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The covariant exterior derivative
The exterior derivative on a smooth manifold M is a collection of operators
d: Ωk(M)→ Ωk+1(M), characterized by the Palais formula:

dω(X0, . . . , Xk) =
k

∑
i=0

(−1)i−1Xi (ω(X0, . . . , X̂i , . . . , Xk))

+ ∑
0≤i<j≤k

(−1)i+j ω([Xi , Xj ], X0, . . . , X̂i , . . . X̂j , . . . , Xk).

Whenever E is a vector bundle over M, we may consider E -valued forms
and set Ωk(M; E ) = Ωk(M) ⊗C∞(M) Γ(E ). Given a linear connection
∇ : X(M)× Γ(E )→ Γ(E ), we may define the covariant exterior derivative
d∇ : Ωk(M; E )→ Ωk+1(M; E ) by

d∇ω(X0, . . . , Xk) =
k

∑
i=0

(−1)i−1∇Xi (ω(X0, . . . , X̂i , . . . , Xk))

+ ∑
0≤i<j≤k

(−1)i+j ω([Xi , Xj ], X0, . . . , X̂i , . . . X̂j , . . . , Xk).
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The covariant exterior derivative

When E = M ×R is the trivial line bundle over M and ∇ is the standard
flat connection on E , then Ωk(M; E ) = Ωk(M) and d∇ = d.

But in general, it is no longer true that (d∇)2 = 0.

In fact, for ψ ∈ Ω0(M; E ) = Γ(E ), we have that:

[(d∇)2ψ](X , Y ) = R∇(X , Y )ψ

The curvature is in fact enough to describe other higher powers of d∇:

[(d∇)3ψ](X , Y , Z ) = R∇(X , Y )∇Z ψ+R∇(Y , Z )∇X ψ+R∇(Z , X )∇Y ψ

Even higher:

[(d∇)4ψ](X , Y , Z , W ) = {R∇(X , Y ), R∇(Z , W )}ψ
+ {R∇(Z , X ), R∇(Y , W )}ψ + {R∇(X , W ), R∇(Y , Z )}ψ.
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Codazzi tensor fields and examples
Let (M, g) be a Riemannian manifold and ∇ be its Levi-Civita connection.

Definition
A Codazzi tensor field on (M, g) is a twice-covariant symmetric tensor field
A on M with d∇A = 0, when A is regarded as a T ∗M-valued 1-form.

Explicitly, A is Codazzi if and only if

(∇X A)(Y , Z ) = (∇Y A)(X , Z )

for all X , Y , Z ∈ X(M) or, equivalently, if ∇A is fully symmetric.

Example (1)
If A is parallel, then A is Codazzi. In particular, if A = λg for some λ ∈ R.

Example (2)
(M, g) has harmonic curvature if and only if Ric is a Codazzi tensor field,
in view of div R = d∇Ric.
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Codazzi tensor fields and examples

Definition: A is Codazzi ⇐⇒ (∇X A)(Y , Z ) = (∇Y A)(X , Z )

Example (3)
(M, g) has harmonic Weyl curvature if and only if Sch is a Codazzi tensor
field, in view of div W = d∇Sch.

Example (4)
If (M, g) has constant sectional curvature K , and f ∈ C∞(M) is arbitrary,
then Af = Hess f + Kf g is Codazzi. (Uses d∇Hess f = R(·, ·,∇f , ·).)
Every Codazzi tensor field on (M, g) is locally of the form Af for some f .

Example (5)
If (M3, g) is a gradient-type Ricci soliton — that is, Ric +Hess f = λg for
some f ∈ C∞(M) and λ ∈ R — then A = e−f (Ric− scal g/2) is Codazzi.
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Codazzi tensor fields and examples

Example (6)
If (M, g) is a Riemannian manifold and M is a two-sided hypersurface car-
rying a unit normal field ξ and second fundamental form II — so that
g(S(X ), Y ) = II(X , Y )ξ for the shape operator S of M — then

[R(X , Y )Z ]⊥ = [(d∇II)(X , Y )Z ]ξ (Ricci equation)

for all X , Y , Z ∈ X(M).

If (M, g) has constant sectional curvature K , then

R(X , Y )Z = K (g(Y , Z )X − g(X , Z )Y ) (R = K ḡ©∧ ḡ)

is tangent to M.

Hence II is Codazzi.
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Some of what is known

Here are some well-known results on Codazzi tensors in (M, g):
Codazzi operators — obtained from Codazzi tensors via g —
commute with the Ricci operator (Bourguignon ’81).
For a Codazzi tensor with constant eigenvalues, all eigendistributions
are integrable and have totally geodesic leaves. (Widely well-known.)
On the open set consisting of points admitting neighborhoods on
which the eigenvalue functions are smooth and with constant
multiplicities, all eigendistributions are integrable and have totally
umbilic leaves (Derdzinski, ’80).
If a Codazzi tensor has dim M mutually distinct eigenvalues, then all
Pontryagin forms of M vanish (Derdzinski-Shen, ’83).
If a Lie group equipped a left-invariant Riemannian metric has a
non-parallel Codazzi tensor field, then it has both strictly positive and
strictly negative sectional curvatures (d’Atri, ’85).
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Reductive homogeneous spaces

A Riemannian manifold (M, g) is homogeneous if the natural action of
Iso(M, g) on M is transitive. Homogeneous spaces can always be expressed
in the form G/H, where G is a Lie group and H is a closed subgroup of G .

Definition
A homogeneous space G/H is reductive if there exists a vector-space direct
sum decomposition g = h⊕m, with m being Ad(H)-invariant.

The projection π : G → G/H induces an isomorphism dπe : m ∼= TeH(G/H).

This means that in the same way the geometry of a connected Lie group G
is controlled by its Lie algebra g, the geometry of a reductive homogeneous
space G/H is controlled through m.

Projecting the Lie bracket in g onto m, we obtain a nonassociative algebra
(m, [·, ·]m).
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Correspondences for reductive homogeneous spaces

Fact: the G-equivariant sections of a G-equivariant smooth fiber bundle
E → G/H are in one-to-one correspondence with elements of the fiber EeH
which are fixed by H. (If φ ∈ EeH is fixed, set ψgH = g · φ.)

Examples:
G-invariant vector fields on G/H are in one-to-one correspondence
with elements in m which are fixed by Ad(H).
G-invariant tensor fields on G/H are in one-to-one correspondence
with Ad(H)-invariant tensors (of the same type) on m.
G-invariant distributions on G/H are in one-to-one correspondence
with Ad(H)-invariant vector subspaces of m. A G-invariant
distribution P on G/H is integrable if and only if PeH is closed under
[·, ·]m (Tondeur, ’65).

Lastly, G-invariant connections∇ on G/H are in one-to-one correspondence
with Ad(H)-equivariant multiplications α : m×m→ m (Nomizu, ’54).
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What happens in m

Putting all of this together, we see that a twice-covariant G-invariant tensor
field A on G/H is Codazzi if and only if

α(X , A)(Y , Z ) = α(Y , A)(X , Z )

holds in m.

(α(X , A)(Y , Z )
.
= −A(α(X , Y ), Z )−A(Y , α(X , Z )) corresponds to ∇A.)

Diagonalizing A, we may write

m = m1 ⊕ · · · ⊕mr ,

where mi is the eigenspace associated with λi , and we order λ1 < · · · < λr .

Definition
A subalgebra k of m is called totally geodesic if k is closed under α, that is,
α(X , Y ) ∈ k whenever X , Y ∈ k.
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The algebraic structure of Codazzi tensors in G/H

Theorem (Marshall Reber–T., ’23)
Whenever A is a G-invariant Codazzi tensor field on G/H, there is an
eigenspace decomposition m = m1 ⊕ · · · ⊕ mr into mutually orthogonal
Ad(H)-invariant totally geodesic subalgebras of (m, [·, ·]m), and the com-
patibility condition

(λi −λk)
2〈[Xi , Yj ]m, Zk

〉
+(λj −λi )

2〈[Xi , Zk ]m, Yj
〉
= 0 (†)

holds for all X , Y , Z ∈ m and i , j , k ∈ {1, . . . , r}.

Conversely, if a direct sum decomposition m = m1 ⊕ · · · ⊕mr into mutu-
ally orthogonal Ad(H)-invariant vector subspaces is given and (†) holds,
any choice of mutually distinct real constants λ1, . . . , λr gives rise to a
G-invariant Codazzi tensor field on G/H via A =

⊕r
i=1 λi 〈·, ·〉|mi×mi .

In addition, ∇A 6= 0 if and only if there are mutually distinct indices i , j , k
with 〈Xi , [Yj , Zk ]m〉 6= 0, in which case A has ≥ 3 distinct eigenvalues.
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The canonical connection

The canonical connection of second kind on G/H is the connection ∇0

corresponding to the zero product in m. Its curvature tensor is given by
R0(X , Y )Z = −[[X , Y ]h, Z ].
In view of the Jacobi identity

∑
cyc

[[X , Y ]h, Z ] + ∑
cyc

[[X , Y ]m, Z ] = 0,

we see that (m, [·, ·]m) is a Lie algebra if and only if ∇0 satisfies the first
Bianchi identity.
We can also define the sectional curvature K 0 by

K 0(RX ⊕RY ) =
〈R0(X , Y )Y , X 〉

‖X‖2‖Y ‖2 − 〈X , Y 〉2 .

To state our next result, we consider the difference curvature K d = K −K 0.
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∃ Codazzi =⇒ mixed-sign curvatures

Theorem (Marshall Reber–T., ’23)
If G/H has a G-invariant Codazzi tensor field A with∇A 6= 0, the difference
sectional curvature K d assumes both positive and negative values.

Briefly, the proof consists in carefully analyzing the expression

K d (Π) =
2

(λi − λj)2 ∑
k
(λi − λj)(λj − λk)‖[Xi , Yj ]k‖2,

for Π = RXi ⊕RYj , and choosing suitable indices i and j .
Example
When G/H is naturally reductive (i.e., 〈[X , Y ]m, Z 〉+ 〈Y , [X , Z ]m〉 = 0),
every Codazzi tensor is parallel. Indeed, in this case one has

K d (Π) =
1
4‖[X , Y ]m‖2 ≥ 0

whenever {X , Y } is an orthonormal basis of Π.
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The bigger picture

Recall: div R = d∇Ric holds for any Riemannian manifold (M, g).

Back to harmonic curvature: div R = 0.

Conjecture (Aberaouze–Boucetta, ’22)
Any homogeneous Riemannian manifold with harmonic curvature must have
parallel Ricci tensor.

Here are some instances on where the conjecture is true:
In dimension 4 (Podesta–Spiro, ’95; Haji-Badali–Zaeim, ’15)
When M is Sn or RPn (Peng–Qian, ’16)
When M is in a certain class of compact Lie groups (Wu–Sun, ’22)
When M is naturally reductive (Marshall Reber–T., ’23).
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Thank you for your attention!

(scan here for more
on my research)
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