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The Weyl curvature tensor

We will start by recalling the definition of the Weyl curvature tensor W of
a pseudo-Riemannian manifold (M, g).

The curvature tensor of Sn equipped with its round metric is given by

R(X , Y , Z , V ) = g(Y , Z )g(X , V )− g(X , Z )g(Y , V )

R(X , Y , Z , V ) = g(Y , Z )g(X , V )− g(X , Z )g(Y , V )︸ ︷︷ ︸
(g©∧ g)(X ,Y ,Z ,V )

This is a quadratic expression in g. Polarize!

2(T ©∧ S)(X , Y , Z , V )
.
= T (Y , Z )S(X , V )− T (X , Z )S(Y , V )

+ S(Y , Z )T (X , V )− S(X , Z )T (Y , V )

The ©∧ -multiplication between symmetric type (0, 2) tensor fields is always
a type (0, 4) tensor field with the “symmetries of a curvature”.
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In any pseudo-Riemannian manifold (Mn, g), we may ©∧ -divide R by g:

R = g©∧ P + W , W = Weyl curvature tensor of (M, g).

Here are the main facts about W :
W is the remainder of the ©∧ -division of R by g.
W is the “Ricci-traceless” part of R.
W is the part of R not constrained by Einstein’s field equations.
R has n2(n2 − 1)/12 independent components, while Ric has
n(n + 1)/2: the remaining ones all come from W .
W = 0 whenever dim M ≤ 3.
If dim M ≥ 4, (M, g) is conformally flat if and only if W = 0.

The condition we are interested in is ∇W = 0.

Definition (ECS manifold)
A pseudo-Riemannian manifold (M, g) is called essentially conformally sym-
metric if ∇W = 0 but neither W = 0 nor ∇R = 0.
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The metric signature

ECS manifolds are objects of strictly indefinite nature:

Theorem (Roter, 1977)
For a Riemannian manifold (M, g): ∇W = 0 ⇐⇒ W = 0 or ∇R = 0.

Roter has also shown that ECS manifolds exist in all dimensions starting
from 4, and realizing all possible indefinite metric signatures.

Every ECS manifold carries a distinguished null parallel distribution, which
helps control its geometry:

Definition
The Olszak distribution of an ECS manifold (M, g) is D ↪→ TM given by

Dx = {v ∈ Tx M | gx (v , ·) ∧Wx (v ′, v ′′, ·, ·) = 0, for all v ′, v ′′ ∈ Tx M},

for every x ∈ M.
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More on the Olszak distribution

The Olszak distribution was originally introduced for the more general study
of conformally recurrent manifolds, and in this setting it is already true that
D is indeed smooth, parallel and null.

In the ECS case, the rank of D is always equal to 1 or 2. For this reason,
we speak of rank-one/rank-two ECS manifolds.

Theorem (Derdzinski-Roter, 2009)
Let (M, g) be an ECS manifold, and D be its Olszak distribution. Then:

i The Ricci endomorphism of (M, g) is D-valued.
ii The connection induced in the quotient bundle D⊥/D over M is flat.
iii The connection induced in D itself is flat when (M, g) is of rank one.

The local structure of ECS manifolds has been determined by Derdzinski
and Roter in 2009.
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A rank-one example

Example (Conformally symmetric pp-wave manifolds)
Let (V , 〈·, ·〉) be a pseudo-Euclidean vector space of dimension n− 2 ≥ 2,
A ∈ sl(V ) be self-adjoint, I ⊆ R be an open interval and f : I → R be a
smooth function. Consider

(M̂, ĝ) = (I ×R× V , κ dt2 + dt ds + 〈·, ·〉),
where κ : M̂ → R is given by κ(t, s, v) = f (t)〈v , v〉+ 〈Av , v〉.
Then (M̂, ĝ) has ∇W = 0, with:

W = 0 ⇐⇒ A = 0;
∇R = 0 ⇐⇒ f is constant.

In the ECS case, the Olszak distribution D is spanned by the null parallel
coordinate vector field ∂s , and (V , 〈·, ·〉) is isometrically identified with the
vector space of parallel sections of D⊥/D.
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About compact ECS manifolds

With the local structure of ECS manifolds being fully understood, the next
step is to address global aspects. The first question is whether compact
ECS manifolds exist.

Theorem (Derdzinski-Roter, 2010)
In every dimension n = 3j + 2, j = 1, 2, 3, . . ., there exists a compact Ricci-
recurrent ECS manifold (M, g) of any prescribed indefinite metric signature,
which is diffeomorphic to a torus bundle over S1, but not homeomorphic to
(or even covered by) a torus.

These examples are all of the form M = M̂/Γ, where Γ is some subgroup
of Iso(M̂, ĝ) acting freely and properly discontinuously on M̂.
The strange dimensions n = 3j + 2 were a particularity of their construction,
which obtained a 5-dimensional example with dim V = 3, but turned out
to be “compatible” with taking cartesian powers of (V , 〈·, ·〉), leading also
to dimensions 8, 11, 14, etc..
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The isometry group of (M̂, ĝ)

Again: (V , 〈·, ·〉) has dim V = n− 2, A ∈ sl(V )r {0} is self-adjoint, f is
nonconstant on an open interval I ⊆ R, and our “rank-one ECS model” is
(M̂, ĝ) = (I ×R× V , κ dt2 + dt ds + 〈·, ·〉).

1 S is the group of the triples σ = (q, p, C) ∈ Aff(R)×O(V ) with
CAC−1 = q2A and q2f (qt + p) = f (t).

2 (E, Ω) is the symplectic vector space of solutions u : I → V of
ü(t) = f (t)u(t) + Au(t), with Ω(u, û) = 〈u̇, û〉 − 〈u, û·〉.

Note: S � E, I, R via (σu)(t) = Cu(q−1(t − p)), σt = qt + p, σs = q−1s.
3 The Heisenberg group H = R× E associated with (E, Ω), with

operation given by (r , u)(r̂ , û) = (r + r̂ −Ω(u, û), u + û).

Theorem
Iso(M̂, ĝ) is isomorphic to a semidirect product S n H.

(σ, r , u)(σ̂, r̂ , û) = (σσ̂, r + q−1r̂ −Ω(u, σû), u + σû)
(σ, r , u)(t, s, v) = (σt,−〈u̇(σt), 2σv + u(σt)〉+ q−1s + r , σv + u(σt)〉
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The groups G(σ)

S: group of all σ = (q, p, C) ∈ Aff(R)×O(V , 〈·, ·〉) respecting f and A.

As we have seen, the group Iso(M̂, ĝ) = SnH can be difficult to deal with.
We restrict our search for compact-quotient subgroups Γ of Iso(M̂, ĝ) to
specific groups G(σ), with σ ∈ S.

More precisely: G(σ) = {(σk , r , u) | k ∈ Z and (r , u) ∈ H} ∼= Zn H.

The formulas for the group operation in G(σ) and its action on M̂ become
simplified versions of what we had in the previous page.

The element σ ∈ S is always chosen according to two situations:
i translational: I = R and σ = (1, p, C) for some “period” p > 0.
ii dilational: I = (0, ∞) and σ = (q, 0, C) for some q ∈ (0, ∞)r {1}.

(In both cases, C ∈ O(V , 〈·, ·〉).)
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The translational-dilational dichotomy

The reason for the names “translational” and “dilational” goes beyond the
meaning suggested by the actions of the elements (1, p), (q, 0) ∈ Aff(R).

In general, we say that an abstract ECS manifold (M, g) is translational
or dilational according to whether the holonomy group of the natural flat
connection induced in D is finite or infinite.

If (M̃, g̃) is the universal covering of (M, g), with M = M̃/Γ for some
Γ ∼= π1(M), and t : M̃ → R is a function whose (parallel) gradient spans
D̃, then for every γ ∈ Γ there is (q, p) ∈ Aff(R) such that t ◦ γ = qt + p.

This gives us two homomorphisms

Γ 3 γ 7→ (q, p) ∈ Aff(R) and Γ 3 γ 7→ q ∈ R r {0},

and it turns out that the holonomy group of the connection induced in D

equals the image of the second homomorphism.
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First-order subspaces
Recall: any rank-one ECS model (M̂, ĝ) gives rise to the symplectic vector
space (E, Ω) of solutions u : I → V of the ODE ü(t) = f (t)u(t) + Au(t).

For each t ∈ I, we have the corresponding evaluation mapping δt : E→ V ,
given by δt(u) = u(t). (They’re obviously surjective.)

Definition
A vector subspace L ⊆ E is called a first-order subspace of (E, Ω) if, for
every t ∈ I, the restriction δt |L : L→ V is an isomorphism.

First-order subspaces of (E, Ω) are in one-to-one correspondence with curves
B : I → End(V ) satisfying Ḃ + B2 = f + A, via

L = {u ∈ E | u̇(t) = B(t)u(t) for all t ∈ I}.
Here:

i L is Lagrangian if and only if each B(t) is self-adjoint.
ii L is σ-invariant if and only if B(σt) = q−1CB(t)C−1.
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A criterion for the ∃ of cpct.-quot. subgps. of G(σ)

Theorem
For a rank-one ECS model manifold (M̂, ĝ), and an isometry γ = (σ, b, w)
with σ ∈ S chosen as before, the following conditions are equivalent:

a There is a discrete subgroup Γ of G(σ) acting freely and properly
discontinuously on M̂ with a compact quotient M = M̂/Γ.

b There is a σ-invariant first-order subspace L of (E, Ω), a lattice
Σ ⊆ R×L with Cγ[Σ] = Σ, and θ ≥ 0 such that
Σ ∩ (R× {0}) = Zθ × {0} and Ω(u, û) ∈ Zθ for all u, û ∈ Λ, where
Λ is the image of Σ under the projection R×L→ L.

If (b) holds, Γ in (a) can be taken to be the group generated by γ and Σ
and there is a locally trivial fibration M → S1 whose fibers, all diffeomorphic
to a torus or to a 2-step nilmanifold according to whether L is Lagrangian
or not, are the leaves of D⊥. Finally, M equipped with its natural quotient
metric is translational and complete, or dilational and incomplete, according
to whether σ = (1, p, C) or σ = (q, 0, C).
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Very brief sketch of (b) implies (a)

First, we show that the quotient N = (R× L)/Σ is compact, where the
lattice Σ acts on R×L by Heisenberg left-translations.

Then, if ε is 0 or 1 (depending on whether σ is translational or dilational),
we let w̃ ∈ L be the unique element with w̃(σε) = w(σε), and let b̃ be
given by b̃ = b − 〈ẇ(σε)− B(σε)w(σε), w(σε)〉.

Then φ : R×L→ R×L given by

φ(r , u) =
(
q−1r + b̃ −Ω(w̃ − 2w , σu), σu + w̃

)
is Σ-equivariant, and hence passes to the quotient Φ : N → N.

Finally, we set M = (I ×N)/Z, where k · (t, Σ(r , u)) = (σkt, Φk Σ(r , u)).

This works.

Ivo Terek, OSU Compact LH manifolds with ∇W = 0

13
/
26



Theorem (Derdzinski-T., 2022)
There exist compact rank-one translational ECS manifolds of all dimen-
sions n ≥ 5 and all indefinite metric signatures, forming the total space of
a nontrivial torus bundle over S1 with its fibers being the leaves of D⊥, all
geodesically complete, and none locally homogeneous. In each fixed dimen-
sion and metric signature, there is an infinite-dimensional moduli space of
local-isometry types.

Theorem (Derdzinski-T., 2023)
There exist compact rank-one dilational ECS manifolds of all odd dimensions
n ≥ 5 and with semi-neutral metric signature, including locally homogeneous
ones, forming the total space of a nontrivial torus bundle over S1 with its
fibers being the leaves of D⊥, all of them geodesically incomplete. In each
fixed odd dimension, there is an infinite-dimensional moduli space of local-
isometry types.

Ivo Terek, OSU Compact LH manifolds with ∇W = 0

14
/
26



The dilational construction

Fix σ = (q, 0, C), with q ∈ (0, ∞)r {1} and C to be chosen later.

Based on the criterion for the existence of cocompact subgroups of G(σ),
with θ = 0, our goal is to find: a first-order σ-invariant Lagrangian subspace
L of (E, Ω) and a conjugation-invariant lattice Σ ⊆ R×L.

At the same time, we must find a smooth function f : (0, ∞) → R and a
self-adjoint A ∈ sl(V )r {0} with the correct spectral properties to be used
as model data.

Obtaining such f and A, in this case, is simple, and it is the existence of
L and Σ which pose a challenge. It ultimately relies on the combinatorial
structure we will discuss next.
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Z-spectral systems

Definition
A Z-spectral system is a quadruple (m, k, E , J) consisting of two in-
tegers m, k ≥ 2, an injective function E : V → Z r {−1}, where
V = {1, . . . , 2m}, and a function J : V → {0, 1}, satisfying for every
i , i ′ ∈ V that:

a k + 1 = 2E (1) (and so k must be odd).
b E (i) + E (i ′) = −1 and J(i) + J(i ′) = 1 whenever i + i ′ = 2m + 1.
c E (i)− E (i ′) = k and J(i) + J(i ′) = 1 whenever i ′ = i + 1 is even.
d The set Y = {−1} ∪ {E (i) | i ∈ V and J(i) = 1} is symmetric

about zero.

The spectral selector S = J−1(1) is simultaneously a selector for both two-
element subset families

{{i , i ′} | i + i ′ = 2m + 1} and {{i , i ′} | i ′ = i + 1 is even}.
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Z-spectral systems

Definition
A Z-spectral system is a quadruple (m, k, E , J) consisting of two in-
tegers m, k ≥ 2, an injective function E : V → Z r {−1}, where
V = {1, . . . , 2m}, and a function J : V → {0, 1}, satisfying for every
i , i ′ ∈ V that:

a k + 1 = 2E (1) (and so k must be odd).
b E (i) + E (i ′) = −1 and J(i) + J(i ′) = 1 whenever i + i ′ = 2m + 1.
c E (i)− E (i ′) = k and J(i) + J(i ′) = 1 whenever i ′ = i + 1 is even.
d The set Y = {−1} ∪ {E (i) | i ∈ V and J(i) = 1} is symmetric

about zero.

The reason we care about this is that for any Z-spectral system (m, k, E , J)
and q ∈ (0, ∞)r {1} such that q + q−1 ∈ Z, the (m + 1)-element set
{qa | a ∈ Y } is the spectrum of some matrix in GL(m + 1,Z).
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“Odd-dimensional” systems...

Example
For every odd integer m ≥ 3, there is a Z-spectral system (m, m + 2, E , J).
Writing m = 2r − 3 with r ≥ 3, and (i , i ′) = (2j − 1, 2j) whenever i , i ′ ∈ V

and i ′ = i + 1 is even,we define the function E by

(E (2j − 1), E (2j)) =



(r ,−r + 1) if j = 1,
(j − 1,−2r + j) if 1 < j < r − 1 and r is even,
(2r + j − 2, j − 1) if 1 < j < r − 1 and r is odd,
(r − 1,−r ) if j = r − 1,
(j − 2r + 2, j − 4r + 3) if r − 1 < j < m and r is odd,
(j + 1, j − 2r + 2) if r − 1 < j < m and r is even,
(r − 2,−r − 1) if j = m,

and let the function J be given by J(i) = E (i)mod 2, so that

Y = {−1} ∪ (Zodd ∩ E [V]), where Zodd = Zr 2Z.
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... and no “even-dimensional” ones.

Proposition
There are no Z-spectral systems (m, k, E , J) with even m.

Proof idea: Let (m, k, E , J) be a Z-spectral system with even m, written
as m = 2s for some s ∈ Z. The “exponent vector” E ∈ Z4s has the form

E = (a1, a1 − k, . . . , as , as − k,−1− as + k,−1− as , . . . ,−1− a1 + k,−1− a1)

for some a1, . . . , as ∈ Z. Now, let εj be 1 or −1 according to whether
{2j − 1, 2m − 2j + 1} ⊆ S or {2j , 2m − 2j + 2} ⊆ S. As the set
Y = {−1} ∪ E [S ] is symmetric about zero,

1 = ∑
i∈S

E (i) =
s

∑
j=1

(−1 + εjk),

and so
(
∑s

j=1 εj
)

k = s + 1. For ` negative εj ’s, we obtain the relation
(s − 2`)k = s + 1. Both sides have different parities, a contradiction.
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Defining dilational ECS data
Let n ≥ 5 be odd and set m = n− 2.

Fix a Z-spectral system (m, n, E , J), a m-dimensional pseudo-Euclidean vec-
tor space (V , 〈·, ·〉) with semi-neutral signature, and q ∈ (0, ∞)r {1} with
q + q−1 ∈ Z.

Defining A and C : let (e1, . . . , em) be a basis of (V , 〈·, ·〉) on which

〈·, ·〉 ∼


0 0 . . . 0 ε
0 0 . . . ε 0
...

... . . . . . . ...
0 ε . . . 0 0
ε 0 · · · 0 0

 , ε ∈ {1,−1},

and define

a(j) = E (2j − 1) + 1− n
2 = E (2j) + 1 + n

2 , j = 1, . . . , m.
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Defining dilational ECS data

Defining A and C : let (e1, . . . , em) be a basis of (V , 〈·, ·〉) on which

〈·, ·〉 ∼


0 0 . . . 0 ε
0 0 . . . ε 0
...

... . . . . . . ...
0 ε . . . 0 0
ε 0 · · · 0 0

 , ε ∈ {1,−1},

and define a(j) = E (2j − 1) + 1− n
2 = E (2j) + 1 + n

2 , j = 1, . . . , m.
Now set:

Aem = e1, and Aej = 0 for j = 1, . . . , m− 1.
Cej = qa(j)ej for j = 1, . . . , m.

Then A ∈ sl(V )r {0} is self-adjoint, C ∈ O(V , 〈·, ·〉), and CAC−1 = q2A.
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Defining dilational ECS data
The function f : here, we consider the “scalar version” of (E, Ω), that is,
the space W of solutions y : (0, ∞)→ R of ÿ(t) = f (t)y(t).
The operator T : W→ W given by (Ty)(t) = y(t/q) is indeed W-valued
whenever f has the property q2f (qt) = f (t).
Its spectrum µ+, µ− satisfies µ+µ− = q−1, as T ∗α = α for the (symplectic)
area form α(y , z) = ẏ(t)z(t)− y(t)ż(t).
The spectrum of σ : E→ E then becomes

(µ+qa(1), µ−qa(1), . . . , µ+qa(m), µ−qa(m)). (∗)

Choosing f so that µ+ = q(−1−n)/2 and µ− = q(−1+n)/2, such as

f (t) = n2 − 1
4t2 ,

the spectrum (∗) becomes precisely

(qE (1), qE (2), . . . , qE (2m−1), qE (m)).
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Defining dilational ECS data

So far: f , A, and σ = (q, 0, C) are in place, and the spectrum of σ : E→ E

is (qE (1), qE (2), . . . , qE (2m−1), qE (m)), for our spectral system (n− 2, n, E , J).

The space L: using more linear algebra, we obtain a basis

(u1, u2, . . . , u2m−1, u2m) = (u+
1 , u−1 , . . . , u+

m, u−m)

of E, of eigenvectors of σ associated with (qE (1), qE (2), . . . , qE (2m−1), qE (m)).

This basis satisfies that Ω(ui , uj) = 0, whenever i , j ∈ {1, . . . , 2m} have
i + j 6= 2m + 1. Hence, if S = J−1(1) is the spectral selector of the
Z-spectral system (n− 2, n, E , J),

the direct sum L =
⊕

i∈S Rui is a first-order
σ-invariant Lagrangian subspace of (E, Ω) .
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Defining dilational ECS data

The space L: using more linear algebra, we obtain a basis

(u1, u2, . . . , u2m−1, u2m) = (u+
1 , u−1 , . . . , u+

m, u−m)

of E, of eigenvectors of σ associated with (qE (1), qE (2), . . . , qE (2m−1), qE (m)).

This basis satisfies that Ω(ui , uj) = 0, whenever i , j ∈ {1, . . . , 2m} have
i + j 6= 2m + 1. Hence, if S = J−1(1) is the spectral selector of the
Z-spectral system (n− 2, n, E , J),

the direct sum L =
⊕

i∈S Rui is a first-order
σ-invariant Lagrangian subspace of (E, Ω) .

Now, σ-invariance of L makes R×L Cγ-invariant for any γ ∈ G(σ).

The spectrum of the restriction Cγ|R×L is given by {qa | a ∈ Y }, for
Y = {−1} ∪ E [S ] arising from (n− 2, n, E , J).

This means that a Cγ-invariant lattice Σ ⊆ R×L exists.
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