repeated throughout the first semester of calculus was “the derivative
is the slope of the tangent line”. If we’re dealing with a function of, say, two variables
instead, the picture goes like this: the graph of f is a surface on three-dimensional
space (henceforth denoted by R3), and the numerical value f (x, y) is understood as
the height of a point whose first two coordinates are x and y. Fix a vector v on the
plane (to be called R2 from now on), starting at the point (x, y), and draw a vertical
plane Π passing through the point (x, y) and containing the direction determined by
v. The plane Π intersects the surface z = f (x, y) along a curve, completely contained
in Π, which may be thought of the graph of a function (more precisely, given by the
relation g(t) = f ((x, y) + tv)). The derivative g′(0) is the slope of the tangent line to
the intersection curve, in the plane Π, and it is called the directional derivative of f in the
direction v, at the point (x, y), and it is denoted by (∂ f /∂v)(x, y).

Instead of thinking about directional derivatives along infinitely many directions,
we recall the relation

∂ f
∂v

(x, y) = ∇ f (x, y) · v,

where · stands for the dot product of vectors, and ∇ f (x, y) is the gradient of f at the
point (x, y). More generally:

Definition 1

Let f be a differentiable function of the variables x1, . . . , xn. The gradient of f is
the vector (field) ∇ f defined by

∇ f =

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
.

The gradient is a mathematical device to gather all information about the first-order
derivatives of a function, into a single object: namely, a vector. Knowledge of the
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gradient is indeed knowledge about all directional derivatives of the function, due to
the dot product relation (which remains true in all dimensions).

Recall that, in single-variable calculus, a number a is a critical point of a function f
if f ′(a) = 0. Picturing the graph of f , this condition is to be expected, as the tangent
line to the graph of f at the candidates to local max/min is horizontal, the derivative
is the slope of the tangent line, and the slope of a horizontal line is zero.

With this in place:

Definition 2

Let f be a differentiable function of the variables x1, . . . , xn. Then (a1, . . . , an) is a
critical point of f if ∇ f (a1, . . . , an) = (0, . . . , 0).

In other words, a critical point is one for which the gradient vector is the zero
vector. In two variables, a point (a, b) is a critical point of f if∇ f (a, b) = (0, 0). Mean-
ing that we replace the single equation f ′(a) = 0 with the more elaborate system
∇ f (a1, . . . , an) = (0, . . . , 0) (one equation for each variable). Or yet, such system is ob-
tained by setting all the partial derivatives of f equal to zero (which by the dot product
relation is the same as requiring all directional derivatives to be zero).

Example 1

Find the critical points of the function f (x, y) = 1 + x2 + y2.
The graph of this function is called a paraboloid, and it is obtained by rotating

the parabola y = 1 + x2 around the z-axis. Geometrically, it should be clear that
there is only one critical point, (0, 0), and that is is a global minimum for the
function. Sometimes it is not so simple to get the answer so quickly by using
geometric intuition. Doing it directly, we compute that ∇ f (x, y) = (2x, 2y), and
this equals (0, 0) if and only if (x, y) = (0, 0). Observe that the (0, 0)’s indicated in
different colors play different roles!

Example 2

Find the critical points of the function f (x, y) = (3x− 2)2 + (y− 4)2.
The graph of this function is very similar to the one in the previous example.

This can be made clearer by letting u = 3x − 2 and v = y − 4, so that (abusing
notation) f (u, v) = u2 + v2. This means that the graph of the function considered
here is a paraboloid, up to this change of variables (which amounts to an offset and
a stretching of the x-axis). Geometrically, we see that the critical point is described
by u = v = 0, which means that x = 2/3 and y = 4. Thus there is only one critical
point (2/3, 4), which is a global minimum for the function. Changing variables
like this will be useful not only to try and gain geometric intuition for situations
like this (where what you have in front of you is similar to something you have
already seen before, but not quite equal to it), but it will also be a very important
tool when dealing with change of variables for computing double integrals.
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Doing it directly, however, we have that ∇ f (x, y) = (6(3x− 2), 2(y− 4)), and
this equals (0, 0) if and only if (x, y) = (2/3, 4). Compare the choice of colors here
with the one made in the previous example.

Example 3

Functions may not have critical points at all! Consider f (x, y, z) = g(x, y) + z, where
g(x, y) is the most horrible expression you can come up with. Then we have that
∇ f = (∗, ∗, 1). As the last component of ∇ f is never zero, then ∇ f can never be
the zero vector, and so f has no critical points.

Once critical points have been found, the next task is to decide their nature, i.e.,
whether they are local max/min or saddle/inflection points. In the situation where
we had a critical point a of a function f of a single-variable, we knew that:

• If f ′′(a) > 0, then a is a local minimum (
· ·
^)

• If f ′′(a) < 0, then a is a local maximum (
· ·
_)

• If f ′′(a) = 0, the test is inconclusive1.

Let’s focus on the case where f is a function of two variables instead. The first
derivative became the gradient vector. The second derivative must correspond to what
comes after a vector: a matrix.

Definition 3

Let f be a twice-differentiable function of the variables x and y. The Hessian
matrix of f is defined by

H =

(
fxx fxy
fyx fyy

)
,

where we use the shorthands

fxx =
∂2 f
∂x2 , fxy = fyx =

∂2 f
∂x∂y

=
∂2 f

∂y∂x
, fyy =

∂2 f
∂y2 .

We also let D = fxx fyy − f 2
xy be the determinant of H.

1A very common mistake is to think that f ′′(a) = 0 means that a is a saddle/inflection point. This is
not true. Case in point: f (x) = x4 and a = 0 ( f (0) = f ′(0) = f ′′(0) = f ′′′(0) = 0 but f (4)(0) > 0 and a
is a global minimum). If f ′′(a) = 0 but f ′′′(a) 6= 0, then a is a saddle point. If f ′′′(a) = 0, then we must
look at the fourth derivative f (4)(a): if positive, then a is a local minimum, and if negative, a is a local
maximum. If f (4)(a) = 0, we must look at the fifth derivative. If f (5)(a) 6= 0, then a is a saddle point.
If f (5)(a) = 0, we must look at the sixth derivative f (6)(a): if positive, then a is a local minimum, and
if negative, a is a local maximum. This procedure repeats, alternating between even-order derivatives
and odd-order derivatives, until a conclusion is obtained. The “proof” of this fact relies on the Taylor
polynomial of f . More about this on office hours if anyone is interested.
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Observe that the expression given for D already takes into account the equality
fxy = fyx, which in words says that taking the derivative with respect to x first, and
then y, produces the same result as doing things in the reverse order, namely, differ-
entiating with respect to y first, and then x. This is sometimes called the Clairaut-
Schwarz theorem2. Another observation which may be very useful for computing
Hessians quickly is that, writing∇ f = ( fx, fy), the first row of H is the gradient of the
first component fx, while the second row of H is the gradient of the second component
fy.

With this in place, we have the second derivative test for functions of two variables:

Theorem 1

Let f be a twice-differentiable function of the variables x and y, and let (a, b) be a
critical point of f . Then:

• If D(a, b) > 0 and fxx(a, b) > 0, then (a, b) is a local minimum.

• If D(a, b) > 0 and fxx(a, b) < 0, then (a, b) is a local minimum.

• If D(a, b) < 0, then (a, b) is a saddle point.

• If D(a, b) = 0, the test is inconclusive.

Remark.

• The second item may have been stated with the condition fyy(a, b) < 0 instead of
fxx(a, b) < 0. Both are correct; their equivalence is seen by applying one version
of the criterion to the function f (y, x) with the order of variables switched, noting
that the off-diagonal elements of H, as well as D, remain both unchanged.

• There is a version of the second derivative test for functions with more than
two variables. The number of conditions to be considered increases with the
number of variables. Justifying it requires more Linear Algebra than what we
have available now. The keyword is “Sylvester’s Criterion” (for positivity of
matrices).

Example 4

Find the critical points of the function f (x, y) = 4 + 2x2 + 3y2 and classify them.
Before anything else, convince yourself with geometric intutition (based on

previous examples) that (0, 0) is the only critical point, and that it is a global min-
imum. Now let’s propely solve it. First, note that ∇ f (x, y) = (4x, 6y), and this
equals (0, 0) if and only if (x, y) = (0, 0). Next, we have that

H(x, y) =
(

4 0
0 6

)
=⇒ H(0, 0) =

(
4 0
0 6

)
.

2Whose formal assumption is that f is twice-differentiable and all the second order derivatives are
continuous (or, more generally, defined on all points of an open set).
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Hence D(0, 0) = 24 > 0 and fxx(0, 0) = 4 > 0 together say that (0, 0) is a local
minimum of f . A local minimum, when the unique critical point, is automatically
a global minimum.

It is important to note that the implication arrow indicated in red, while it
might seem like a completely unnecessary step, is crucial: dealing with more com-
plicated functions, it is perfectly possible (and expected!) that x and y will survive
in the expression for H(x, y). In other words, H(x, y) should not be expected to be
a constant matrix. The Hessian matrix only gives you relevant information when
evaluated at a critical point. When evaluated at other random points, it gives you
no relevant information whatsoever. Plugging (x, y) = (0, 0) is an important step
which should not be forgotten or taken for granted.

Example 5

Find the critical points of the function f (x, y) = −4x2 + 8y2 − 3 and classify them.
Compute ∇ f (x, y) = (−8x, 16y). Setting ∇ f (x, y) = (0, 0) immediately gives

that (x, y) = (0, 0), and this is the unique critical point. Then we have that

H(x, y) =
(
−8 0
0 16

)
=⇒ H(0, 0) =

(
−8 0
0 16

)
,

so D(0, 0) < 0 says that (0, 0) is a saddle point.
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2 January 18th

We continue with the discussion on maxima and minima of functions of two vari-
ables. Most of the time, the region R to be considered will be closed and bounded
(those are called “compact”, in short), and so may be thought of as having two regions:
an interior int(R), and a boundary ∂R. Candidates to global max/min in int(R) are
nothing more than the critical points of f which turn out to land there. Observe that
the second derivative test is only good for determining the local behavior of critical
points, not the global one. So, in the end of the day, one must still list all candidates
and compute the value of the function on each of them.

The question still remains of how to study the boundary ∂R. Very frequently, it
may be described as an equation of the form g(x, y) = 0, where g is nice enough. In
this case, we have a specific technique to use:

Theorem 2 (Lagrange multipliers)

Let f and g be differentiable functions of the variables x1, . . . , xn, with continuous
partial derivatives. Assume that ∇g(x1, . . . , xn) is not the zero vector whenever
g(x1, . . . , xn) = 0. If (a1, . . . , an) is the global maximum or minimum of f restricted
to the set {(x1, . . . , xn) | g(x1, . . . , xn) = 0}, there is a real number λ such that

∇ f (a1, . . . , an) = λ∇g(a1, . . . , an),

i.e., the gradients of f and g are proportional in such point.

Back to the problem at hand, the strategy will be to solve the system{
∇ f (x, y) = λ∇g(x, y),
g(x, y) = 0.

The condition g(x, y) = 0 there is a crucial part of the problem, and it is always used in
practice. Without it, one could find points not on the given curve for which the gradients
of f and g are proportional, but we do not care about those. On the other hand, know-
ing the value of the Lagrange multiplier λ is not crucial. Sometimes it is convenient to
solve for it as an intermediate step in finding x and y. If one manages to find all the
candidates to max/min without solving for λ, there is nothing wrong.

Let’s see examples.

Example 6

Find the global maximum and global minimum values of the function

f (x, y) = x2 + y2 − 2y + 1

on the region R = {(x, y) | x2 + y2 ≤ 4}.
We’ll always organize our work in two parts. Observe that R describes a closed

disk with center in (0, 0) and radius 2.
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(a) Candidates on int(R): the interior consists of the points (x, y) satisfying the
relation x2 + y2 < 4. By replacing the inequality ≤ with the strict inequality
<, we are forgetting about the boundary circle and considering only the open
disk bounded by it. We compute the gradient of f as ∇ f (x, y) = (2x, 2y− 2).
Setting this equal to (0, 0), we obtain (x, y) = (0, 1). Is the point (0, 1) in
the interior of R? Yes. The reason why we ask ourselves this is because f is
defined everywhere (in particular, its domain is larger than R), so a priori it
could be that critical points found here lie outside R. If this were to happen,
such critical points would have to be ignored.

(b) Candidates on ∂R: we use Lagrange multipliers, letting g(x, y) = x2 + y2 − 4.
In this case, ∇g(x, y) = (2x, 2y) cannot be the zero vector whenever we have
x2 + y2 = 4, which means that the assumptions for using Lagrange multipliers
are satisfied. Thus, we have that

{
∇ f (x, y) = λg(x, y)
g(x, y) = 0

=⇒


2x = 2λx
2y− 2 = 2λy
x2 + y2 = 4

Consider the first equation 2x = 2λx. We would like to cancel x on both sides,
but this step cannot be made if x = 0. Thus, we have cases to analyze.

• Case 1: if x 6= 0. Then λ = 1, and substituting this onto the second
equation gives 2y− 2 = 2y, and thus −2 = 0. This is clearly nonsense,
which says that Case 1 does not happen, and so we get no candidates
here.

• Case 2: if x = 0. In this case, we only have to solve for y, and then the
third equation reads 02 + y2 = 4, so that y = 2 or y = −2. This case gave
us two candidates, (0, 2) and (0,−2).

Conclusion:

Candidates Values

(0, 1) 0

(0, 2) 1

(0,−2) 9

Hence the global maximum is 9, realized at (0,−2), while the global minimum
is 0, realized at (0, 1).

Remark. Sometimes, we can avoid Lagrange multipliers. For example, to analyze the
boundary in the previous problem, we could consider r(t) = (2 cos t, 2 sin t), defined
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for all t (in fact, 0 ≤ t ≤ 2π covers the circle). Then f (r(t)) = 5− 4 sin t. The maximum
value of this expression is 9, for t = 3π/2, and we have r(3π/2) = (0,−2). The
minimum along the curve is 1, for t = π/2, with r(π/2) = (0, 2), but this is not the
global minimum of f (because the critical point in int(R) gives a lower value).

Example 7

Find the global maximum and global minimum values of the function

f (x, y) = 2x2 − 4x + 3y2 + 2

on the region R = {(x, y) | (x− 1)2 + y2 ≤ 1}.
Note that R is a closed disk with center at (1, 0) and radius 2.

(a) Candidates on int(R): the interior consists of the points (x, y) satisfying the
relation (x− 1)2 + y2 < 1. The gradient of f is∇ f (x, y) = (4x− 4, 6y). Setting
this equal to (0, 0), we obtain (x, y) = (1, 0). Is the point (1, 0) in the interior
of R? Yes (it’s the center of the disk).

(b) Candidates on ∂R: we’ll use Lagrange multipliers again, this time letting
g(x, y) = (x − 1)2 + y2 − 1. In this case, ∇g(x, y) = (2(x − 1), 2y) cannot
be the zero vector whenever we have (x− 1)2 + y2 = 1, which means that the
assumptions for using Lagrange multipliers are satisfied. Thus, we have that

{
∇ f (x, y) = λg(x, y)
g(x, y) = 0

=⇒


4x− 4 = 2λ(x− 1)
6y = 2λy
(x− 1)2 + y2 = 1

Consider the second equation 6y = 2λy. We would like to cancel y on both
sides, but this step cannot be made if y = 0. Thus, we have cases to analyze.

• Case 1: if y 6= 0. Then λ = 3, and substituting this onto the first equation
gives 4x− 4 = 6(x− 1), from which we obtain x = 1. With this, the third
equation reads (1− 1)2 + y2 = 1, so y = 1 or y = −1. This case gave us
two candidates (1, 1) and (1,−1).

• Case 2: if y = 0. In this case, we only have to solve for x, and then the
third equation reads (x − 1)2 + 02 = 1, so that x − 1 = ±1 and hence
x = 0 or x = 2. This case gave us two candidates, (2, 0) and (−2, 0).

Let’s organize everything we have obtained so far in a table again:
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Candidates Values

(1, 0) 0

(2, 0) 2

(0, 0) 2

(1, 1) 3

(1,−1) 3

Hence, the global maximum is 3, realized at (1, 1) and (1,−1), while the global
minimum is 0, realized at (1, 0). It is ok that the global maximum was reached in
more than one point (think of the extreme example where f is constant).

Example 8

Find the global maximum and global minimum values of the function

f (x, y) = x2 + y2 − 2x− 2y

on the region R bounded by the triangle of vertices at (0, 0), (2, 0) and (0, 2).
The boundary ∂R has three sides:

A = {(0, y) | 0 ≤ y ≤ 2}
B = {(x, 0) | 0 ≤ x ≤ 2}
C = {(x, y) | y = −x + 2 and 0 ≤ x ≤ 2}

We proceed with our analysis as before:

(a) Candidates on int(R): this time we have∇ f (x, y) = (2x− 2, 2y− 2), so setting
this equal to (0, 0) gives (x, y) = (1, 1). Is the point (1, 1) in the interior of R?
No. In fact, (1, 1) lies on side C, and so it is not considered a candidate as far
as int(R) is concerned.

(b) Candidates on ∂R: we’ll study each of the sides A, B and C separately.

• Side A: evaluating f alongside Side A, we’re led to consider the com-
position g(y) = f (0, y) = y2 − 2y, defined on the interval [0, 2]. The
candidates here will be the points corresponding to the endpoints of the
interval [0, 2], and critical points of g inside the open interval ]0, 2[. The
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graph of g is a parabola which is concave up, and so g′(y) = 2y− 2 leads
to y = 1. Side A thus gives us the candidates (0, 0), (0, 2) and (0, 1).

• Side B: the function f satisfies the symmetry f (x, y) = f (y, x), and Side
B is obtained from Side A by replacing the roles of x and y. We obtain,
without calculations, the candidates (0, 0) (repeated), (2, 0) and (1, 0).

• Side C: evaluating f alongside Side C, we’re led to consider the compo-
sition h(x) = f (x,−x + 2) = 2x(x− 2) (after simplifying it), defined on
[0, 2]. As before the endpoints of [0, 2] gives us the candidates (2, 0) and
(0, 2) (both repeated), and h′(x) = 0 yields x = 1, meaning that (1, 1)
is the last candidate (previously ignored on the discussion about int(R),
but now included for the right reasons).

Summarizing it:

Candidates Values

(0, 0) 0

(2, 0) 0

(0, 2) 0

(0, 1) −1

(1, 0) −1

(1, 1) −2

Hence, the global maximum is 0, realized at (0, 0), (2, 0) and (0, 2), while the
global minimum is −2, realized at (1, 1).

We also observe that defining L(x, y, λ) = f (x, y) − λg(x, y) (here, we think of
“applying g as a penalty to f ”; L is called the Lagrangian function for the optimization
problem), the condition ∇L(x, y, λ) = (0, 0, 0) is equivalent to the system{

∇ f (x, y) = λ∇g(x, y),
g(x, y) = 0.

we have been working with so far. This is just an alternative way to think about it
(which may help you not forget how important g(x, y) = 0 is). However, do not try
to apply the second derivative test to L as a shortcut to decide whether the candi-
dates you have found are global maxima or minima (again, the second derivative test
regards only the local nature of critical points on the interior of the considered region).
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3 January 25th

First, let’s go over the most challenging problem on HW1.

Exercise

Find the critical points of the function f (x, y) = ex2y2−2xy2+y2
.

We compute the gradient of f as

∇ f (x, y) =
(
(2xy2 − 2y2)ex2y2−2xy2+y2

, (2x2y− 4xy + 2y)ex2y2−2xy2+y2
)

.

Since ex2y2−2xy2+y2 6= 0 no matter the values of x and y, the critical point condition
∇ f (x, y) = (0, 0) is equivalent to the system{

2xy2 − 2y2 = 0
2x2y− 4xy + 2y = 0.

The first equation can be factored as 2(x − 1)y2 = 0. Again, we know that if a
product of two factors equals zero, then at least one of the factors must be zero,
but we don’t know which one. Therefore we must analyze cases.

• Case 1: x − 1 = 0. Then x = 1. Substituting this into the second equation
of the system gives 2y− 4y + 2y = 0, which is always satisfied. This means
that for each real number y, the point (1, y) is a critical point of f .

• Case 2: y = 0. Substituting this into the second equation gives 0− 0+ 0 = 0,
which is always satisfied. This means that for each real number x, the point
(x, 0) is a critical point of f .

Conclusion: the set of critical points of f is the union of the lines in the plane
whose equations are x = 1 and y = 0.

Now, we move on to double integrals. The main difficulty here is to deal with
bounds of integration when setting up iterated integrals.

Example 9

Compute
x

R

x sec2(xy)dA, where R = {(x, y) | 0 ≤ x ≤ π/3 and 0 ≤ y ≤ 1}.

Here, dA stands for the infinitesimal area element, which in rectangular co-
ordinates is just given by dA = dx dy. The region R is simply a rectangle, as the
bounds for x and y are all constants. Do not be mislead to think that R is a sector of
a circle just because there’s π there: R is not being described in polar coordinates,
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there’s no θ anywhere. One could set up the iterated integrals as∫ 1

0

∫ π/3

0
x sec2(xy)dx dy or

∫ π/3

0

∫ 1

0
x sec2(xy)dy dx.

Fubini’s Theorem says that the order you choose does not matter, you will obtain
the same result regardless of the choice made. Now, it could very well happen
that one choice of order leads to a much easier computation than the other. In this
case, the first option would require an unpleasant integration by parts, while the
second one requires a simple u-substitution. Making u = xy, so du = x dy (as x is
a constant from the perspective of y), we have that∫

x sec2(xy)dy =
∫

sec2 u du = tan u = tan(xy).

We don’t bother with the constant of integration here because we’re dealing with
definite integrals, so it would dissapear anyway. Thus

∫ π/3

0

∫ 1

0
x sec2(xy)dy dx =

∫ π/3

0
tan(xy)

∣∣∣∣y=1

y=0
dx

=
∫ π/3

0
tan x dx

= ln | sec x|
∣∣∣∣π/3

0

= ln 2− ln 0
= ln 2.

Next, let’s look at more general regions which are not rectangles.

Example 10

Set up iterated integrals for a generic continuous function f (x, y) over the region R given
in the picture.

As usual, there are two orders we can set up.

• dx dy. Fix one value of the outermost variable, y. What is the range for
the other variable x, as the horizontal line passing through y cuts the given
region, from left to right? Here, we must express x as a function of y, so
there’s some small work to be done. The lower bound for x is x = y/4,
coming from the line equation, and the upper bound is x = 3

√
y, from the

cubic equation. The variable y, in turn, goes from 0 to 8. Thus

x

R

f (x, y)dA =
∫ 8

0

∫ 3√y

y/4
f (x, y)dx dy.
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• dy dx. Fix one value of the outermost variable, x. What is the range for the
other variable y, as the vertical line passing through x cuts the given region,
upwards? Here, we must express y as a function of x, so there no work to
be done. The lower bound for y is x3, coming from the cubic equation, and
the upper bound is 4x, from the line equation. The variable x, in turn, goes
from 0 to 2. Thus

x

R

f (x, y)dA =
∫ 2

0

∫ 4x

x3
f (x, y)dy dx.

Here’s another one:

Example 11

Set up iterated integrals for a generic continuous function f (x, y) over the region R given
in the picture.

One more time, there are two orders we can set up. The exercise did not give
us the coordinates for the left intersection point between the graphs, but we need
it to know the full bounds for x. To find it, we consider 2x2 = 2x + 24, which is
readily simplified to x2 − x− 12 = 0. We already know that one of the solutions
is x = 4. Due to the coefficient 12, the other one is −3 or 3, but it clearly cannot be
the latter. Hence, the coordinates of the remaining intersection point are (−3, 18)
(where 18 is obtained by plugging x = −3 into either y = 2x2 or y = 2x + 24).
Now, let’s study what happens with both orders of integration:

• dy dx: Fix one value of the outermost variable, x. What is the range for the
other variable y, as the vertical line passing through x cuts the given region,
upwards? Here, we must express y as a function of x, so there no work to
be done. The lower bound for y is 2x2, coming from the quadratic equation,
and the upper bound is 2x + 24, from the line equation. The variable x, in
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turn, goes from −3 to 4. Thus

x

R

f (x, y)dA =
∫ 4

−3

∫ 2x+24

2x2
f (x, y)dy dx.

• dx dy: This time, we’re forced to break the region into two pieces, as once a
value for the outermost variable y is fixed, the lower bound for x cannot be
written as a single formula as a function of y, due to the “break” at the point
(−3, 18). We know that if R = R1 ∪ R2 with R1 ∩ R2 = ∅, then the double
integral of f over R equals the suma of the double integrals over R1 and R2.
Let’s say that R1 is the part of R which lies inside the strip 0 ≤ y ≤ 18, and
R2 is the one inside the strip 18 < y ≤ 32.

Then we have that
x

R

f (x, y)dA =
x

R1

f (x, y)dA +
x

R2

f (x, y)dA

=
∫ 18

0

∫ √y/2

−
√

y/2
f (x, y)dx dy +

∫ 32

18

∫ √y/2

(y−24)/2
f (x, y)dx dy.

Namely, the “upper bound” for x, once y is fixed, is always
√

y/2, but the
lower bound depends on whether 0 ≤ y ≤ 18 or 18 < y ≤ 32: in the
former case, it is −

√
y/2, and in the latter case it is (y − 24)/2 (obtained

from solving for x in terms of y in y = 2x + 24).

aThis is a two-variable version of the general rule
∫ c

a f (t)dt +
∫ b

c f (t)dt =
∫ b

a f (t)dt for single-
variable integrals.

By now, you should be convinced that a convenient choice of order of integration
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is crucial to making things simpler (getting the feeling for which choice is best takes
some practice and experience). There are situations, however, where one choice simply
makes the problem impossible, and we’re forced to switch the order.

Example 12

Compute
∫ 1

0

∫ 1

y
ex2

dx dy.

The function f (x) = ex2
has no elementary anti-derivative, in the sense that

its indefinite integral cannot be expressed in terms of well-known functions (such
as polynomials, rational functions, exponentials, logarithms, and trigonometric
functions). Knowing whether a given function of a single-variable has an elemen-
tary anti-derivative or not is not a simple task (keywords: Risch’s Algorithm, and
Differential Galois Theory). We will not concern ourselves with this. The extra
tool we have in this case, is precisely to change the order of integration.

To draw the region of integration, one general strategy is: first recognize that
the outermost bounds for y are 0 and 1, so whatever we draw will be inside the
region where 0 ≤ y ≤ 1. As for the innermost bounds, draw the curves described
by the bounds, x = y and x = 1. Namely, they’re the usual diagonal, and a vertical
line.

If the innermost original bounds were from 0 to y, the region of integration
would be the upper triangle, as opposed to the lower one (as the picture indicates).
Now: ∫ 1

0

∫ 1

y
ex2

dx dy =
∫ 1

0

∫ x

0
ex2

dy dx

=
∫ 1

0
xex2

dx

=
ex2

2

∣∣∣∣1
0
=

e− 1
2

.
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The x factor produced by realizing the integral with respect to y first saves the
day.

Being able to sketch regions given algebraically is an important skill. Here’s more
practice:

Example 13

Sketch R = {(x, y) | 0 ≤ x ≤ 4 and x2 ≤ y ≤ 8
√

x} and set the iterated integral of a
generic continuous function f (x, y) over R in the order dy dx.

We immediately know that whatever we draw will remain inside the vertical
strip 0 ≤ x ≤ 4. As for x2 ≤ y ≤ 8

√
x, forget for one moment that we’re dealing

with inequalities, and draw the bounds y = x2 and y = 8
√

x instead. Recall that
the graph of

√
x is obtained by reflecting the graph of x2 about the diagonal line

y = x, and that 8 is just a vertical stretching factor (made by design to make (4, 16)
the rightmost intersection of the two curves).

Fixed x, the lower bound for y is x2 and the upper bound is 8
√

x. As x itself
ranges from 0 to 4, we simply have that

x

R

f (x, y)dA =
∫ 4

0

∫ 8
√

x

x2
f (x, y)dy dx.

While sketching the regions of integration is always helpful, it is also possible to
switch the order of integration without making any pictures (although I do not recom-
mend doing so).

Example 14

Reverse the order of integration in
∫ 1

0

∫ ey

1
f (x, y)dx dy.

Let’s do it algebraically, starting from 0 ≤ y ≤ 1 and 1 ≤ x ≤ ey, and rewriting
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them in an equivalent form which makes the bounds for x constant (as the region
of integration is not a rectangle, we will pay the price: the bounds for y will be
functions of x instead of constants as well).

Since y ≤ 1, we have ey ≤ e1 = e. So, we already have 1 ≤ x ≤ e. As for the
bounds for y, applying ln (which is an increasing function and thus preserves in-
equalities) to x ≤ ey, we obtain ln x ≤ y ≤ 1 (the latter inequality given initially).
Conclusion: ∫ 1

0

∫ ey

1
f (x, y)dx dy =

∫ e

1

∫ 1

ln x
f (x, y)dy dx.
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4 February 1st

Let’s start solving the most challenging problem from HW2, about Lagrange mul-
tipliers.

Exercise

Find the maximum and minimum values of f (x, y) = x2 + y2 along the curve described
by the equation 2x2 + 3xy + y2 = 7.

Observe that the given constraint curve is an ellipse centered at the origin and
that f is just the “squared distance to the origin”. Thus, from geometric considera-
tions, we already know that we’ll obtain two points realizing the global maximum
and two points realizing the global minimum (namely, the “vertices” of the el-
lipse. All the work to follow boils down to finding the coordinates of such points.
Also, the problem asks us to optimize f along the ellipse, so what happens on the
“interior” (i.e., on inside the region bounded by the ellipse) does not matter.

Let g(x, y) = 2x2 + 3xy + y2 − 7, and compute ∇g(x, y) = (4x + 3y, 3x + 4y).
This equals the zero vector only when x = y = 0, but (0, 0) does not lie on the
ellipse. So, we’re allowed to proceed with Lagrange multipliers. We set up the
Lagrange system:

{
∇ f (x, y) = λg(x, y)
g(x, y) = 0

=⇒


2x = λ(4x + 3y)
2y = λ(3x + 4y)
2x2 + 3xy + 2y2 = 7

There are several ways to attack this system, and no single correct way to do
it. We’ll exploit a certain symmetry and let nature do the rest of the job. Multiply
the first equation by y and the second one by x (so the both of the new left sides
become 2xy), to conclude that λy(4x + 3y) = λx(3x + 4y). The next thing we
want to do is to simplify λ on both sides, but this can only be done if λ 6= 0. If
we had λ = 0, the first two original equations give x = y = 0, but again (0, 0)
does not lie on the ellipse, so that this case is impossible. With the knowledge that
λ 6= 0, it now follows that (after distributing) 4xy + 3y2 = 3x2 + 4xy. Cancelling
4xy, we have that 3y2 = 3x2, so y = ±x.

• Case 1: y = x. In the third equation, we have 7x2 = 7, so x = ±1. This case
gave us two candidates, (1, 1) and (−1,−1).

• Case 2: y = −x. In the third equation, we have x2 = 7, so x = ±
√

7. This
case gave us two candidates, (

√
7,−
√

7) and (−
√

7,
√

7).

Let’s summarize everything in a table, as usual.
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Candidates Values

(1, 1) 2

(−1,−1) 2

(
√

7,−
√

7) 14

(−
√

7,
√

7) 14

Hence, the global minimum is 2, realized at (1, 1) and (−1,−1), while the
global maximum is 14, realized at (

√
7,−
√

7) and (−
√

7,
√

7).

Now, we move on to change of variables in multiple integrals. This is the multi-
variable version of the u-substitution, taking into account the region of integration
and all variables involved at the same time. The big idea is to find new coordinates
(u, v) and a transformation (x, y) = T(u, v) that makes the region R on the xy-plane
correspond to a simpler figure (hopefully a rectangle) on the uv-plane. There is more
to it, though: in the single-variable case, letting x = f (u), we had dx = f ′(u)du. Point
in case being that dx does not equal du, and we had a correction factor (namely, f ′(u)).
The same will happen on the multivariable case and again we must pay the price. We
may express the correct adjustment in two equivalent ways:

dx dy =

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv or du dv =

∣∣∣∣∂(u, v)
∂(x, y)

∣∣∣∣ dx dy,

where
∂(x, y)
∂(u, v)

= det
(

xu xv
yu yv

)
and

∂(u, v)
∂(x, y)

= det
(

ux uy
vx vy

)
,

with shorthand notation for partial derivatives. They are called the Jacobians of the
change of variables.

Example 15

Make sketches of S and R = T[S], where S = {(u, v) | 0 ≤ v ≤ 1− u and 0 ≤ u ≤ 1}
and T: x = u, y = v2.

Another way to describe T is by just writing (x, y) = T(u, v) = (u, v2). This
conveys the same information as the first way of writing it, and it is just a matter
of taste. To sketch S on the uv-plane, it suffices to draw the line v = 1− u (whose
slope is −1 and v-intercept is 1; hence the u-intercept is 1).
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With this in place, the general strategy to describe R goes as follows: since T
is a continuous function, it will take the boundary of S, which is a closed curve in
the uv-plane, to a closed curve on the xy-plane. The interior of S will be mapped
(due to continuity of T) to the interior of the region bounded by this image closed
curve on the xy-plane. What happens with each side?

• Side A: (x, y) = T(u, 0) = (u, 0), and 0 ≤ x ≤ 1 as u = x and 0 ≤ u ≤ 1.
This means that every point of side A is fixed by T.

• Side B: (x, y) = T(0, v) = (0, v2), and if v ranges from 0 to 1, so does v2. This
means that the image of side B under T equals again side B itself, but the
geometric difference between what happened with side A, is that all points
in the interior of side B actually got affected by T.

• Side C: (x, y) = T(u, 1− u) = (u, (1− u)2), so what does the graph of the
function y = (1− x)2, as x ranges from 0 to 1, look like? This is the image of
side C under T.

Hence, the region R on the xy-plane looks like:

Before proceeding, let’s register a useful shortcut (for specific situations):
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Lemma

Let f be a continuous function on the rectangle [a, b] × [c, d], and assume that
variables may be separated, i.e., that f (x, y) = g(x)h(y), where g is a continuous
function on [a, b] and h is a continuous function on [c, d]. Then

x

[a,b]×[c,d]

f (x, y)dA =

(∫ b

a
g(x)dx

)(∫ d

c
h(y)dy

)
.

In other words, when the region of integration is a rectangle and variables can
be separated on the integrand, the integral of a product equals the product of the
integrals.

Proof: Just compute

x

[a,b]×[c,d]

f (x, y)dA =
∫ b

a

∫ d

c
g(x)h(y)dy dx

=
∫ b

a
g(x)

(∫ d

c
h(y)dy

)
dx

=

(∫ b

a
g(x)dx

)(∫ d

c
h(y)dy

)
,

where in the first equalilty we used Fubini’s Theorem, on the second one we pulled
g(x) out of the inner integral relative to y, and on the third equal sign we pulled out
the number (and not function!)

∫ d
c h(y)dy out of the outer integral relative to x.

Let’s do one very complete example, emphasizing each step to be carried out.

Example 16

Compute the integral x

R

exy dA,

where R is the region in the first quadrant bounded by the hyperbolas y = 1/x and
y = 4/x, and the lines y = x and y = 3x.

• Step 1: sketch the region R. You just have to remember that the graph of
y = 1/x is a branch of a hyperbola and that the 4 in y = 4/x is just a
rescaling factor.
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• Step 2: rewrite the bounds of R in the form “something” = “constant” and
hopefully read the new variables and their bounds from there. Namely, we
have that

y = 1/x → xy = 1
y = 4/x → xy = 4

y = x → y/x = 1
y = 3x → y/x = 3

This suggests letting u = xy and v = y/x. Immediately, the new bounds are
1 ≤ u ≤ 4 and 1 ≤ v ≤ 3. Who is u and who is v is not relevant here: the
rectangle in the uv-plane corresponding to R will just come out rotated, and
the negative sign you get in the Jacobian determinant disappears because of
the absolute value present when we write du dv in terms of dx dy or vice-
versa.

• Step 3: compute the Jacobian determinant. As we have u and v in terms of x
and y, it’s easier to begin with

∂(u, v)
∂(x, y)

= det
(

y x
−y/x2 1/x

)
=

y
x
− x

(
− y

x2

)
= 2

y
x
= 2v.
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As v ≥ 0, we have |2v| = 2v, so

du dv = 2v dx dy =⇒ dx dy =
1

2v
du dv.

• Step 4: plug everything into the original integral and solve it.

x

R

exy dA =
∫ 3

1

∫ 4

1

eu

2v
du dv =

(∫ 3

1

1
2v

dv
)(∫ 4

1
eu du

)
=

ln 3
2

(e4 − e).

Finally, let’s briefly talk about polar coordinates. What you need to know is:

• x = r cos θ;

• y = r sin θ;

• x2 + y2 = r2;

• dx dy = r dr dθ.

Remembering this, you should be able to solve essentially every problem involving
polar coordinates. We’ll start with a fun example (which you should see at least once
in your life):

Example 17

We know from single-variable calculus that the integral∫
e−x2

dx

cannot be solved, in the sense that there is no elementary anti-derivative for e−x2
.

If you don’t remember this or don’t believe me, set up a timer on your phone for,
say, 15 minutes (but no longer!) and try to solve it yourself. Failure builds up the
character. So, let’s take the impossible and make it worse. Consider∫ +∞

−∞
e−x2

dx.

Indulging the lack of self-love of yours truly, let’s not stop here and square it:(∫ +∞

−∞
e−x2

dx
)2

.

Now, the fun begins.(∫ +∞

−∞
e−x2

dx
)2

=

(∫ +∞

−∞
e−x2

dx
)(∫ +∞

−∞
e−x2

dx
)
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=

(∫ +∞

−∞
e−x2

dx
)(∫ +∞

−∞
e−y2

dy
)

=
∫ +∞

−∞

∫ +∞

−∞
e−x2−y2

dx dy

Performing a change of variables to polar coordinates, we continue:(∫ +∞

−∞
e−x2

dx
)2

=
∫ 2π

0

∫ +∞

0
e−r2

r dr dθ

(∗)
=

(∫ 2π

0
dθ

)(∫ +∞

0
re−r2

dr
)

= 2π

(
−1

2
e−r2

) ∣∣∣∣+∞

0

= π(0− (−1))
= π,

where on (∗) we used an obvious variant of the lemma regarding the integral
of a product over a rectangle. Note how the correction factor r coming from the
Jacobian saved the day. We conclude (as the original definite integral is positive
to begin with) that ∫ +∞

−∞
e−x2

dx =
√

π.

This integral appears in statistics, when studying random variables X ∼ N(µ, σ2)
with normal probability distribution (here, µ is the mean and σ2 is the variance);
the graph of f (x) = e−x2

is the “bell curve” you might be already familiar with:

We have effectively shown that the area under the bell curve equals
√

π.

We’ll conclude with the setup for one of the problems assigned for HW3:

Exercise

Find the volume bounded by the surfaces z = 2− x2 − y2 and z = x2 + y2.
The volume will clearly be

x

R

(
(2− x2 − y2)− (x2 + y2)

)
dA = 2

x

R

(1− x2 − y2)dA,
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following the old philosophy of “top minus bottom” for computing volumes be-
tween surfaces. The question that remains, though, is what is the region R on the
plane we should integrate over. Draw a picture to see what the situation looks
like. The strategy is to find the “shadow” cast by the intersection of the surfaces
on the plane. Setting 2− x2− y2 = x2 + y2 leads to x2 + y2 = 1, and so the shadow
is R : x2 + y2 ≤ 1, a circle centered at the origin with radius 1. A circle begs for
polar coordinates. Hence

2
x

R

(1− x2 − y2)dA =
∫ 2π

0

∫ 1

0
(1− r2)r dr dθ.

Make sure to understand why the bounds are what they are. You take it from
here.
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5 February 8th

We’ll proceed to talk about vector fields and line integrals.
A vector field on a region of the plane or space associates with each point, a vector

starting from said point. Everything you already know about vectors can be applied
to vector fields as well, pointwise. Namely, one can add and subtract two vector fields
and take their dot or cross product (the latter in three dimensions), one can multiply a
vector field by a function to obtain a new vector field, one can compute the magnitude
of a vector field and, at each point, a vector field is characterized by its magnitude and
direction.

Example 18

Sketch the vector field on the plane given by F(x, y) = (x, 0).
At each point (x, y), the vector F(x, y) is horizontal, its magnitude is given by

‖F(x, y)‖ = |x|; the vectors point to the right if x > 0, and to the left if x < 0. Each
point in the y-axis receives the zero vector, which is to say, “no arrow” there.

Example 19

Sketch the vector field on the plane with the origin removed, given by

F(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)
.

We just need to understand the magnitude and direction of F. A direct calcu-
lation shows that ‖F(x, y)‖ = 1 for all (x, y), so our field consists of unit vectors.
As for the direction, we note that F(x, y) is always a (function) multiple of the
position field (x, y). Vector fields with this property are called radial, and have a
very special geometric visualization: the vector F(x, y) always lies in the direction
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of the ray joining (0, 0) to (x, y).

Example 20

Sketch the vector field on the plane with the origin removed, given by

F(x, y) =

(
−y√

x2 + y2
,

x√
x2 + y2

)
.

This is a small modification of the previous example. We again have that the
magnitude of F is just ‖F(x, y)‖ = 1, so F consists of unit vectors as well. This
field is clearly not radial, but note that the dot product between this field and
the one from the previous example equals zero, which means that at each point,
they’re orthogonal. This means that at each (x, y), the vector F(x, y) lies in the
direction orthogonal to the ray joining (0, 0) to (x, y).
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Gradients of functions are also important examples of vector fields. Line integrals
of such fields are particularly easy to compute, as there’s a version of the Fundamental
Theorem of Calculus for line integrals lurking in the background.

In any case, before moving to further examples, let’s understand what line integrals
are really about. Formally, they can be defined as certain limits of Riemann-like sums.
What you need to keep in mind, however, is that there are two types of line integrals:
scalar line integrals of functions, and line integrals of vector fields.

• Scalar case:
∫

C f ds. For curves in the plane,
∫

C f ds equals the area of the “cur-
tain” determined by the curve C inside the domain of f , and the graph surface
z = f (x, y) in space. “Stretching” the curve C like a string, the curve C can be
thought of an “axis”, and the integral computes the area of a graph over this axis.
So, scalar line integrals are very similar to single-variable integrals, in this sense.
When f = 1, the integral

∫
C ds gives simply the length of the curve C. If f > 0 is

regarded as a mass density, then the integral
∫

C f ds is the total mass of the string
C. In particular, with line integrals we can compute the center of mass/gravity
of a string with non-uniform mass distribution, as the point(∫

C x f ds∫
C f ds

,

∫
C y f ds∫
C f ds

,

∫
C z f ds∫
C f ds

)
.

• Vector case:
∫

C F · dr. Let’s think of basic mechanics: if a constant force F moves
a block (with a certain mass) along a linear path, with displacement d, the work
realized by the force to perform this action is W = Fd. The assumptions that
the force F is constant and that the displacement happens along a linear path are
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very restrictive. Say that the initial position of the block is at x = a and that the
final one is at x = b, with a < b. Then W =

∫ b
a F dx (the constant force may be

pulled out of the integral, while
∫ b

a dx = b− a = d). This suggests that the work
done by a (generally non-constant) force field F on space to move a block from
an initial position to a final position, along some now curvilinear path C, should
simply be W =

∫
C F · dr. The generalization was∫ b

a
→
∫

C
, F → F, dx → dr.

We still need to understand what the notations for line integrals mean. First, we
observe that the dot · in

∫
C F · dr is actually a dot product, between the vector field

F and dr, the “infinitesimal tangent vector to C”. We write dr = (dx, dy, dz). Why
does it make sense to form a vector with those differentials? If there’s any justice in
the world, we should be able to write dr = r′(t)dt. But then

dr = r′(t)dt = (x′(t), y′(t), z′(t))dt = (x′(t)dt, y′(t)dt, z′(t)dt) = (dx, dy, dz).

As for the remaining differential ds, a similar reasoning goes. Writing ds = s′(t)dt, it
remains to understand what s′(t), or more generally s(t), means. This turns out to be a
standard notation for the arclength function of a curve. Namely, given a parametriza-
tion r(t) of C on some interval [a, b], the integral

s(t) =
∫ t

a
‖r′(τ)‖dτ

computes the arclength of C from the initial point r(a) to the chosen instant r(t) (in
particular, s(b) is the full length of C). The Fundamental Theorem of Calculus says
that s′(t) = ‖r′(t)‖dt. We now have our dictionary of differentials completed:

dr = (dx, dy, dz)
ds = ‖r′(t)‖dt
dx = x′(t)dt
dy = y′(t)dt
dz = z′(t)dt

As for how to ahead and compute line integrals, generally, we can organize our-
selves with steps, as in Example 16 (p. 22).

Step 0: If dealing with a vector line integral
∫

C F · dr, writing the components of F as
(P, Q, R), evaluate the dot product∫

C
F · dr =

∫
C
(P, Q, R) · (dx, dy, dz) =

∫
C

P dx + Q dy + R dz.

Step 1: Find a parametrization r(t), a ≤ t ≤ b, for C. Sometimes, the problem gives
r(t) to you. Other times, you have to figure it out yourself (but it’s generally not
too difficult).
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Step 2: Set up all the differentials appearing in the problem as something times dt, by
using the little dictionary above.

Step 3: Plug x = x(t), y = y(t), z = z(t) into the given integral, as well as all the
differentials you have set up in Step 2. You have now obtained a single-variable
integral

∫ b
a · · · dt. Solve it.

Of course, everything here was described for functions and fields in space. When
working in two dimensions only, just ignore the variable z and the third components
of everything.

Example 21

Compute the integral ∮
C

xy ds,

where C is the unit circle in the plane with parametrization r(t) = (cos t, sin t), defined
on 0 ≤ t ≤ 2π.

First, we note that the circle on the integral, as in
∮

C as opposed to
∫

C, is just
a reminder that the curve C on which we integrate over is closed. It makes ab-
solutely no difference on how we’ll solve it. Step 0 is unneeded, it’s a scalar line
integral. Step 1 is also unneeded, as the problem gave us r(t). For Step 2, we
have that r′(t) = (− sin t, cos t), so ‖r′(t)‖ = 1 for all t. This means that ds = dt.
Finally, Step 3: ∮

C
xy ds =

∫ 2π

0
cos t sin t dt =

1
2

∫ 2π

0
sin(2t)dt = 0.

Example 22

Compute the integral ∫
C
(x + y)dx,

where C is the upper half-circle (centered at the origin) with radius 2, oriented counter-
clockwise.

This is not really a scalar line integral, but a vector line integral in disguise,
with Step 0 already performed. One may see it as

∫
C F · dr with the field F given

by F(x, y) = (x + y, 0). In any case, for Step 1, we may take r(t) = (2 cos t, 2 sin t),
with 0 ≤ t ≤ π. For Step 2, there’s only one differential to be considered, dx: since
x = 2 cos t, we have dx = −2 sin t dt. Now, Step 3 becomes just∫

C
(x + y)dx =

∫ π

0
(2 cos t + 2 sin t)(−2 sin t dt)
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= −4
∫ π

0
(cos t sin t + sin2 t)dt

= −2π.

Example 23

Compute the integral ∫
C
(xy)1/3, ds,

where C is the arc of parabola y = x2, 0 ≤ x ≤ 1.
This is a scalar line integral, so Step 0 is unneeded. For Step 1, we observe that

graphs of functions always admit natural parametrizations: generally, if we have
y = f (x) with a ≤ x ≤ b, and we want to write r(t) = (· · · , · · · ), the second entry
must necessarily be obtained by applying f to the first one! So we don’t need to
really think about it, and the only question that remains is how to parametrize the
interval a ≤ x ≤ b. Obviously, one goes for the simplest thing possible, x = t, and
a ≤ t ≤ b. So r(t) = (t, f (t)) does the trick. In our case, we take r(t) = (t, t2) with
0 ≤ t ≤ 1. Moving on to Step 2, we have that r′(t) = (1, 2t), so ‖r′(t)‖ =

√
1 + 4t2,

and hence ds =
√

1 + 4t2 dt. Finally, Step 3 boils down to∫
C
(xy)1/3 ds =

∫ 1

0
(tt2)1/3

√
1 + 4t2 dt

=
∫ 1

0
t
√

1 + 4t2 dt

=
∫ 5

1

√
u

du
8

=
1
8

(
2
3

u3/2
) ∣∣∣∣5

1

=
5
√

5− 1
12

,

after doing the substitution u = 1 + 4t2.

Example 24

Compute
∫

C F · dr, where F(x, y) = (x, y) and C is parametrized by r(t) = (4t, t2),
with 0 ≤ t ≤ 1.

We’re dealing with a vector line integral, so let’s do Step 0:∫
C

F · dr =
∫

C
(x, y) · (dx, dy) =

∫
C

x dx + y dy.

There’s no need to do Step 1, as the problem gave us r(t). As for Step 2, the only
differentials appearing herea are dx and dy. So we just note that x = 4t and y = t2
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immediately give us that dx = 4 dt and dy = 2t dt. With this in place, Step 3 is
straightforward: ∫

C
x dx + y dy =

∫ 1

0
4t(4 dt + t2(2t dt)

=
∫ 1

0
(16t + 2t2)dt

= 8 +
2
3

=
26
3

.

aIf a vector field in three dimensions has zero as one of its components, the corresponding
differential will simply not appear: the zero component kills it with the dot product.

Example 25

Compute
∫

C F · dr, where F(x, y) = (−y, x) and C is any radial line segment.
Geometrically, F is always orthogonal to the line segment, as the latter is radial

(revisit Example 20, p. 28). There is no component of F in the direction of dr (recall
the relation between dot products and projections). The integral is zero.

Remark. If C is a curve on plane or space, and T is a chosen unit tangent field to C,
we may consider both ∫

C
F · dr and

∫
C

F · T ds.

They are morally the same thing. However, one can only say that dr = T ds if T points
in the same direction as the velocity vector r′(t) of the particular parametrization cho-
sen for C. Reversing the orientation of the parametrization does not change the result
of the first integral, but the new parametrization may no longer be “compatible” with
the field T , fixed a priori. The bottom line here is that the two integrals in display are
not interchangeable (unless one is extremely careful with orientations), despite being
so similar.
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6 February 15th

We solved the first midterm in detail and talked about how things are going so far
in this course.
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7 February 22nd

We move on to the second part of this course: linear systems and matrices. The
big idea here is to, given a linear system, convert it to a matrix, cast this matrix into
a simpler form, and draw conclusions about the original system from the simplified
matrix.

More precisely, we will consider matrices in reduced row echelon form (RREF),
which look like this: 

1 0 ∗ 0 0 ∗ ∗
0 1 ∗ 0 0 ∗ ∗
0 0 0 1 0 ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0


The pivots, which are the first non-zero entries in each row, must all be equal to 1. On
each column where a pivot 1 appears, all entries other than the pivot itself must be
zero. The pivots must form a “staircase” shape (hence the name “echelon”). The word
“reduced”, in turn, refers to the fact that all entries in a given column with a pivot,
above the pivot, are zero. If a row consists only of zeros, it must be on the bottom of
the matrix.

To cast a given matrix into RREF, the following elementary operations are allowed:

(1) switch two rows;

(2) multiply any row by a non-zero number;

(3) add to any row a multiple of another row.

There are several ways of solving linear systems (one of them being “Cramer’s
method”, for example), but dealing with matrices in RREF is preferred from a compu-
tational viewpoint for being more efficient, in the sense that solving a linear system
using this algorithm is what takes a computer the fewer number of operations to do.
Moreover, RREF is the answer to the natural question “could I do something else to
make the matrix simpler?” or “am I missing something?”. If the matrix is in RREF, the
answer is “no”: you did everything possible to simplify the matrix. And the reason
why we’ll only stick with the elementary operations above is because they make sure
that the matrix in RREF obtained in the end does represent a system equivalent to the
original one.

Example 26

Decide whether the following matrix is in RREF and, if not, put it in RREF.1 2 −1 −2
0 2 −2 −3
0 0 0 1


The pivots of this matrix are, respectively, 1, 2 and 1. Since we have a pivot

which is not equal to 1, the matrix is not in RREF. Each step we carry out has
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a specific objective, and whatever happens with the rest of the matrix, happens.
Our first goal is to turn that pivot 2 into a 1, and for that we may divide the whole
second row by 2 (this is an allowed elementary operation):

R2 :=
1
2

R2 ∼

1 2 −1 −2
0 1 −1 −3/2
0 0 0 1


Note how we’re borrowing notation from computer science to keep track of the
operations performed. This is very important to do as it improves organization
and readability. You should take this seriously on HW assignments and exams.

In lecture, it was mentioned that there’s also something called echelon form
(without the word “reduced”), but that you shouldn’t worry about it, as RREF is
much more important. While this is true, it is convenient to know what a matrix
in “echelon form” is: it should have the same “staircase” shape as in RREF with
all pivots being 1 and rows of zeros being in the bottom, but elements above a
pivot don’t need to be zero. So, the matrix is now in echelon form, but not RREF.
Recognizing when a matrix is in echelon form but not RREF tells you that you’re
halfway through the process; it’s a checkpoint: all that’s left to do now is to take
out the trash above the pivots. This is done systematically, again from left to right,
but now from bottom to top. The next goal should be to eliminate the 2 in the first
row of the matrix.

R1 := R1 − 2R2 ∼

1 0 1 1
0 1 −1 −3/2
0 0 0 1


Since on the third column there is no pivot, nothing can be done about the non-
zero entries there. We move on to clean up what’s above the pivot on the fourth
column. As both R1 and R2 will interact with R3, but not with each other, we can
do two steps at once:

R1 := R1 − R3
R2 := R2 +

3
2 R3

∼

1 0 1 0
0 1 −1 0
0 0 0 1


We have obtained the RREF.

Let’s now see how things work if we start with a system.

Example 27

Solve, if possible, the following system:
x1 + x2 − x5 = 1

x2 + 2x3 + x4 + 3x5 = 1
x1 − x3 + x4 + x5 = 0
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Converting a system to a matrix is always the easiest thing to do: just read off
the coefficients from each variable on each equation, and place them into rows.1 1 0 0 −1 1

0 1 2 1 3 1
1 0 −1 1 1 0


This is called an augmented matrix because the last column takes into account the
right-hand side of the equations in the original system. This is important to con-
sider, as doing operations between rows is morally the same as doing operations
between equations in the system (with the obvious advantage that we won’t keep
writing variable names x1, x2, etc., all the time), and when doing operations be-
tween equations, those operations happen on the right-hand side of the equations
involved too.

That being said, the matrix is obviously not in RREF; we don’t even have the
“staircase” shape. The first 1 in the first row, however, is the pivot, and so we need
to eliminate all entries below it. This can be achieved as follows:

R3 := R3 − R1 ∼

1 1 0 0 −1 1
0 1 2 1 3 1
0 −1 −1 1 2 −1

 .

We have cleaned up everything below the first pivot, so we move on to the next.
The pivot in the second row is the 1 appearing in the second column as well, so
we need to eliminate the −1 below it. This is done by:

R3 := R3 + R2 ∼

1 1 0 0 −1 1
0 1 2 1 3 1
0 0 1 2 5 0

 .

Observe that this −1 could also have been eliminated via R3 := R3 + R1, but this
operation would produce a 1 in the bottom left corner of the matrix! The reason
why this happened is because we’re trying to make an operation involving a row
whose pivot has already had everything cleaned up below it. The moral of the
story here is that each step to be carried has a laser-like focus, a single goal, and if
you do an operation which undoes something that should have been already ok
by that point, you have done something wrong. As a matter of fact, the matrix
is now in echelon form, but not RREF. We must proceed to clean up the spaces
above the pivots, going from left to right, as usual. Above the pivot in the second
row, we have a 1, which is the next target:

R1 := R1 − R2 ∼

1 0 −2 −1 −4 0
0 1 2 1 3 1
0 0 1 2 5 0

 .

Observe that this operation did not destroy the “staircase” shape because we have
only started to clean up spaces above the pivots once the matrix was already in
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echelon form. We move on to the next pivot, on the third row: we must clean
up the −2 and 2 above it. As in the previous example (and this turns out to be
a general phenomenon), since both R1 and R2 will interact with R3, but not with
each other, we can do the two steps at once:

R1 := R1 + 2R3
R2 := R2 − 2R3

∼

1 0 0 3 6 0
0 1 0 −3 −7 1
0 0 1 2 5 0

 .

The matrix is now in RREF, and it corresponds to the system
x1 + 3x4 + 6x5 = 0

x2 − 3x4 − 7x5 = 1
x3 + 2x4 + 5x5 = 0,

which is equivalent to the original one (that is, this system and the first one have
the same solution set). The variables x4 and x5 (corresponding to the columns in
RREF which could not be cleaned up – as we didn’t have pivots to use) are free,
in the sense that the remaining variables x1, x2 and x3 may be written in terms
of x4 and x5. We may change notation, say, to t1 = x4 and t2 = x5, effectively
parametrizing the solution set of the system, and writing

S = {(−3t1 − 6t2, 3t1 + 7t2 + 1,−2t1 − 5t2, t1, t2) ∈ R5 | t1, t2 ∈ R}.

The solution set S is a 2-dimensional plane in R5, not passing through the ori-
gin (0, 0, 0, 0, 0) of R5. Every point of such plane corresponds to a solution of
the system. For example, choosing t1 = 1 and t2 = 2, we obtain the solution
(−15, 18,−12, 1, 2) of the original system. This is the same as saying that plug-
ging

x1 = −15, x2 = 18, x3 = −12, x4 = 1 and x5 = 2

on the equations of the original system, the right-hand sides come out to be 1, 1,
and 0. Every time you have even a single free variable, the system has infinitely
many solutions. These variables are called “free” because you’re free to choose
values to substitute into it, thus generating different solutions to the system. If
there are infinitely many solutions (in fact, uncountably many, in a very precise
sense), you are not supposed to try and list them one by one. This is why it is im-
portant to understand how free variables work and how to describe your solution
set in a “parametric form”: it will carry all the information you need in a sucint
way.

Here’s one last example to hopefully help you think outside the box:
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Example 28

Find all the values of α and β between 0 and 2π such that:{
2 cos α + 4 sin β = 3
3 cos α− 5 sin β = −1

If your first urge is to complain that this system is not linear in the variables
α and β, you are absolutely right. It is linear, however, in the variables cos α and
sin β, which means that we can use our knowledge about linear systems to attack
this problem, and then follow up with trigonometry. Compare with the situation
where you have sin2 θ − 2 sin θ + 1 = 0 and are asked to solve the equation for θ:
surely it is not a quadratic equation on the variable θ, but it is quadratic on the
variable sin θ, so the quadratic formula applies to solve for sin θ directly. What
is happening here is morally a “substitution”, but learning to recognize those sit-
uations “abstractly” is very helpful when trying to solve some problems. If, for
psychological reasons, you need to cast these things into an actual linear system
(or the single equation into a legitimate quadratic equation), just set x1 = cos α
and x2 = sin β (or x = sin θ, respectively). The point of this discussion is to let
go of the training wheels and do this naturally, avoiding explicit substitutions.
Convert the system for cos α and sin β into a matrix:[

2 4 3
3 −5 −1

]
.

This is not in RREF, nor echelon form to begin with. The first pivot, in the first
row, is 2 (and not 1). Fix it:

R1 :=
1
2

R1 ∼
[

1 2 3/2
3 −5 −1

]
.

Next, we clean up the trash below this pivot:

R2 := R2 − 3R1 ∼
[

1 2 3/2
0 −11 −11/2

]
.

Next step, next pivot: the current pivot on the second row is −11, so to make it 1,
we divide the second row by −11:

R2 := − 1
11

R2 ∼
[

1 2 3/2
0 1 1/2

]
.
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Now, the matrix is in echelon form, but not RREF. We proceed to eliminate the 2
above the second pivot:

R1 := R1 − 2R2 ∼
[

1 0 1/2
0 1 1/2

]
.

Finally, we have obtained the RREF. This means that cos α = 1/2 and sin β = 1/2.
These two equations for α and β are independent, so solutions of the original
system are obtained by combining all possible solutions for each equation (on the
interval [0, 2π], as imposed): the solutions (α, β) are(π

3
,

π

6

)
,
(

π

3
,

5π

6

)
,
(

5π

3
,

π

6

)
and

(
5π

3
,

5π

6

)
.

One last sanity-check: a general fact about linear systems is that they have either
zero solutions, one solution, or infinitely many. Here, we have obtained four so-
lutions, which seems like an apparent contradiction. It is alright because, again,
the original system is not linear for the variables α and β, but linear for cos α and
sin β instead. For the latter variables, we indeed have obtained a single solution,
namely, (1/2, 1/2).
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8 March 1st

We start with a quick review on matrix algebra. Namely, the question is “what can
we do with matrices?”. We can:

• add two matrices of the same size, as in[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8

10 12

]
,

entrywise.

• multiply a matrix (of any size) by a real number, as in

3
[

1 −1
0 2

]
=

[
3 −3
0 6

]
,

again entrywise.

• take transposes of matrices, which means that rows become columns and vice-
versa, as in

A =

[
1 2 3
4 5 6

]
=⇒ A> =

1 4
2 5
3 6

 .

• multiply a n × m matrix A by a m × k matrix B, to obtain a n × k matrix AB,
whose (i, j)-entry equals the dot product between the i-th row of A and the j-th
column of B. Idea: (n×m)(m× k) = n× k.

Here’s a reason about why matrix multiplication is like that: it all comes back to
the big idea of representing a given linear system with a matrix, studying the matrix
instead, and drawing conclusions about the original system from, for example, the
reduced row echelon form of the obtained matrix. More precisely, think of the silliest
case possible, where we have only one equation and one variable: ax = b. If we want
to study linear systems (say, with n variables and m equations) with sort of the same
notation, Ax = b, we need to make sense of what does it mean to multiply the m× n
matrix A with the n× 1 column vector x, to obtain the m× 1 column vector b. Write
the system explicitly: 

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

The entries of the product Ax should be the entries of b, but the system itself gives the
expression fot the entries of b in terms of A and x. The definition a11 · · · a1n

... . . . ...
am1 · · · amn


x1

...
xn

 :=

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn
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is thus forced upon us, in the sense that if we want to make sense of the system in
the form Ax = b, there is only one possible choice for what the vector Ax must be. To
multiply A by a second matrix B which is n× k, one applies the above for each column
of B — and this is the matrix multiplication you have first seen in class. In particular,
this should justify why the number of columns of A must equal the number of rows
of B for this product to make sense.

Of course, while the calculation shows that this unpleasant definition of matrix
multiplication is what we really need to study linear systems properly, it still leaves
room for one to wonder why the obvious first guess for what matrix multiplication
should be doesn’t work as well. Namely, why can’t we just multiply two matrices
entrywise, like we do for addition? You might be surprised to hear that this is actually
a thing, called the Hadamard product of matrices (there’s even a wikipedia page about
it). The first (and fatal) flaw of this, for our purposes, is that this Hadamard product
can only be computed between matrices of the same size, making us lose all hope
of using this as a tool to help us study linear systems whose number of equations
is not equal to the number of variables involved. The second flaw is ultimately a
consequence of the following result:

Theorem 3

Let A be a n× n square matrix. The following conditions are equivalent:

(i) A is non-singular.

(ii) the inverse A−1 exists.

(iii) det A 6= 0.

(iv) A has full rank.

The determinant function (whatever it is for square matrices whose size is bigger
than 2) is a useful tool to detect whether a given square matrix is non-singular or not,
and we have that det(AB) = det(A)det(B) whenever A and B are square matrices
of the same size. This nice algebraic relation (which has the consequence that, for ex-
ample, the product of two non-singular matrices is non-singular), fails if one replaces
the usual matrix multiplication with the Hadamard product. There are other deeper
reasons why standard matrix multiplication is what it is, but explaining them would
require more Linear Algebra than what we have available to use right now.

Here are some pitfalls to avoid, regarding matrix multiplication:

• matrix multiplication is non-commutative, i.e., AB is not equal to BA, in general;
one way to convince yourself quickly of this is that unless both A and B are
square matrices of the same size, in general only one of the products AB or BA
is well-defined, while the other is not, so it doesn’t even make sense to compare
them (and to make it worse, there are examples of square matrices A and B for
which AB 6= BA). This means that while one does (a + b)2 = a2 + 2ab + b2 for
real numbers a and b, one must write (A + B)2 = A2 + AB + BA + B2 in full,
with no further simplifications available.
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• one cannot “cancel” non-zero matrices like real numbers: if AB = AC and A 6= 0,
we cannot conclude that B = C. In fact, this only works provided that A is non-
singular!

• the identity matrix (which plays the role of 1 for real numbers) is not a the matrix
full of 1’s, but instead the matrix with 1’s in the diagonal and zeros everywhere
else (the former is an “identity matrix” for the Hadamard product, not for stan-
dard matrix multiplication).

And as far as transposition goes, observe that if u and v are column vectors of the
same size, then u>v equals the dot product between u and v. Doing something sim-
ilar for matrices as opposed to vectors provides a way to compute the “dot product”
between two matrices; we have no need to pursue this further in this class. This is also
a good chance to register some properties of the transposition operation:

Proposition 1

Let A and B be a n×m matrices, C be a m× k matrix, and c ∈ R be a real number.
Then:

(i) (A + B)> − A> + B>.

(ii) (cA)> = cA>.

(iii) (A>)> = A.

(iv) (AC)> = C>A>.

In short, transposition is a linear operation which when applied twice returns the
original matrix, and the transpose of a product is the product of the transposes in the
reverse order (note that A>C> may even not be well-defined). Let’s put all of this
together in a concrete example:

Example 29

Let A be a 2× 2 matrix, and consider

B =

[
1 3
1 4

]
and C =

[
2 3
4 5

]
.

(a) If A> + B = C, what is A?

(b) If A>B = C, what is A?

A lazy strategy is to just substitute numerical values after no further simplifica-
tion may be done with matrix algebra. To solve for A in (a), we start by subtracting
B on both sides, so A> = C− B, then take transposes to obtain (A>)> = (C− B)>,
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which reduces to A = C> − B>. So

A =

[
2 3
4 5

]>
−
[

1 3
1 4

]>
=

[
2 4
3 5

]
−
[

1 1
3 4

]
=

[
1 3
0 1

]
.

As for item (b), things become more tricky. When looking at A>B = C, our first
urge is to “divide both sides by B”, to solve for A>. However, even if B 6= 0 it’s
not guaranteed we can “divide by B”! But since det B = 1 6= 0, we know that
B is non-singular, and so B−1 does exist. Next, we still have to be careful with
“dividing by B” (which you should now read as “multiplying by B−1”), as ma-
trix multiplication is non-commutative. This means that multplying both sides of
A>B = C by B−1 through the left or through the right makes a crucial difference.
As the goal is to “cancel B”, this multiplication should happen through the right,
leading to A> = CB−1 (as opposed to B−1A>B = B−1C, whose left side is messy).
Thus, we have that A = (CB−1)>. It remains to compute B−1. We’ll use the:
Gauss-Jordan inversion: If B is a non-singular square matrix, we set up an augmented
matrix [B|I], where I is the identity matrix of the same size as B (it’s similar to when
we form an augmented matrix to study a linear system, but we augment B with an entire
identity matrix on the right, as opposed to a single column vector). Perform row operations
to put B into RREF. As B is assumed non-singular, the RREF of B turns out to be... I. So
we have something like [I|∗], where ∗ is some mess that was obtained from doing the row
operations (aimed to bring B into RREF) to I. This ∗ is exactly B−1.

We now apply Gauss-Jordan inversion to B, setting up the augmented matrix[
1 3 1 0
1 4 0 1

]
.

So:

R2 := R2 − R1 ∼
[

1 3 1 0
0 1 −1 1

]
.

Then

R1 := R1 − 3R2 ∼
[

1 0 4 −3
0 1 −1 1

]
.

The conclusion is that

B−1 =

[
4 −3
−1 1

]
.

With this in place, we go back to A = (CB−1)>, and compute

A =

([
2 3
4 5

] [
4 −3
−1 1

])>
=

[
5 −3

11 −7

]>
=

[
5 11
−3 −7

]
.

One could alternatively use that A = (CB−1)> = (B−1)>C> = (B>)−1C> (i.e.,
the inverse of a transpose is the transpose of the inverse), apply Gauss-Jordan to
find the inverse of B>, and multiply the result by C> through the right — this
yields the same result.

Page 44



MATH2177 - RECITATION DIARY Ivo Terek

One last notion we should be comfortable with is:

Definition 4

Let u1, . . . , uk ∈ Rn be vectors. We say that they are linearly independent if when-
ever a1u1 + · · ·+ akuk = 0 (here, a1, . . . , ak are real numbers), we must necessarily
have a1 = · · · = ak = 0. If they are not linearly independent, we call them linearly
dependent.

Briefly, saying that a collection of vectors is linearly independent is saying that
none of the vectors considered is a linear combination of the others. Similarly, saying
that a collection of vectors is linearly dependent is saying that there is at least one of
them which may be expressed as a linear combination of the others.

Example 30

In R2, consider the vectors u1 = (1, 0), u2 = (0, 1), and u3 = (1, 1). We claim that:

• u1 and u2 are linearly independent. Indeed, write a generic linear combina-
tion and set it equal to the zero vector: au1 + bu2 = 0. This reads, in full, as
a(1, 0) + b(0, 1) = (0, 0), and so (a, b) = (0, 0) gives a = b = 0. Thus, u1 and
u2 are linearly dependent.

• u1, u2 and u3 are linearly dependent. It suffices to note that u3 = u1 + u2 is a
linear combination of u1 and u2 (namely, the coefficients are all 1).

Linear independence is a notion of “uniqueness” in disguise, because if a given
vector may be written as a linear combination of a collection of linearly indepen-
dent vectors, such linear combination is unique, while if the collection of vectors
used to write the linear combination is linearly dependent, there may be more of
one possible way to write the combination (which creates ambiguity when trying
to talk about “the coordinates of the vector relative to the collection”).

Consider (2, 3) ∈ R2. We have that (2, 3) = 2(1, 0)+ 3(0, 1), and this is the only
way to express (2, 3) as a combination of (1, 0) and (0, 1), in the sense that if you
were to write (2, 3) = a(1, 0) + b(0, 1), you would inevitably arrive at a = 2 and
b = 3. Throwing in the third vector (1, 1) to create a linearly dependent collection,
we have that

(2, 3) = 2(1, 0) + 3(0, 1) + 0(1, 1) = 0(1, 0) + 1(0, 1) + 2(1, 1),

and so on. The combination is not unique. Moral of the story: we like when
vectors are linearly independent.

We conclude with a slightly more elaborate example:
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Example 31

Consider the (column) vectors

u1 =

 1
2
−1

 , u2 =

 2
1
−3

 , u3 =

−1
4
3

 , u4 =

1
1
0

 .

(a) Are u1, u2, and u3 linearly independent?

(b) Are u2, u3, and u4 linearly independent?

We start with (a). Here’s the shortcut we will use now and forever. Just put
the vectors into the columns of a matrix and decide whether it has full rank or
not. If it has full rank, the vectors are linearly independent. If you try to put
it into echelon form and get a row of zeros, the vectors are linearly dependent.
Why is it so simple? Because this shortcut amounts to skipping a couple of steps
in the following procedure: set up a linear combination a1u1 + a2u2 + a3u3 = 0,
and plug in the concrete expressions for u1, u2 and u3. We obtain a homogeneous
linear system for the variables a1, a2 and a3. If the matrix representing the left
side of this system (such matrix is obtained precisely by placing the given vectors
into columns) has full rank, the system has only the trivial solution, which forces
a1 = a2 = a3 = 0, giving linear independence as desired. If the matrix doesn’t
have full rank, there are non-trivial solutions for a1, a2 and a3, which give us a
non-trivial linear combination of u1, u2 and u3 resulting in 0 (so u1, u2 and u3 are
linearly dependent).

Applying this, we consider the matrix

[u1|u2|u3] =

 1 2 −1
2 1 4
−1 −3 3

 .

Then

R2 := R2 − 2R1
R3 := R3 + R1

∼

1 2 −1
0 −3 6
0 −1 2

 .

Now

R2 := R2 − 3R13 ∼

1 2 −1
0 0 0
0 −1 2

 .

having a row full of zeros says that u1, u2 and u3 are linearly dependent.
For item (b), the same idea works. To make the calculations a bit easier, we

note that the order of the vectors is completely irrelevant in the definition of linear
independence (which makes perfect sense, as the rank of a matrix is not affected
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by permuting columns), so we may just as well place u4 as the first vector and set
up

[u4|u2|u3] =

1 2 −1
1 1 4
0 −3 3

 .

Then

R2 = R2 − R1 ∼

1 2 −1
0 −1 −3
0 −3 3

 ,

and next

R3 := R3 − 3R2 ∼

1 2 −1
0 −1 −3
0 0 12

 .

This last matrix is in echelon form and there are no zero pivots. This means that
the matrix has full rank, and so u2, u3 and u4 are linearly independent.
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9 March 8th

We solved the practice sheet for Midterm 2 (solutions are available on Carmen).
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10 March 15th

Spring Break. No class.
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11 March 22nd

We now start with the third part of this course: Ordinary Differential Equations
(“ODE”s, for short). The idea is simple: we have equations involving derivatives, but
instead of solving for a number or vector, we solve for a function instead. Consider
a simple example: y′(t) = 2t, and imagine you want to solve for y. Integrating, we
obtain that y(t) = t2 + c for some constant of integration c ∈ R. Keeping track of
such constants is now crucial (and perhaps the reason why you kept losing points in
Calculus 1 for forgetting the +c; it was all a prelude to this moment), for different
choices of c lead to different solutions. As we have infinitely many choices of c, we see
that even the simplest differential equation will have infinitely many solutions.

The adjective “ordinary” refers to the fact that all the functions involved are func-
tions of a single variable, and that there are no partial derivatives of anything in play.
If this were to be the case, we would be dealing with Partial Differential Equations
(“PDE”s, for short) instead.

In any case, the point remains that solving ODEs can be very hard and one usually
resorts to softwares or numerical methods to understand the behavior of solutions to
an ODE. We will focus on very specific types of ODEs which we can indeed solve. To
understand when this is the case, some vocabulary is useful. Let’s always organize
our equations by placing in the left side all the terms involving y, and on the right side
all the terms not involving y.

• order: the order of a differential equation is the highest derivative that appears.

• linearity: a differential equation is linear if its left side is a linear combination
(with function coefficients) of y, y′, y′′, etc.

• homogeneity: a differential equation is homogeneous if its right side equals zero.

We care about this because: the higher the order, the harder the equation should be
to solve; we like linear things better than non-linear things, and homogeneous equa-
tions are generally easier to deal with (because we like zeros).

Example 32

Classify the differential equation y′′ − 4y′ + 2y = 10t2.
It’s a second order equation (because the term with the highest derivative is

y′′, it is linear because the left side is a linear combination of y, y′ and y′′ (with
coefficients 1,−4 and 2, respectively), and it is non-homogeneous as the right side
does not equal zero.

The square in 10t2 is irrelevant for classifying linearity of the equation, as the
square operation is not being performed on the function variable y. Similarly, if we
had something like ty′′ − 4(sin t)y′ + 2ety = 10t2 instead, it would still be second
order linear non-homogeneous, because the left side is still a linear combination
of y, y′ and y′′ with function coefficients (namely, t, −4 sin t and 2et).
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Example 33

Classify the differential equation y′ − 2y3 = −4t.
It’s a first order equation (because the term with the highest derivative is y′.

It is non-linear because of the y3 term (the non-linear operation of taking a cube
is being applied to the function variable y). It is non-homogeneous for hopefully
obvious reasons.

To proceed, we pose a question: how to check whether a function is a solution of
a given ODE? Just like the situation we had with linear systems, the answer is what
you’re probably guessing: just plug the function into the left side of the ODE and see
what happens. Here’s an example:

Example 34

Verify whether y = 3e2t − 5e−2t is a solution of y′′ − 4y = 0.
It’s a direct computation:

y′′ − 4y = (3e2t − 5e−2t)′′ − 4(3e2t − 5e−2t)

= (6e2t + 10e−2t)′ − 12e2t + 20e−2t

= 12e2t − 20e−2t − 12e2t + 20e−2t

= 0.

So we conclude that yes, the given function is a solution of the ODE.

One problem remains. If the proposed solution were not given to us, how would
we find it? Again, this is in general very hard to do. So, we will focus on second order
linear homogeneous ODEs, with constant coefficients.

Theorem 4

Consider the differential equation ay′′ + by′ + cy = 0, with a, b, c ∈ R, and a 6= 0.
If r1 and r2 are the solutions of the characteristic equation ar2 + br + c = 0, then:

(i) if r1 and r2 are both real and distinct, the general solution of the given ODE
is y = c1er1t + c2er2t, with c1, c2 ∈ R.

(ii) if r := r1 = r2 is a real double root, the general solution of the given ODE is
y = c1ert + c2tert, with c1, c2 ∈ R.

(iii) if r1 and r2 are complex (and hence conjugate to each othera), the general
solution of the given ODE is y = c1eαt cos(βt) + c2eαt sin(βt), with c1, c2 ∈ R,
where r1 = α + iβ.

aComplex roots of a real polynomial always come in conjugate pairs.
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Of course, memorizing the above is probably a waste of time. The idea is to try
an exponential y = ert, and find the values of r for which this is indeed a solution.
Namely, y′ = rert and y′′ = r2ert, so

0 = ay′′ + by′ + cy = ar2ert + brert + cert = (ar2 + br + c)ert =⇒ ar2 + br + c = 0,

as ert 6= 0 may be cancelled.
Working case by case from here on saves you brain power. On the following ex-

amples, we will simultaneously explore this idea, as well as the fact that once suitable
initial conditions have been imposed, the solution to the so-called Initial Value Prob-
lem (“IVP”, for short) becomes unique.

Example 35 (Two distinct real roots)

(a) Find the general solution of y′′ − 3y′ − 18y = 0.

(b) Find the unique solution with initial conditions y(0) = 0 and y′(0) = 4.

For item (a), we start setting up the characteristic equation r2 − 3r − 18 = 0.
It may be factored as (r − 6)(r + 3) = 0, which says that the characteristic roots
are r1 = 6 and r2 = −3. Therefore, we know that y1 = e6t and y2 = e−3t are
two solutions. They are linearly independent because one is not a (real) multiple
of the other. However, since the given ODE is linear and homogeneous, the
dimension of the space of solutions equals the order of the equation. This says
that taking linear combinations of y1 and y2 does, in fact, produce all solutions of
this ODE. In other words, the general solution is

y = c1e6t + c2e−3t, with c1, c2 ∈ R.

For item (b), imposing two initial conditions (at the same point) allows us to solve
for the two coefficients c1 and c2. The relations y(0) = 0 and y′(0) = 4 becomes
the linear system{

c1 + c2 = 0
6c1 − 3c2 = 4

=⇒ c1 =
4
9

and c2 = −4
9

.

The solution of the given IVP is

y =
4
9

e6t − 4
9

e−3t.

Let’s see next what happens in the case where two complex conjugate roots appear.
Two additional facts are crucial to understand this case:

Theorem 5 (Euler’s Formula)

For any real number θ, we have eiθ = cos θ + i sin θ.
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One can prove this by playing around with Taylor series and using that the radii
of convergence of all functions involved are infinite. The second fact, which seems
worthy to justify now, is:

Proposition 2

Real and imaginary parts of a complex solution to a real linear homogeneous
ODE are real solutions.

Proof: Write your differential equation as L(y) = 0, where L is a linear differen-
tial operator. Say, in Example 35 we would have L(y) = y′′ − 3y′ − 18y. In any
case, assume that y1 + iy2 is a complex solution, i.e., y1 and y2 are real functions
such that L(y1 + iy2) = 0. Since the ODE is real and linear, we have the relation
L(y1 + iy2) = L(y1) + iL(y2). Now, a complex number equals zero if and only if both
real and imaginary parts are also equal to zero, so we conclude that L(y1) = L(y2) = 0,
which is to say precisely that y1 and y2 are solutions as well.

The justificative above suggests that solving linear ODEs really amounts to com-
puting the kernel/nullspace of a certain operator. We move on (phrasing things in a
lazier way, but with the same content as in Example 35):

Example 36 (Complex conjugate roots)

Solve the IVP: {
y′′ + 9y = 0
y(0) = 8, y′(0) = −8

The strategy will always be the same: first find the general solution of the
differential equation alone, and then use the given initial conditions to solve for
c1 and c2. The characteristic equation is simply r2 + 9 = 0, whose roots are ±3i.
We may just focus on one of them, say 3i. This says that e3it is a complex solution.
By Euler’s Formula,

e3it = cos(3t) + i sin(3t),

so Proposition 2 says that y1 = cos(3t) and y2 = sin(3t) are real solutions. They’re
clearly linearly independent, so the general solution of the differential equation is

y = c1 cos(3t) + c2 sin(3t), c1, c2 ∈ R.

With this in place, we move on to impose the initial conditions. Computing the
derivative as y′ = −3c1 sin(3t) + 3c2 cos(3t), we see that y(0) = 8 and y′(0) = −8
together give us

c1 = 8 and 3c2 = −8,

so the unique solution to the IVP is

y = 8 cos(3t)− 8
3

sin(3t).
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There is one last case to study.

Example 37 (Real double root)

Solve the IVP: {
y′′ − 2y′ + y = 0
y(0) = 4, y′(0) = 0

The characteristic equation of the given ODE in this case is just r2− 2r + 1 = 0,
so that (r − 1)2 = 0 says that r = 1 is a real double root. Hence y1 = et is one
solution, but since the equation has order 2, we need a second solution y2, linearly
independent from y1, to span the whole solution space via linear combinations.
Indeed, repeating y1 and writing c1et + c2et just leads to (c1 + c2)et, but c1 + c2 is
as arbitrary as c1 and c2, so it really counts as one single degree of freedom. One
attempt to create linear independence is to replace c1 + c2 with c1 + c2t, which
suggests that y2 = tet works as a second solution independent from y1 and that
the general solution is

y = c1et + c2tet, c1, c2 ∈ R.

This is indeed the case by Theorem 4. Imposing initial conditions works the same
as the other cases, so we may compute y′ = c1et + c2et + c2tet by the product rule.
Thus, y(0) = 4 and y′(0) = 0 together read as the system{

c1 = 4
c1 + c2 = 0

=⇒ c1 = 4 and c2 = −4,

and the unique solution to the IVP is

y = 4et − 4tet.

As a last observation, this mechanism can be used to solve linear homogeneous
ODEs with constant coefficients of any order, say

any(n) + an−1y(n−1) + · · ·+ a1y′ + a0y = 0, with a1, . . . , an ∈ R, an 6= 0,

provided one can solve the characteristic equation

anrn + an−1rn−1 + · · ·+ a1r + a0 = 0

instead. Once this equation has been completely factored, one builds the general so-
lution from the factors obtained, using what has been discussed so far. Let’s illustrate
this with one more complicated last example.
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Example 38 (Dealing with higher order)

Determine the general solution of a 5th order linear homogeneous ordinary differential
equation whose characteristic equation is factored as

(r− 2)(r− 3)2(r− (4 + 5i))(r− (4− 5i)) = 0.

Let’s understand each factor separately:

• The term (r− 2) provides y1 = e2t.

• The term (r− 3)2 provides y2 = e3t and y3 = te3t.

• The term (r− (4 + 5i)) provides the complex solution e(4+5i)t, so using Eu-
ler’s formula to write

e(4+5i)t = e4te5it = e4t(cos(5t) + i sin(5t)) = e4t cos(5t) + ie4t sin(5t)

gives us the real solutions y4 = e4t cos(5t) and y5 = e4t sin(5t).

We conclude that the general solution is

y = c1e2t + c2e3t + c3te3t + c4e4t cos(5t) + c5e4t sin(5t),

with c1, c2, c3, c4, c5 ∈ R.

If you want an extra reference for these things, I particularly like Chapters 3 and 4
of [2].
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12 March 29th

As a follow up from last class, we now move on to discuss non-homogeneous
second order linear ODE’s with constant coefficients. Namely, we consider

ay′′ + by′ + cy = f ,

where a, b, c ∈ R with a 6= 0 (or else the equation would be of first order instead), but
with the right side being equal to some arbitrary function f . Here’s what we need to
know about it:

Theorem 6

The general solution of ay′′ + by′ + cy = f is y = yp + yh, where yh is the general
solution of the associated homogeneous equation ay′′ + by′ + cy = 0, and yp is
any particular solution of the original non-homogeneous equation.

In other words, to solve such a non-homogeneous equation, we first consider its
homogeneous version and find yh, by methods already studied. As for finding yp,
however, the answer is dissapointing: we have to guess it. Of course, by “guess” we
mean a “reasonable” guess, in the sense that if f is a polynomial, trigonometric func-
tion, exponential, etc., we’ll try to find yp of the same type. This method of guessing
almost always works. We will explore this in the next examples, and also see how
could guessing could go wrong.

Example 39 (Polynomial non-homogeneous term)

Find the general solution of y′′ − 2y′ − 15y = 3t3 − 2t− 4.
We will always proceed with two steps, first finding the general solution yh

of the associated homogeneous equation y′′ − 2y′ − 15y = 0. The characteristic
equation is simply r2 − 2r− 15 = 0, which may be factored as (r− 5)(r + 3) = 0.
As this characteristic equation appeared by looking for the values of r for which
ert was actually a solution of the homogeneous equation, we obtain two linearly
independent solutions e5t and e−3t, so that yh = c1e5t + c2e−3t, with c1, c2 ∈ R.
It remains to find yp. As 3t3 − 2t− 4 is a polynomial of degree 3, we try to make
yp = At3 + Bt2 + Ct + D a polynomial of degree 3 as well. The goal is to find A,
B, C, and D, for which yp is actually a solution of the original non-homogeneous
equation. Plugging y′p = 3At2 + 2Bt + C and y′′p = 6At + 2B into the original
equation, and noting that y′′p − 2y′p− 15yp is a polynomial (as a linear combination
of derivatives of a polynomial is a polynomial), we may compare coefficients in
each degree to obtain the relations

−15A = 3
−6A− 15B = 0
6A− 4B− 15C = −2
2B− 2C− 15D = −4
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Now, you may use your vast knowledge of linear systemsa to obtain

A = −1
5

, B =
2
25

, C =
4

125
, and D =

512
1875

.

Hence we have that

yp = − t3

5
+

2t2

25
+

4t
125

+
512
1875

and that the general solution of the original non-homogeneous equation is

y =
t3

5
+

2t2

25
+

4t
125

+
512

1875
+ c1e5t + c2e−3t,

with c1, c2 ∈ R.
a... or cheat like me and use a software · ·^

Example 40 (Exponential non-homogeneous term)

Find the general solution of y′′ − 4y′ − 32y = 6e−3t.
Let’s start by finding the general solution yh of the associated homogeneous

equation y′′ − 4y′ − 32y = 0 first. Its characteristic equation is r2 − 4r − 32 = 0,
which may be factored as (r− 8)(r + 4) = 0. This implies, as usual, that we have
yh = c1e8t + c2e−4t, with c1, c2 ∈ R. As the non-homogeneous term in the original
equation is an exponential, we try yp = Ae−3t, and substitute it together with its
derivatives y′p = −3Ae−3t and y′′p = 9Ae−3t into the original equation to find the
value of A which makes yp into a solution. We have that

9Ae−3t − 4(−3Ae−3t)− 32Ae−3t = 6e−3t =⇒ 9A + 12A− 32A = 6,

so A = −6/11, since e−3t may be cancelled everywhere. Therefore, the partic-
ular solution is yp = (−6/11)e−3t, and the general solution of the original non-
homogeneous equation is

y = − 6
11

e−3t + c1e8t + c2e−4t,

with c1, c2 ∈ R.

Example 41 (Trigonometric non-homogeneous term)

Find the general solution of y′′ − y = 3 sin(2t).
We start considering the associated homogeneous equation y′′ − y = 0, whose

characteristic equation r2 − 1 = 0 has roots 1 and −1, to obtain that its general
solution is yh = c1et + c2e−t, with c1, c2 ∈ R. Now, as the non-homogeneous term
is trigonometric, we may try yp = A sin(2t) + B cos(2t). Of course one might
expect that B = 0 as the right side of the equation doesn’t have any y′ term, but
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for more complicated equations it is safer to keep both the sin and cos terms, as
the derivative of each of them equals the other, and things balance themselves out
(this is not a formal argument, but just a rough intuition). Anyway, we have that
y′′p = −4A sin(2t)− 4A cos(2t), and thus

y′′p − yp = 3 sin(2t) =⇒ −5A sin(2t)− 5B cos(2t) = 3 sin(2t),

so that A = −3/5 and B = 0 (as expected). We conclude that the solution of the
original non-homogeneous equation is

y = −3
5

sin(2t) + c1et + c2e−t,

with c1, c2 ∈ R.

At this point, it is worth pointing out that if you were asked to solve an Initial Value
Problem (IVP) with non-homogeneous ODE, you would have to, on top of everything
already done, use the given initial conditions to find c1 and c2 (by solving a linear
system). Here’s a tricky example:

Example 42 (Resonance phenomenon)

Find the general solution of y′′ + y = 3 cos t.
To find yh, we consider y′′ + y = 0 instead, whose characteristic equation is

r2 + 1 = 0, with roots r = ±i. This says that eit is a complex solution, but we
would like to have two linearly independent real solutions instead. They are ob-
tained by using Euler’s formula to write eit = cos t+ i sin t, and using that the real
and imaginary parts will be real solutions (as the equation is linear; revisit Propo-
sition 2, p. 53). So, yh = c1 cos t + c2 sin t, with c1, c2 ∈ R. As for yp, the obvious
guess is yp = A sin t + B cos t. Plugging this into the original non-homogeneous
equation leads to a disaster: 0 = 3 cos t, which is complete nonsense.

This disaster, however, is known as resonance. Namely, the reason why the
initial guess has failed is because the right hand side (which in this case is 3 cos t)
was already a solution of the associated homogeneous equation (choose c1 = 0
and c2 = 3 in the formula for yh). In vague terms, this creates an “artificial double-
root effect” on the homogeneous equation, so in the same way that when r was a
double root of the characteristic equation ar2 + br + c = 0 we had to, in addition
to the solution ert, consider a second solution tert, we multiply our old guess for
yp by t and try again.

Take two: let yp = At sin t + Bt cos t. Plugging this into the original non-
homogeneous equation leads (after 30 seconds or so of calculations) to

2A cos t− 2B sin t = 3 cos t =⇒ A =
3
2

and B = 0.

It was to be expected that terms with t cos t and t sin t should completely dissa-
pear: the introduction of the extra factors of t was just meant to kill the resonance,
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but the original right side did not have any such terms. In any case, we conclude
that the general solution of the original non-homogeneous equation is

y =
3t
2

sin t + c1 cos t + c2 sin t,

with c1, c2 ∈ R.

Remark (Nightmare fuel). It’s possible for resonance to persist even after multiplying
our initial guess by t. Imagine that instead of y′′ + y, we had something like scary like

y(4) + 2y′′ + y = 3 cos t,

such that 3 cos t and 3t cos t are both solutions of the associated homogeneous equation
(verify it yourself, or try to understand how I reverse engineered it). The point is that
the guess At sin t + Bt sin t would also fail! Since crying is not an option, we go one
step further and try yp = At2 sin t + Bt2 cos t instead. Exercise for the masochists:
check that this works. So, what’s the moral of the story? Keep multiplying your
guesses by t until the resonance goes away. It is probably a terrible idea to try to
identify immediately whether the given equation has resonance, and try to find the
smallest power of t you need to use to kill it. Do not let this cause you any paranoia:
try what you want to try, and if it doesn’t work, just multiply by t.

Example 43

Find the general solution of y′′′ − y′ = e2t + e3t.
Higher order linear ODEs with constant coefficients behave just like second or-

der equations, with the only additional difficulty being actually solving the char-
acteristic equation. In other words, there’s nothing special about order 2, we just
focus mostly on it for simplicity. The characteristic equation of y′′′ − y′ = 0 is just
r3 − r = 0, which is factored as r(r− 1)(r + 1) = 0, so that yh = c1 + c2et + c3e−t,
with c1, c2, c3 ∈ R. Note that c1 appears alone because it corresponds to r = 0
and e0t = 1. As for finding yp, we try yp = Ae2t + Be3t, combining the sepa-
rate guesses for each non-homogeneous term. Substituting this into the original
equation leads to

6Ae2t + 24Be3t = e2t + e3t =⇒ A =
1
6

and B =
1

24
.

We conclude that the general solution of the original non-homogeneous equation
is

y =
1
6

e2t +
1

24
e3t + c1 + c2et + c3e−t,

with c1, c2, c3 ∈ R.
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13 April 5th

We did a review on everything that was discussed about ordinary differential equa-
tions so far, answering students’ questions at random.
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14 April 12th

Now, we move on to Partial Differential Equations (“PDE”s, for short). They are
considerably harder to deal with than everything we have seen so far. We will try
to get a feeling for what is going on by exploring the strategy to solve two types of
problems:

• The heat flow problem:
∂u
∂t

(x, t) = β
∂2u
∂x2 (x, t), 0 < x < L, t > 0

u(0, t) = u(L, 0) = 0

u(x, 0) = f (x), 0 < x < L

Here’s what this is trying to model: we have a wire of length L, placed in the
x-axis, with endpoints at x = 0 and x = L, the value u(x, t) is the temperature of
the wire at the point x at time t, and the constant β is the heat diffusivity of the
wire’s material. The function f (x) describes the initial temperature distribution
along the wire, and the condition u(0, t) = u(L, t) = 0 says we want to keep the
temperature of the endpoints of the wire constant, and equal to 0◦C. The point
is that knowing the diffusivity and the initial temperature distribution, we can
predict how the temperature will be distributed in the future, provided we keep
the temperature at the endpoints of the wire always constant.

• The vibrating string problem:

∂2u
∂t2 (x, t) = α2 ∂2u

∂x2 (x, t), 0 < x < L, t > 0

u(0, t) = u(L, 0) = 0

u(x, 0) = f (x) 0 < x < L

∂u
∂t

(x, 0) = g(x) 0 < x < L

Here, we again have a string of length at least equal to L, positioned in the plane
as to have its endpoints at the x-axis, at coordinates x = 0 and x = L. The
initial position of the string is described by the graph of f (x), while g(x) is the
initial (vertical) velocity of the string, which is about to start oscillating. The
condition u(0, t) = u(L, 0) = 0 means that the endpoints of the string will remain
fixed throughout all of the motion to happen. Then u(x, t) is the position (more
precisely, the height), at time t, of the point which started at (x, f (x)). Given
all this information, we can predict the whole motion of the string, in the sense
that given any instant of time t and the initial position of a point in the string,
we’ll know where such point is located at time t. The PDE itself may be regarded
as Newton’s force law (force on the right side equals the acceleration at the left
side).
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The strategy for solving both of these problems starts with a simple technique,
called separation of variables. Namely, we write u(x, t) = X(x)T(t) for some single-
variable functions X and T, and see what the PDE says about X and T. The reason this
will work well here is because the PDE will give us ODEs for X and T instead — and
ODEs we are able to solve, to boot.

We will start considering a concrete heat flow problem.

Example 44

Solve the following heat flow problem:
∂u
∂t

(x, t) = 3
∂2u
∂x2 (x, t), 0 < x < π, t > 0

u(0, t) = u(π, 0) = 0

u(x, 0) = sin x− 6 sin(4x), 0 < x < π

We start making a separation of variables, u(x, t) = X(x)T(t). The PDE itself
becomes X(x)T′(t) = 3X′′(x)T(t). We then have that

X′′(x)
X(x)

=
T′(t)
3T(t)

= −λ ∈ R,

as the left side doesn’t depend on t and the right side doesn’t depend on x. The
reason for the negative sign on λ is a matter of convenience (in fact, as to make
plus signs appear next). In any case, we have the equations

X′′(x) + λX(x) = 0 and T′(t) + 3λT(t) = 0,

and we’ll use the first one to find out which values of λ may actually occur when
doing this procedure. To do so, we also need to see what the initial condition
u(0, t) = u(π, t) = 0 means in terms of X and T. But this is easy: it becomes just
the initial condition X(0) = X(π) = 0. So:

• If λ < 0, then X(x) = c1e
√
−λt + c2e−

√
λt, so X(0) = X(π) = 0 gives us that

c1 = c2 = 0, and so X = 0, which is no good.

• If λ = 0, then we have X(x) = c1 + c2x, so X(0) = X(π) = 0 gives us that
c1 = c2 = 0, and so X = 0, which is again no good.

• If λ > 0, then X(x) = c1 cos(
√

λt) + c2 sin(
√

λt). Now X(0) = 0 means that
c1 = 0, while X(π) = 0 says that sin(π

√
λ) = 0 (provided c2 6= 0). This can

only occur if π
√

λ = nπ for some integer n, meaning that we must have that
λ = n2.

So, for each integer n, we have found a solution Xn(x) = an sin(nx), where an
is a real number (we will keep relabeling constants as needed). With this in place,
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what is the corresponding Tn(t)? Solving the first order ODE T′n(t) = −3n2Tn(t)
leads to Tn(t) = bne−3n2t for some second real constant bn. With this in place,
setting cn = anbn, we have that

un(x, t) = Xn(t)Tn(t) = cne−3n2t sin(nx).

For each n, this function un satisfies almost everything required to solve the heat
flow problem, except for the initial distribution condition u(x, 0) = sin x− 6 sin(4x).
To achieve this, we consider the series u = ∑n≥1 un and find the cn’s to make this
work (as the PDE itself and the endpoint conditions are homogeneous, adding
un’s will also result in something satisfying them). Namely, setting

∑
n≥1

cne−3n2t sin(nx)
∣∣∣∣
t=0

= ∑
n≥1

cn sin(nx) = sin x− 6 sin(4x)

tells us that c1 = 1 and c4 = −6 does the trick (with cn = 0 for every n not equal
to 1 or 4). The desired solution is

u(x, t) = e−3t sin x− 6e−48t sin(4x).

Note that, just like in the above example, when looking at possibilities for λ we will
always have that λ ≤ 0 leads to X = 0. When solving concrete problems, one could
directly jump to the case where λ > 0, but it is still instructive to eliminate λ ≤ 0 to
keep track of what’s going on in each step of the solution. If f (x) is not a combination
of sines, finding cn’s may be tricky. Here’s where Fourier series come in: almost all
functions f (x) may be expressed as a Fourier series, and once this is done, reading the
coefficients cn becomes much easier. More on this later.

Next, we move on to a vibrating string problem:

Example 45

Solve the following vibrating string problem:

∂2u
∂t2 (x, t) = 3

∂2u
∂x2 (x, t), 0 < x < π, t > 0

u(0, t) = u(π, 0) = 0

u(x, 0) = 6 sin(2x) + 2 sin(6x) 0 < x < π

∂u
∂t

(x, 0) = 11 sin(9x)− 14 sin(15x) 0 < x < π

We start making a separation of variables, u(x, t) = X(x)T(t). The PDE itself
becomes X(x)T′′(t) = 3X′′(x)T(t). We then have that

X′′(x)
X(x)

=
T′′(t)
3T(t)

= −λ ∈ R,
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as the left side doesn’t depend on t and the right side doesn’t depend on x. This
leads to

X′′(x) + λX(x) = 0 and T′′(t) + 3λT(t) = 0,

while u(0, t) = u(π, t) = 0 implies that X(0) = X(L) = 0. As with the heat flow
problem, which values of λ may occur? There’s still nothing different, so let’s
copy and paste previous work:

• If λ < 0, then X(x) = c1e
√
−λt + c2e−

√
λt, so X(0) = X(π) = 0 gives us that

c1 = c2 = 0, and so X = 0, which is no good.

• If λ = 0, then we have X(x) = c1 + c2x, so X(0) = X(π) = 0 gives us that
c1 = c2 = 0, and so X = 0, which is again no good.

• If λ > 0, then X(x) = c1 cos(
√

λt) + c2 sin(
√

λt). Now X(0) = 0 means that
c1 = 0, while X(π) = 0 says that sin(π

√
λ) = 0 (provided c2 6= 0). This can

only occur if π
√

λ = nπ for some integer n, meaning that we must have that
λ = n2.

Hence, for each integer n, we have found a solution Xn(x) = cn sin(nx), where cn
is a real number. Finding the corresponding Tn(t), however, will go in a slightly
different way, since the ODE for Tn(t) has second order instead of first order. Now,
solving Tn(t) + 3n2Tn(t) = 0 leads to the characteristic equation r2 + 3n2 = 0, so
that r = ±in

√
3. We conclude that Tn(t) = cn,1 cos(n

√
3t) + cn,2 sin(n

√
3t), for

some constants c1, c2 ∈ R. It follows that

un(x, t) = Xn(x)Tn(t)

= an sin(nx)
(

cn,1 cos(n
√

3t) + cn,2 sin(n
√

3t)
)

= an sin(nx) cos(n
√

3t) + bn sin(nx) sin(n
√

3t),

where we reassemble constants, is a solution of the original PDE, satisfying the
initial endpoint condition u(0, t) = u(π, t) = 0, but not necessarily the initial
position and velocity conditions. We then consider the series u = ∑n≥1 un, and
try to find the values of an and bn so everything works. Namely, if

u(x, t) = ∑
n≥1

an sin(nx) cos(n
√

3t) + bn sin(nx) sin(n
√

3t),

then

∂u
∂t

(x, t) = ∑
n≥1
−n
√

3an sin(nx) sin(n
√

3t) + n
√

3bn sin(nx) cos(n
√

3t),

so
u(x, 0) = ∑

n≥1
an sin(nx) = 6 sin(2x) + 2 sin(6x)
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says we must have a2 = 6 and a6 = 2, with an = 0 for every n not equal to 2 or 6,
while

∂u
∂t

(x, 0) = ∑
n≥1

n
√

3bn sin(nx) = 11 sin(9x)− 14 sin(15x)

says that we must have 9
√

3b9 = 11 and 15
√

3b15 = −14, so that b9 = 11
√

3/27
and b15 = −14

√
3/45, while bn = 0 for every n not equal to 9 or 15.

Putting all of this together, we have that the solution to the given vibrating
string problem is

u(x, t) = 6 sin(6x) cos(2
√

3t) + 2 sin(6x) cos(6
√

3t)

+
11
√

3
27

sin(9x) sin(9
√

3t)− 14
√

3
45

sin(15x) sin(15
√

3t).
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We finally explore a bit of Fourier series here. To get some first intuition, let’s
compare it with a type of series we have already studied before:

• Taylor series: its partial sums (Taylor polynomials) approximate a function, near
a given point, with higher and higher degree polynomial expressions.

• Fourier series: its partial sum (trigonometric polynomials) approximate a func-
tion by superposing more and more “waves” of various frequencies.

Imagine something like the following picture3:

But how to actually compute them? The Fourier expansion4 of a function f (x) on
a symmetric interval [−L, L] is given by

f (x) ∼ a0

2
+ ∑

n≥1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx and bn =

1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx.

Here, the formula for an holds for n = 0, 1, 2, . . ., while the formula for bn holds for
n = 1, 2, . . .. There are many things to unpack here. First, there’s no b0 terms because
trying to plug n = 0 into the formula for bn gives just 0. Second, the coefficient a0
plays a different role than the coefficients an for n ≥ 1, and must always be addressed
separately. One reason for this is that their “qualitative” behavior is very distinct.
For example, the constant function 1 regarded as a wave has no amplitude, and its

3Taken from https://mathworld.wolfram.com/FourierSeriesSquareWave.html.
4“Fourier series” and “Fourier expansion” are used interchangeably. “Fourier transform” is some-

thing completely different, though.
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usual antiderivative, x, is a polynomial, while cos(nπx/L) has varying amplitute and
its usual antiderivative is trigonometric. The factor of 2 simply makes things work
and is explained by general symmetry reasons we’ll have opportunity to explore in
detail soon. Lastly, when expressing the Fourier series of a function, one uses the
approximate sign ∼ instead of an equality sign, as a reminder that convergence issues
of Fourier series are more subtle than convergence issues for, say, Taylor series.

It’s also convenient to note that while the argument nπx/L doesn’t look exactly
friendly, in most problems we have to deal with, the number L will be an integer
multiple of π, which makes things more tractable.

Example 46

Compute the Fourier expansion of the piecewise function f given by

f (x) =

{
x, if 0 ≤ x ≤ π,
x + π, if −π ≤ x < 0.

We may start trying to get some intution for what the graph of this function
looks like. See the next figure.

We must simply compute a0, an, and bn, and insert the results in a series. From
the figure, we immediately have that

a0 =
1
π

∫ π

−π
f (x)dx =

1
π
· π2

2
· 2 = π,

as we know that integrals of positive functions compute areas under graphs, and
we have two triangles with both base and height equal to π. As for an and bn with
n ≥ 1, we must break the integral from −π to π into two integrals, so we can
actually use the concrete expressions for f (x) (on each subinterval) given to us.
For example:

an =
1
π

∫ π

−π
f (x) cos(nx)dx
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=
1
π

(∫ 0

−π
f (x) cos(nx)dx +

∫ π

0
f (x) cos(nx)dx

)
=

1
π

(∫ 0

−π
(x + π) cos(nx)dx +

∫ π

0
x cos(nx)dx

)
=

1
π

(∫ 0

−π
π cos(nx)dx +

���
���

���
�:0∫ π

−π
x cos(nx)dx

)

=
∫ 0

−π
cos(nx)dx

=
sin(nx)

n

∣∣∣∣0
−π

= 0.

Again, breaking the original integral into two was needed so we could use the
concrete expressions given for f (x) on each interval. Being able to join things
back together on the

∫ π
−π x cos(nx)dx was a convenient coincidence due to the

fact that x appeared in both expressions defining f (x). This integral is zero for
symmetry reasons: the integral of an odd function over a symmetric interval
vanishes (namely, x is odd and cos(nx) is even, so the product x cos(nx) is odd).
Dealing with bn’s is similar, this time using that the integral of an even function
over a symmetric interval equals twice the integral over the right (or left) half
of the interval. We have that:

bn =
1
π

∫ π

−π
f (x) sin(nx)dx

=
1
π

(∫ 0

−π
f (x) sin(nx)dx +

∫ π

0
f (x) sin(nx)dx

)
=

1
π

(∫ 0

−π
(x + π) sin(nx)dx +

∫ π

0
x sin(nx)dx

)
=

1
π

(∫ 0

−π
π sin(nx)dx +

∫ π

−π
x sin(nx)dx

)
=

1
π

(∫ 0

−π
π sin(nx)dx + 2

∫ π

0
x sin(nx)dx

)
=

1
π

(
−π

n
cos(nx)

∣∣∣∣0
−π

+ 2

(
− x

n
cos(nx)

∣∣∣∣π
0
+

1
n

∫ π

0
cos(nx)dx

))

=
1
π

−π

n
(1− (−1)n) + 2

−π

n
(−1)n +

��
��

��*
0

sin(nx)
n2

∣∣∣∣π
0


= − 1

n
(1− (−1)n + 2(−1)n)

= − (1 + (−1)n)

n
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by using that cos(nπ) = (−1)n for any integer n. In green, we have also used
integration by parts with

u = x dv = sin(nx)dx

v = − 1
n

cos(nx) du = dx

In any case, we have obtained the Fourier expansion

f (x) ∼ π

2
− ∑

n≥1

1 + (−1)n

n
sin(nx) on [−π, π],

as desired. Since 1 + (−1)n equals 0 when n is odd and 2 when n is even, we may
set n = 2k and rewrite our answer as

f (x) ∼ π

2
− ∑

k≥1

1
k

sin(2kx) on [−π, π],

after simplifying 2/(2k) = 1/k.

In the above example, we were able to find the Fourier expansion of a function
f (x) which was not continuous (namely, the figure shows a jump discontinuity at
x = 0). This is another important difference between Taylor series and Fourier series.
For Taylor series, the function must have all derivatives existing at the chosen center
point, while a Fourier series does not require the choice of a center point (although
one could reasonably argue that the center in this case is 0) or derivatives to exist. The
only thing we must be able to do is to compute the relevant integrals, but integrals are
insentitive to a countable number of discontinuities.

When finding Fourier expansions, it is important to actually set up the series as
the final answer. While, of course, the bulk of the work is computing a0, an, and bn,
requiring the series as the final answer is more than just simple nagging. When trying
to apply these techniques to solve heat flow problems (and vibrating string problems,
although we won’t get into this) and thinking of the prototype solution

u(x, t) = ∑
n≥1

cne−β(nπ/L)2t sin
(nπx

L

)
,

we would like to compare the series

u(x, 0) = ∑
n≥1

cn sin
(nπx

L

)
with another series – this leads us to the conclusion that the cn’s must be the Fourier
coefficients of the initial temperature distribution function.

One issue, which is crucial to address here, is that the above series only has sine
terms, while a generic Fourier series has both sine and cosine terms. Moreover, the
Fourier expansions initially considered were happening on the symmetric interval
[−L, L], while heat flow problems happen on the domain [0, L]× [0, ∞) for (x, t).
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Question: How do we deal with Fourier expansions when the given function f (x) is
only defined (or a priori considered) on the interval [0, L], as opposed to [−L, L]?

Answer: We first extend the function f (x) to a function f̃ (x) on [−L, L], compute the
Fourier expansion of f̃ (x) on [−L, L], and then restrict it back to the original
interval [0, L].

While this idea, taken at face value, is simple enough, the problem is that there is
not a unique way to extend the function f . There are three main ways to do it:

• Periodic extension. Copy and paste the function defined on [0, L] to the interval
[−L, 0]:

• Even extension. Flip it across the y-axis:
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• Odd extension. Reflect the function across the origin:

This is a good point to observe that symmetries of a function reflect into symmetries
of its Fourier series. More precisely, the Fourier series of an even function defined on
a symmetric interval has no odd sine terms (i.e., bn = 0), while the Fourier series of an
odd function defined on a symmetric interval has no even cosine terms (i.e., an = 0).
This gives rise to Fourier sine series and Fourier cosine series of a function defined
on a half-interval [0, L] (this is called a “half-expansion”. This happens even if the
function to be extended were to have a “natural” continuous extension to an even or
odd function.

Different extensions serve different purposes. For example, for solving heat flow
problems, we use odd extensions as we want the resulting Fourier series to consist
only of sine terms, so we can easily read the coefficients cn from the prototype solu-
tion. If the endpoint condition u(0, t) = u(L, t) = 0 were replaced with an endpoint
condition (∂u/∂t)(0, t) = (∂u/∂t)(L, t) = 0 on the time derivative instead, we would
have to use even extensions and Fourier cosine series, as the prototype solution would
have been modified accordingly5.

With this in place, let’s see what happens with a concrete example:

5Exercise: what are the values of λ and solutions X to the equation X′′(x) + λX(x) = 0 subject to
X′(0) = X′(L) = 0 instead of X(0) = X(π) = 0?
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Example 47

Determine the Fourier sine-expansion of cos x on [0, π].
Let’s start by understanding what is the odd extension c̃os x of cos x looks like

(and noting that the fact that cos x, when considered on the full interval [−π, π]
to begin with, was already even, is irrelevant):

In this particular case, the periodic extension and the odd extension agree. We
already know that an = 0 for all n by symmetry reasons. As for the coefficients bn,
we have that

bn =
1
π

∫ π

−π
c̃os x sin(nx)dx =

2
π

∫ π

0
c̃os x sin(nx)dx =

2
π

∫ π

0
cos x sin(nx)dx,

since c̃os x sin(nx) is even (as the product of the two odd functions c̃os x and
sin(nx)), and c̃os x = cos x for x in the right interval [0, π] (this is what it means
to say that c̃os x is an extension of cos x). Of course, when solving problems like
this, you don’t have to go and write the above step carrying the extension of the
given function: go ahead and compute bn (or an, for even extensions) with the
extra coefficient of 2 and the integral being carried only over the “right” interval.
The point of doing this step here is illustrating that while the textbook [1] presents
different formulas for Fourier expansions, Fourier sine-expansions, and Fourier-
cosine expansion, they’re really the same thing, and no extra effort on memorizing
things should be made.

In any case, it remains to compute this integral. For that, we must rely on
product-to-sum trigonometric identities:

bn =
2
π

∫ π

0
cos x sin(nx)dx

=
2
π

∫ π

0

1
2
(sin((n + 1)x) + sin((n− 1)x))dx

=
1
π

∫ π

0
sin((n + 1)x) + sin((n− 1)x)dx

= − 1
π

(
cos((n + 1)x)

n + 1
+

cos((n− 1)x)
n− 1

) ∣∣∣∣π
0

= − 1
π

(
(−1)n+1 − 1

n + 1
+

(−1)n−1 − 1
n− 1

)
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(∗)
=

1 + (−1)n

π

(
1

n + 1
+

1
n− 1

)
=

2n(1 + (−1)n)

π(n2 − 1)
,

where in (∗) we have used that (−1)n+1 = (−1)n−1 (as the powers differ by an
even number) and distributed the negative sign to carry the simplification. This
means that we have

cos x ∼ ∑
n≥1

2(1 + (−1)n)n
π(n2 − 1)

sin(nx) on [0, π].

Noting that 1 + (−1)n is zero when n is odd and 2 when n is even, we may set
n = 2k and rewrite the answer as

cos x ∼ ∑
k≥1

8k
π(4k2 − 1)

sin(2kπ) on [0, π].

We conclude this course by seeing how things come full circle:

Example 48

Solve the following heat flow problem:
∂u
∂t

(x, t) = 10
∂2u
∂x2 (x, t), 0 < x < π, t > 0

u(0, t) = u(π, 0) = 0,

u(x, 0) = cos x, 0 < x < π

We start making a separation of variables, u(x, t) = X(x)T(t). The PDE itself
becomes X(x)T′(t) = 10X′′(x)T(t). We then have that

X′′(x)
X(x)

=
T′(t)

10T(t)
= −λ ∈ R,

as the left side doesn’t depend on t and the right side doesn’t depend on x. We
obtain

X′′(x) + λX(x) = 0 and T′(t) + 3λT(t) = 0,

and the endpoint conditions on u read X(0) = X(π) = 0. From here, it follows
that λ = n2 for some natural number n ≥ 1, and Xn(x) = an sin(nx) for some real
number an. Finding the corresponding Tn(t), we solve the first order ODE T′n(t) =
−10n2Tn(t): the solution is Tn(t) = bne−10n2t for some second real constant bn.
With this in place, setting cn = anbn, we have that

un(x, t) = Xn(t)Tn(t) = cne−10n2t sin(nx).
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For each n, this function un satisfies almost everything required to solve the heat
flow problem, except for the initial distribution condition u(x, 0) = cos x. To
achieve this, we consider the series u = ∑n≥1 un and find the cn’s to make this
work. In other words, we have that

∑
n≥1

cne−10n2t sin(nx)
∣∣∣∣
t=0

= ∑
n≥1

cn sin(nx) = cos x.

We have already seen that

cos x ∼ ∑
n≥1

2(1 + (−1)n)n
π(n2 − 1)

sin(nx) on [0, π],

so that

cn =
2(1 + (−1)n)n

π(n2 − 1)

for every n ≥ 1, and we conclude that the solution to the given heat flow problem
is

u(x, t) = ∑
n≥1

2(1 + (−1)n)n
π(n2 − 1)

e−10n2t sin(nx).

Using again that 1 + (−1)n is zero when n is odd and 2 when n is even, we may
set n = 2k and rewrite the answer as

u(x, t) = ∑
k≥1

8k
π(4k2 − 1)

e−40k2t sin(2kπ).

“Maybe our paths will cross
when this universe folds in and makes another.
Maybe, at the point

when all that is, and all that’s ever been,
collapses into everything else and is remade,
our paths will cross, however briefly, and

our terminus become a junction.
It may be a long shot. I will take it
and hope and trust our paths will cross again.”

OLIVER TEARLY — “EPILOGUE”
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