Killing vector fields on compact pseudo-Kähler 22 manifolds are holomorphic

Andrzej Derdzinski & Ivo Terek[†]

Department of Mathematics – The Ohio State University

• H • E UNIVERSITY

[†]terekcouto.10osu.edu

Abstract

It is well-known that Killing vector fields on compact Kähler manifolds are necessarily real-holomorphic. Here, we generalize this result — with two different proofs — to compact pseudo-Kähler manifolds (that is, without assuming that the metric is positive-definite), under the additional assumption that the underlying complex manifold has the $\partial \partial$ property. Lastly, in real dimension 4, the $\partial \overline{\partial}$ property turns out to be unnecessary. We do not know if the $\partial \overline{\partial}$ assumption can be removed in higher dimensions.

if it contains a real-valued closed differential form, and this happens if and only if, for every p, q, the $H^{q,p}$ -component equals the conjugate of the $H^{p,q}$ -component.

Lemma. For any ∇ -parallel real 2-form α on a complex manifold M with a Kähler connection (i.e., $\nabla J = 0$), such that $\alpha(J, J) = -\alpha$, the complex-valued 2-form $\alpha - i\alpha(J, \cdot)$ is holomorphic. If, in addition, M is compact and $(\partial \overline{\partial})$ holds, then α being exact implies that $\alpha = 0$.

Introduction/Preliminaries

By a *pseudo-Kähler manifold* we mean a pseudo-Riemannian manifold (M, g) endowed with a ∇ -parallel almost-complex structure J, where ∇ is the Levi-Civita connection of g, which consists of isometries $J_x \colon T_x M \to T_x M$, for each $x \in M$. In this setting, J is automatically integrable. In addition, we say that (M, g) is a pseudo-Kähler $\partial \overline{\partial}$ -manifold if the underlying complex manifold satisfies the $\partial \overline{\partial}$ lemma:

every closed ∂ -exact of $\overline{\partial}$ -exact (p,q) form $(\partial \overline{\partial})$ equals $\partial \bar{\partial} \lambda$ for some (p-1, q-1)-form λ . For example, when M is compact and g is Riemannian, $(\partial \overline{\partial})$ holds. Manifolds of Fujiki class \mathcal{C} also satisfy $(\partial \overline{\partial})$. A vector field v on (M, g) is called: (i) a Killing vector field if $\mathcal{L}_v g = 0$.

Whenever v is g-Killing, the Lie derivative $\mathcal{L}_v \omega$ is parallel and exact (by Cartan's homotopy formula). As

 $[\mathcal{L}_v J]J = -J[\mathcal{L}_v J] \quad \text{and} \quad \mathcal{L}_v \omega = g([\mathcal{L}_v J], \cdot), \quad (5)$ the lemma above applies to $\alpha = \mathcal{L}_v \omega$.

The real-dimension four case

Theorem B. In real-dimension four, the conclusion of Theorem A holds without the $\partial \overline{\partial}$ property.

Here, we start by noting that the vector bundle endomorphisms $C: TM \to TM$ which are, at every point $x \in M$, g_x -skew-adjoint (that is, $C^* = -C$), form the sections of the vector subbundle $\mathfrak{so}(TM, \mathfrak{g})$ of $\operatorname{End}_{\mathbb{R}}(TM)$.

We let \mathcal{E} denote the vector subbundle of $\mathfrak{so}(TM, g)$ consisting of the endomorphisms which are, in addition, C-antilinear: $C^* = -C$ and JC = -CJ. It holds that

 \mathcal{E} is a complex vector bundle of rank m(m-1)/2, where $m = \dim_{\mathbb{C}} M$, with a pseudo-Hermitian (6)

(ii) real-holomorphic if $\mathcal{L}_v J = 0$. If $\omega = g(J \cdot, \cdot)$ is the Kähler form of (M, g), we note that (ii) above is equivalent to $\mathcal{L}_v \omega = 0$ (in view of $\nabla g = 0$).

Objective

Investigate the relation between Killing and real-holomorphic vector fields in indefinite metric signature.

Main results

In general dimension

Theorem A. Every Killing vector field on a compact pseudo-Kähler $\partial \bar{\partial}$ -manifold is real-holomorphic.

In any complex manifold M, every closed (p, 0)-form is holomorphic; when M is compact and $(\partial \bar{\partial})$ holds, the converse holds and every holomorphic differential form is closed, cf. [2, p. 269] and [3, p. 101]. As a consequence, we have that

> whenever $(\partial \bar{\partial})$ holds, if a (p, 0)-form ζ (with (1)p > 1) is such that $\partial \zeta$ is closed, then $\partial \zeta = 0$.

fiber metric whose real part is g. Whenever \boldsymbol{v} is g-Killing,

> the Lie derivative $\mathcal{L}_v J$ is a parallel section of \mathcal{E} , such that $(\mathcal{L}_v J, \mathcal{L}_v J)_{L^2} = 0$,

(7)

as a consequence of a general fact: any exact p-form on a compact pseudo-Riemannian manifold is L^2 -orthogonal to all parallel p-times covariant tensor fields.

When $m = 2, \mathcal{E}$ is a *line* bundle due to (6), and its pseudo-Hermitian fiber metric must be positive or negative definite. The same must now hold for its g-induced real part. Hence, (7) implies that $\mathcal{L}_v J = 0$, as required.

Conclusion

- •Killing vector fields on compact pseudo-Kähler $\partial \overline{\partial}$ manifolds are real-holomorphic.
- The $\partial \bar{\partial}$ condition can be dropped in real-dimension four.
- It is still an open question whether the $\partial \bar{\partial}$ assumption may be dropped in higher dimensions.

Acknowledgements

Now, if *v* is g-Killing, the 1-form

$$\boldsymbol{\xi} = g(\boldsymbol{J}\boldsymbol{v}, \boldsymbol{\cdot}) - \mathrm{i}g(\boldsymbol{v}, \boldsymbol{\cdot}) \tag{2}$$

is of bidegree (1, 0), with

$$\partial \xi = g([\mathcal{L}_v J], \cdot) - ig([\mathcal{L}_v J]J, \cdot),$$

$$\bar{\partial} \xi = ig((J[\nabla v]J - \nabla v), \cdot).$$
(3)

With this in place, $\partial \xi$ is parallel, and hence closed. Therefore $\partial \xi = 0$ due to (1). Taking the real part, we see that $\mathcal{L}_v J = 0$, as desired.

An alternative proof of Theorem A

Whenever a compact complex manifold has the $\partial \overline{\partial}$ property, there is a Hodge decomposition

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}M, \tag{4}$$

where each $H^{p,q}M$ consists of Dolbeaut cohomology classes of closed (p, q)-forms. A complex cohomology class is *real*

We would like to thank Kirollos Masood for bringing Yamada's 2012 paper to our attention, Fangyang Zheng for very useful comments regarding the $\partial \overline{\partial}$ condition, and Takumi Yamada for a brief but helpful communication.

References

[1] A. Derdzinski and I. Terek, Killing vector fields in compact pseudo-Kähler manifolds. To appear in J. Geom. Anal. [2] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), pp. 245–274.

[3] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Math. 439, Springer-Verlag, 1975.

[4] T. Yamada, *Holomorphic vector fields of compact pseudo-*Kähler manifolds. J. Geom. Phys. 62 (2012), pp. 740–750.