CONNECTIONS ON ASSOCIATED VECTOR BUNDLES

Ivo Terek

Quick summary on *G*-torsors, associated vector bundles and associated connections. Discussion on direct definition of ∇^A in terms of local gauges; independence of local gauge. Lastly, R^{∇^A} versus F_A .

1 G-torsors

Let's quickly introduce the language of *G*-torsors, as it will be useful for the discussion later.

Definition 1

A set *X* is called a (left) *G*-torsor if it is equipped with a free and transitive action $G \circlearrowright X$. Equivalently, it is a *G*-set for which the enriched map

$$G \times X \ni (x,g) \mapsto (x,g \cdot x) \in X \times X$$

is an isomorphism.

Remark. Right *G*-torsors are defined on a similar way and the theory is unchanged, as a left *G*-torsor can be changed into a right *G*-torsor, and vice-versa. Affine spaces with translation vector space *V* are nothing more than right *V*-torsors.

Given $x', x'' \in X$, there is a unique element $g \in G$ such that $x'' = g \cdot x'$. We will denote it by x''/x'. So, on a *G*-torsor, one can "multiply" elements of *G* by elements of *X*, but one cannot multiply two elements of *X*. What one can do, instead, is to "divide" elements of *X* to obtain elements in *G*. The division notation is precise, because all algebraic manipulations you think should hold, will hold.

Proposition 1

Let *X* be a *G*-torsor, $x', x'', x''' \in X$ and $g \in G$. Then: (a) $\frac{x'''}{x''} \cdot \frac{x''}{x'} = \frac{x'''}{x'}$. (b) $\frac{x'}{x'} = e$.

(c)
$$\left(\frac{x''}{x'}\right)^{-1} = \frac{x'}{x''}$$
.
(d) $\frac{g \cdot x''}{x'} = g \cdot \frac{x''}{x'}$.
(e) $\frac{x''}{g \cdot x'} = \frac{x''}{x'} \cdot g^{-1}$.

Proof:

(a) Compute

$$\left(\frac{x'''}{x''}\cdot\frac{x''}{x'}\right)\cdot x' = \frac{x'''}{x''}\cdot \left(\frac{x''}{x'}\cdot x'\right) = \frac{x'''}{x''}\cdot x'' = x'''.$$

- (b) Obvious.
- (c) Compute

$$\left(\frac{x''}{x'}\right)^{-1} \cdot x'' = \left(\frac{x''}{x'}\right)^{-1} \cdot \left(\frac{x''}{x'} \cdot x'\right) = \left(\left(\frac{x''}{x'}\right)^{-1} \cdot \left(\frac{x''}{x'}\right)\right) \cdot x' = e \cdot x' = x'.$$

(d) Compute

$$\left(g\cdot\frac{x''}{x'}\right)\cdot x'=g\cdot\left(\frac{x''}{x'}\cdot x'\right)=g\cdot x''.$$

(e) Use the previous items:

$$\frac{x''}{g \cdot x'} = \left(\frac{g \cdot x'}{x''}\right)^{-1} = \left(g \cdot \frac{x'}{x''}\right)^{-1} = \frac{x''}{x'} \cdot g^{-1}.$$

	_	_	Ľ
			L
			Ľ

2 Review

We work on the smooth category. Let $\pi: P \to M$ be a principal *G*-bundle, and $\rho: G \to GL(V)$ be a representation of the Lie group *G* on a vector space *V*. Given $g \in G$ and $v \in V$, we'll write gv for $\rho(g)v$. Then we have a right action $(P \times V) \circlearrowright G$ given by $(p, v) \cdot g = (p \cdot g, g^{-1}v)$. The quotient $E(P, \rho) = P \times_{\rho} V \doteq (P \times V)/G$ (written as *E*, for short) turns out to be a manifold. Elements of *E* are equivalence classes [p, v], subject to the rule $[p \cdot g, v] = [p, gv]$. Since the action $P \oslash G$ is fiber-preserving, the projection $P \times V \ni (p, v) \mapsto \pi(p) \in M$ induces a projection $\pi_E: E \to M$. The fibers $\pi_E^{-1}(x)$ will be vector spaces, all isomorphic to *V*, by using that each P_x is a *G*-torsor. Namely, we write

$$[p',v']+[p'',v'']\doteq\left[p',v'+rac{p''}{p'}v''
ight]$$
 and $\lambda[p,v]\doteq[p,\lambda v].$

The scalar multiplication doesn't require explanation, but for the sum, the idea is that one cannot add (p', v') and (p'', v'') if $p' \neq p''$. In the quotient, if $p', p'' \in P_x$, we may write that

$$[p'', v''] = \left[p'\frac{p''}{p'}, v''\right] = \left[p', \frac{p''}{p'}v''\right],$$

and this last expression is admissible to add with [p', v'].

Proposition 2

The above operations are well-defined.

Proof: Let's verify that the sum is well-defined first. Replace p' and v' with $p' \cdot g'$ and $(g')^{-1}v'$, and similarly for p'' and v''. Then compute

$$\begin{split} \left[p' \cdot g', (g')^{-1}v' + \frac{p'' \cdot g''}{p' \cdot g'} (g'')^{-1}v'' \right] &= \left[p' \cdot g', (g')^{-1}v' + (g')^{-1}\frac{p''}{p'}v'' \right] \\ &= \left[p' \cdot g', (g')^{-1} \left(v' + \frac{p''}{p'}v'' \right) \right] \\ &= \left[p', v' + \frac{p''}{p'}v'' \right]. \end{split}$$

For the scalar multiplication, take $[p, v] \in \pi_E^{-1}(x)$, $\lambda \in \mathbb{R}$, replace p with $p \cdot g$, v with $g^{-1}v$, and compute

$$[p \cdot g, \lambda g^{-1}v] = [p \cdot g, g^{-1}(\lambda v)] = [p, \lambda v],$$

since the representation ρ takes values in GL(*V*).

To get trivializations for *E* in terms of trivializations for *P*, one proceeds as follows: let (U, Φ) be a principal *G*-chart, where $U \subseteq M$ is open. So $\Phi: \pi^{-1}[U] \to U \times G$ has the form $\Phi(p) = (\pi(p), \Phi_G(p))$, with *G*-equivariant $\Phi_G: \pi^{-1}[U] \to G$. We set $\Phi^E: \pi_E^{-1}[U] \to U \times V$ via $\Phi^E[p, v] = (\pi(p), \Phi_G(p)v)$.

Proposition 3

 Φ^E is a well-defined VB-chart for *E* with inverse $(\Phi^E)^{-1}$: $U \times V \to \pi_E^{-1}[U]$ given by $(\Phi^E)^{-1}(x, v) = [\Phi^{-1}(x, e), v]$.

Proof: First, take $[p, v] \in \pi_E^{-1}[U]$, and replace p and v with $p \cdot g$ and $g^{-1}v$. Now

$$(\pi(p \cdot g), \Phi_G(p \cdot g)g^{-1}v) = (\pi(p), \Phi_G(p)gg^{-1}v) = (\pi(p), \Phi_G(p)v),$$

as required, since Φ_G is *G*-equivariant. Next, we have that

$$\Phi^{E}[\Phi^{-1}(x,e),v] = (\pi\Phi^{-1}(x,e),\Phi_{G}(\Phi^{-1}(x,e))v) = (x,ev) = (x,v),$$

as well as

$$[\Phi^{-1}(\pi(p), e), \Phi_G(p)v] = [\Phi^{-1}(\pi(p), e)\Phi_G(p), v] = [\Phi^{-1}(\pi(p), \Phi_G(p)), v] = [p, v].$$

So, what we claim to be $(\Phi^E)^{-1}$, indeed is. Finally, let's show that restrictions of Φ^E to fibers of π_E are linear isomorphisms.

• Linearity.

$$\begin{split} \Phi^{E}([p',v']+[p'',v'']) &= \Phi^{E}\left[p',v'+\frac{p''}{p'}v''\right] \\ &= \left(\pi(p'),\Phi_{G}(p')\left(v'+\frac{p''}{p'}v''\right)\right) \\ &= \left(\pi(p'),\Phi_{G}(p')v'+\Phi_{G}(p')\frac{p''}{p'}v''\right) \\ &= \left(\pi(p'),\Phi_{G}(p')v'+\Phi_{G}\left(p'\frac{p''}{p'}\right)v''\right) \\ &= (\pi(p'),\Phi_{G}(p')v'+\Phi_{G}(p'')v'') \\ &= (\pi(p'),\Phi_{G}(p')v') + (\pi(p''),\Phi_{G}(p'')v'') \\ &= \Phi^{E}[p',v'] + \Phi^{E}[p'',v''], \end{split}$$

using that Φ_G is *G*-equivariant and $\pi(p') = \pi(p'')$. Also:

$$\begin{split} \Phi^{E}(\lambda[p,v]) &= \Phi^{E}[p,\lambda v] = (\pi(p), \Phi_{G}(p)\lambda v) \\ &= (\pi(p), \lambda \Phi_{G}(p)v) = \lambda(\pi(p), \Phi_{G}(p)v), \end{split}$$

using that ρ takes values in GL(V) and that the vector space structure on the fiber $\{\pi(p)\} \times V$ is the obvious one, happening only on the *V*-factor.

- Injectivity. Assume that $\Phi^{E}[p,v] = (\pi(p),0)$. This means that $\Phi_{G}(p)v = 0$. But $v \mapsto \Phi_{G}(p)v$ is an isomorphism (because ρ takes values in GL(V), so this immediately gives that v = 0.
- Surjectivity. Assume given $(\pi(p), v) \in {\pi(p)} \times V$. Then we clearly have that $\Phi^{E}[p, \Phi_{G}(p)^{-1}v] = (\pi(p), \Phi_{G}(p)\Phi_{G}(p)^{-1}v) = (\pi(p), v)$.

Proceeding, to understand local sections *s* of *E* properly, we'll use local gauges for *P*. Namely, on some open set $U \subseteq M$, fix a local gauge $\psi: U \to P$. Writing the section *s* as $s(x) = [\psi(x), s_{\psi}(x)]$ (this can be arranged for since $s(x) \in E_x$ and $\psi(x) \in P_x$), we obtain a bijective correspondence between local sections $s: U \to E$ and functions $s_{\psi}: U \to V$ — to be regarded as matter fields. The gauge group $\mathcal{G}(P)$ acts not only on *P* by evaluation, but also on *E*. We set $\Phi \cdot [p, v] = [\Phi(p), v]$.

Proposition 4

The action $\mathscr{G}(P) \circlearrowright E$ is well-defined.

Proof: Replace *p* and *v* with $p \cdot g$ and $g^{-1}v$. Then

$$[\Phi(p \cdot g), g^{-1}v] = [\Phi(p) \cdot g, g^{-1}v] = [\Phi(p), v],$$

since $\Phi \in \mathfrak{G}(P)$ is *G*-equivariant.

With this in place, $\mathscr{G}(P)$ acts on local sections of *E* as well, pointwise. To express how this happens relative to a local gauge, recall that $\mathscr{G}(P) \cong \mathscr{C}^{\infty}(P,G)^{G}$ as follows: since $\Phi(p)$ and *p* are on the same fiber, there is $\sigma_{\Phi}(p) \in G$ such that $\Phi(p) = p \cdot \sigma_{\Phi}(p)$. Moreover, the *G*-equivariance relation, $\Phi(p \cdot g) = \Phi(p) \cdot g$, now implies that we have $(p \cdot g) \cdot \sigma_{\Phi}(p \cdot g) = (p \cdot \sigma_{\Phi}(p)) \cdot g$, so $\sigma_{\Phi}(p \cdot g) = g^{-1}\sigma_{\Phi}(p)g$. The correspondence is $\Phi \leftrightarrow \sigma_{\Phi}$.

Proposition 5

Let *s* be a local section of *E*, $\Phi \in \mathcal{G}(P)$, and ψ be a local gauge for *P*. Then we have

$$\Phi \cdot s)(x) = [\psi(x), \sigma_{\Phi}(\psi(x))s_{\psi}(x)].$$

Proof: Directly compute

$$\begin{aligned} (\Phi \cdot s)(x) &= \Phi[\psi(x), s_{\psi}(x)] = [\Phi(\psi(x)), s_{\psi}(x)] \\ &= [\psi(x) \cdot \sigma_{\Phi}(\psi(x)), s_{\psi}(x)] = [\psi(x), \sigma_{\Phi}(\psi(x))s_{\psi}(x)]. \end{aligned}$$

_	_	_	-
-	-	-	

3 Differential forms

Recall that if Q is a smooth manifold and we have an action $G \circlearrowright Q$ which is free and proper (so Q/G is a smooth manifold), then $\Omega^k(Q/G) \cong \Omega^k_{hor}(Q)^G$, where $\Omega^k_{hor}(Q)^G$ consists of all the *G*-invariant horizontal *k*-forms. Here, horizontal means that the differential form produces zero whenever one of its arguments in the kernel of the derivative of the quotient projection $Q \to Q/G$. In our setting, similar arguments work, considering *V*-valued forms instead. Since the principal *G*-bundle $P \to M$ is such that $P/G \cong M$, we have that $\Omega^k_{hor}(P, V)^\rho \cong \Omega^k(M, E)$. Suggestively, each $\omega \in \Omega^k_{hor}(P, V)^\rho$ satisfies $R^*_g \omega = \rho(g^{-1}) \circ \omega$ and ω produces zero whenever one of its arguments is horizontal (relative to the fixed $A \in \Omega^1(P, \mathfrak{g})$.

4 Connections

Assume that the principal bundle $\pi: P \to M$ is equipped with an Ehresmann connection. That is, a 1-form $A \in \Omega^1(P, \mathfrak{g})$ such that $A(X^{\#}) = X$ for all $X \in \mathfrak{g}$ (where $X^{\#} \in \mathfrak{X}(P)$ stands for the action field generated by X) and $\mathbb{R}_g^*A = \operatorname{Ad}(g^{-1}) \circ A$, for all $g \in G$, where $\mathbb{R}_g: P \to P$ is the right action of the element g. Choosing such A is equivalent to choosing a horizontal distribution $\mathscr{H} \hookrightarrow TP$ with $TP = \mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_p = \ker d\pi_p$ is the natural vertical distribution of the bundle, and $d(\mathbb{R}_g)_p[\mathscr{H}_p] = \mathscr{H}_{p \cdot g}$. The correspondence is $A \leftrightarrow \ker A$. The restriction of $d\pi_p$ gives an isomorphism $\mathscr{H}_p \cong T_{\pi(p)}M$.

Proposition 6

Given $\gamma: [0,1] \to M$ with $\gamma(0) = x$ and $\gamma(1) = y$, for each $p \in P_x$ there is a unique horizontal lift $\gamma_p^h: [0,1] \to P$ with $\gamma_p^h(0) = p$.

Proof: Since $P \to M$ is a bundle and [0, 1] is contractible, there is a lift $\tilde{\gamma} \colon [0, 1] \to P$ of γ , which is not, in general, horizontal. So, we must correct it. Let's solve a differential equation for $g \colon [0, 1] \to G$ making $\alpha(t) \doteq \tilde{\gamma}(t) \cdot g(t)$ horizontal. We have that

$$\dot{\alpha}(t) = \mathbf{d}(\mathbf{R}_{g(t)})_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t)) + \mathbf{d}(\mathbb{O}_{\widetilde{\gamma}(t)})_{g(t)}(\dot{g}(t))$$

by the chain rule, but the second term can be simplified, by using the general relation $\mathbb{O}_{p \cdot g} = \mathbb{O}_p \circ L_g$:

$$\dot{\alpha}(t) = \mathbf{d}(\mathbf{R}_{g(t)})_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t)) + \mathbf{d}(\mathfrak{G}_{\alpha(t)})_{e}(g(t)^{-1}\dot{g}(t)).$$

This reads

$$\dot{\alpha}(t) = \mathbf{d}(\mathbf{R}_{g(t)})_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t)) + (g(t)^{-1}\dot{g}(t))_{\alpha(t)}^{\#}$$

Apply *A* to obtain

$$0 = \operatorname{Ad}(g(t)^{-1})A_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t)) + g(t)^{-1}\dot{g}(t).$$

So, simplifying Ad, we consider the initial value problem for *g*:

$$\begin{cases} \dot{g}(t) = -A_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t))g(t) \\ g(0) = e \end{cases}$$

This system has a unique solution defined for all $t \in [0, 1]$.

With this, we define $\Pi_{\gamma}^{A}: P_{x} \to P_{y}$ by $\Pi_{\gamma}^{A}(p) = \gamma_{p}^{h}(1)$. This is called the parallel transport operator along γ , induced by A.

Proposition 7

- (a) $\Pi_{\gamma}^{A} \colon P_{x} \to P_{y}$ is *G*-equivariant.
- (b) $\Pi_{\gamma*\eta}^A = \Pi_{\eta}^A \circ \Pi_{\gamma}^A$, where * denotes concatenation and the initial point of η equals the terminal point of γ .

(c)
$$(\Pi_{\gamma}^{A})^{-1} = \Pi_{\gamma \leftarrow}^{A}$$
, where $\gamma \leftarrow (t) = \gamma(1-t)$ is γ travelled in the reverse order.

(d) If
$$\Phi \in \mathfrak{G}(P)$$
, then $\gamma_{\Phi(p)}^{\mathsf{h},A}(t) = \Phi(\gamma_p^{\mathsf{h},\Phi^*A}(t))$. Hence $\Pi_{\gamma}^{\Phi^*A} = \Phi^{-1} \circ \Pi_{\gamma}^A \circ \Phi$.

Proof:

(a) This is a general consequence of the fact that $\gamma_{p\cdot g}^{h}(t) = \gamma_{p}^{h}(t) \cdot g$ for all $t \in [0, 1]$. Indeed, for t = 0 we have that $\gamma_{p}^{h}(0) \cdot g = p \cdot g$, and $t \mapsto \gamma_{p}^{h}(t) \cdot g$ is horizontal, since ker *A* is *G*-invariant (so that the derivative of R_{g} takes horizontal vectors to horizontal vectors).

Ivo Terek

- (b) Clear.
- (c) Follows from (b).
- (d) If \mathscr{H}^A and \mathscr{H}^{Φ^*A} are the horizontal distributions of A and Φ^*A , recall that we have the relation $d\Phi_p[\mathscr{H}_p^{\Phi^*A}] = \mathscr{H}_{\Phi(p)}^A$, for all $p \in P$. For t = 0, we have that $\Phi(\gamma_p^{\mathsf{h},\Phi^*A}(0)) = \Phi(p)$. And moreover, we have that

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} \Phi(\gamma_p^{\mathsf{h},\Phi^*A}(t)) = \mathrm{d}\Phi_{\gamma_p^{\mathsf{h},\Phi^*A}(t)}(\dot{\gamma}_p^{\mathsf{h},\Phi^*A}(t))$$

is *A*-horizontal. This establishes the relation between horizontal lifts. Now plug t = 1 to conclude that $\Pi^A_{\gamma}(\Phi(p)) = \Phi(\Pi^{\Phi^*A}_{\gamma}(p))$, as required.

Keeping this notation, every parallel transport operator also acts on *E*. Namely, we define $\Pi_{\gamma}^{E,A}$: $E_x \to E_y$ by $\Pi_{\gamma}^{E,A}[p,v] = [\Pi_{\gamma}^A(p),v]$.

Proposition 8

 $\Pi^{E,A}_{\gamma}$ is well-defined.

Proof: Replace *p* with $p \cdot g$ and *v* with $g^{-1}v$. Then

$$[\Pi^{A}_{\gamma}(p \cdot g), g^{-1}v] = [\Pi^{A}_{\gamma}(p) \cdot g, g^{-1}v] = [\Pi^{A}_{\gamma}(p), v],$$

as required.

To explore things further, we'll use the expressions for A relative to a local gauge $\psi: U \to P$. The pull-back ψ^*A is denoted simply by $A_{\psi} \in \Omega^1(U, \mathfrak{g})$. Generally, we know that parallel transport operators between fibers of a vector bundle allow us to reconstruct the covariant derivative ∇ . We'll use the $\Pi_{\gamma}^{E,A}$ to define a connection ∇^A on E, as follows:

- (1) Pick $x \in M$ and $v \in T_x M$. Take a curve $\gamma \colon [0,1] \to M$ with $\gamma(0) = x$. For each $t \in [0,1]$, write $\gamma_t = \gamma|_{[0,t]}$
- (2) Take a (local) section *s* of *E*. Then $s(\gamma(t)) \in E_{\gamma(t)}$ for all $t \in [0, 1]$. Then transport it back: $(\prod_{\gamma_t}^{E,A})^{-1}(s(\gamma(t)) \in E_x)$.
- (3) Take the derivative:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0}(\Pi^{E,A}_{\gamma_t})^{-1}(s(\gamma(t))).$$

Proposition 9

Relative to ψ , if $\dot{\gamma}(0) = v$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}(\Pi^{E,A}_{\gamma_t})^{-1}(s(\gamma(t))) = [\psi(x), \mathrm{d}(s_{\psi})_x(v) + \rho_*(A_{\psi}(v))s_{\psi}(x)].$$

Proof: We clearly have

$$(\Pi_{\gamma_t}^{E,A})^{-1}s(\gamma(t)) = (\Pi_{\gamma_t}^{E,A})^{-1}[\psi(\gamma(t)), s_{\psi}(\gamma(t))] = \left[(\Pi_{\gamma_t}^A)^{-1}\psi(\gamma(t)), s_{\psi}(\gamma(t))\right],$$

but since $(\Pi_{\gamma_t}^A)^{-1}\psi(\gamma(t)) \in P_x$ for all *t*, there is $g \colon [0,1] \to G$ such that

$$(\Pi^A_{\gamma_t})^{-1}\psi(\gamma(t)) = \psi(x) \cdot g(t)$$

for all $t \in [0, 1]$. This immediately gives that

$$(\Pi_{\gamma_t}^{E,A})^{-1}s(\gamma(t)) = [\psi(x), g(t)s_{\psi}(\gamma(t))].$$

Now, γ_0 is the constant curve x, meaning that the corresponding parallel transport operator is the identity, and thus g(0) = e. We will also need to find $\dot{g}(0) \in \mathfrak{g}$, since

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (\Pi^{E,A}_{\gamma_t})^{-1} s(\gamma(t)) = [\psi(x), \mathrm{d}(s_{\psi})_x(v) + \rho_*(\dot{g}(0))s_{\psi}(x)]$$

by the product rule (and recalling that the juxtaposition $g(t)s_{\psi}(\gamma(t))$ was a shorthand for $\rho(g(t))s_{\psi}(\gamma(t))$). Taking derivatives at 0, we immediately see that

$$\psi(x) \cdot g(t) = (\Pi_{\gamma_t}^A)^{-1} \psi(\gamma(t)) \implies \dot{g}(0)_{\psi(x)}^{\#} = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (\Pi_{\gamma_t}^A)^{-1} \psi(\gamma(t)),$$

but differentiating this last expression on the right requires the little usual trick: define

$$F(s,t) = \Pi^A_{\gamma_s}((\Pi^A_{\gamma_t})^{-1}\psi(\gamma(t)))$$

and note that $\psi(\gamma(t)) = F(t, t)$, and compute

$$d\psi_x(v) = \frac{\partial F}{\partial t}(0,0) + \frac{\partial F}{\partial s}(0,0) = \dot{g}(0)^{\#}_{\psi(x)} + \frac{d}{dt} \bigg|_{t=0} \Pi^A_{\gamma_t}(\psi(x)).$$

Since the curve $t \mapsto \Pi^A_{\gamma_t}(\psi(x))$ is horizontal, applying *A* to everything gives that $A_{\psi}(v) = \dot{g}(0)$, as required.

In particular, such expression depends on $\gamma(0)$ and $\dot{\gamma}(0)$, but not on γ itself. So if, again, $\dot{\gamma}(0) = v \in T_x M$, we define

$$\nabla_v^A s = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (\Pi_{\gamma_t}^{E,A})^{-1}(s(\gamma(t))),$$

and if $X \in \mathfrak{X}(M)$, we also define $\nabla_X^A s$. Relative to ψ , we write $\nabla_X^A s = [\psi, \nabla_X^A s_{\psi}]$, where

$$\nabla^A_{\mathbf{X}} s_{\psi} = \mathsf{d}(s_{\psi})(\mathbf{X}) + \rho_*(A_{\psi}(\mathbf{X})) s_{\psi}.$$

So $\nabla^A = d + \rho_* A_{\psi}$. For this reason, A_{ψ} is called the Christoffel form of A relative to ψ .

Proposition 10

∇^A is a Koszul connection on *E*.

Proof: All the properties are local, so we may verify them with a local gauge ψ , as usual. The expression for $\nabla_X^A s_{\psi}$ is clearly additive in X and s_{ψ} , and $\mathscr{C}^{\infty}(M)$ -linear in the variable X. Let's verify the Leibniz rule. Let $f \in \mathscr{C}^{\infty}(M)$. Clearly $(fs)_{\psi} = fs_{\psi}$, so

$$\begin{aligned} \nabla^{A}_{\mathbf{X}}(fs_{\psi}) &= \mathsf{d}(fs_{\psi})(\mathbf{X}) + \rho_{*}(A_{\psi}(\mathbf{X}))(fs_{\psi}) \\ &= \mathbf{X}(f)s_{\psi} + f\mathsf{d}(s_{\psi})(\mathbf{X}) + f\rho_{*}(A_{\psi}(\mathbf{X}))s_{\psi} \\ &= \mathbf{X}(f)s_{\psi} + f\nabla^{A}_{\mathbf{X}}s_{\psi}, \end{aligned}$$

Remark. A shorter argument: $\nabla^A = d + \rho_* A_{\psi}$ equals a connection (d) plus a tensor $(\rho_* A_{\psi})$, so it is a connection.

Last three remarks:

- If \mathcal{F} is a smooth endofunctor of the category of finite-dimensional real vector spaces and linear maps (smooth means that the action on the level of morphisms is smooth), then for each $\rho: G \to GL(V)$ we get $\mathcal{F}\rho: G \to GL(\mathcal{F}V)$, and so we can form the associated bundle $P \times_{\mathcal{F}\rho} \mathcal{F}V$. But \mathcal{F} also acts fiberwise on the associated vector bundle $P \times_{\mathcal{F}\rho} \mathcal{F}V$. But \mathcal{F} also acts fiberwise on the associated vector bundle $P \times_{\rho} V$, producing $\mathcal{F}(P \times_{\rho} V)$. These two bundles are isomorphic simply because they are described by the same cocycles (relative to trivializations induced by principal *G*-charts for *P*). If $\tau_{\alpha\beta}$ is an element of the cocycle, then $\rho \circ \tau_{\alpha\beta}$ is an element of the cocycle defining $P \times_{\rho} V$. And the associativity law $\mathcal{F} \circ (\rho \circ \tau_{\alpha\beta}) = (\mathcal{F} \circ \rho) \circ \tau_{\alpha\beta}$ holds. If \mathcal{F} is a multivariable smooth functor, a similar argument applies. So, for example, the associated vector bundle to *P* under the dual representation of ρ is in fact the dual of the associated vector bundle to *P* under ρ . And so on.
- Generally, if *V* carries a linear *G*-structure, then we have an induced *G*-structure on Fr(*E*), which is parallel relative to ∇^A . Here's one concrete example: if we take a covariant *k*-tensor $T \in (V^*)^{\otimes k}$ on *V* which is *T* invariant, then we have $T^E \in \Gamma((E^*)^{\otimes k})$ defined by $T_x^E([p, v_1], \ldots, [p, v_k]) = T(v_1, \ldots, v_k)$ (it is welldefined). Now, suppressing ρ and ρ_* , differentiating the *G*-invariance relation $T(gv_1, \ldots, gv_k) = T(v_1, \ldots, v_k)$ relative to the variable *g* and evaluating at $X \in \mathfrak{g}$, we obtain

$$\sum_{i=1}^n T(v_1,\ldots,Xv_i,\ldots,v_k)=0.$$

This means that, choosing a local gauge ψ for *P*, we have

$$\sum_{i=1}^{n} T^{E}(s_{1},\ldots,\nabla_{X}^{A}s_{i},\ldots,s_{k}) = \sum_{i=1}^{n} T(s_{1,\psi},\ldots,\nabla_{X}^{A}s_{i,\psi},\ldots,s_{k,\psi})$$
$$= \sum_{i=1}^{n} T(s_{1,\psi},\ldots,\mathsf{d}(s_{i,\psi})(X) + \rho_{*}(A_{\psi}(X))s_{i,\psi},\ldots,s_{k,\psi})$$

$$= \sum_{i=1}^{n} T(s_{1,\psi}, \dots, \mathbf{d}(s_{i,\psi})(\mathbf{X}), \dots, s_{k,\psi})$$
$$= \mathbf{X}(T(s_{1,\psi}, \dots, s_{k,\psi}))$$
$$= \mathbf{X}(T^{E}(s_{1}, \dots, s_{k})),$$

for all $X \in \mathfrak{X}(M)$ and (local) sections s_1, \ldots, s_k of E. This means that $\nabla^A T^E = 0$. In particular, a *G*-invariant inner product on *V* (which always exists when *G* is compact, by Weyl's unitary trick) induces a parallel fiber metric on *E*.

If we denote ∇^A by ∇^{A,ρ}, and noting that if *E* has a connection, then *FE* also inherits one (usually by requiring some structure to be parallel — e.g., connections in hom-bundles are characterized by making the evaluation map parallel), then it turns out that *F*(∇^{A,ρ}) = ∇^{A,Fρ} by default, so there is no ambiguity when writing things like ∇^AT^E as in the previous item.

5 Gauge independence of direct definition of ∇^A

Often, one defines ∇^A on *E* by choosing a local gauge $\psi \colon U \to P$ and declaring

$$\nabla_{\mathbf{X}}^{A}s = [\psi, \mathbf{d}(s_{\psi})(\mathbf{X}) + \rho_{*}(A_{\psi}(\mathbf{X}))s_{\psi}].$$

Then it is necessary to check that this definition is independent of ψ . So, let's make a change of gauge $\psi \mapsto \psi' = \psi \cdot g$, where $g \colon U \to G$ is a physical gauge transformation. More precisely, $\psi'(x) = \psi(x) \cdot g(x)$ for all $x \in U$.

Proposition 11

(a) $s_{\psi \cdot \varphi} = g^{-1} s_{\psi}$.

(b)
$$d(s_{\psi \cdot g})_x(v) = -\rho_*((g^*\Theta)_x(v))\rho(g(x)^{-1})s_{\psi}(x) + \rho(g(x)^{-1})d(s_{\psi})_x(v).$$

- (c) $d(\psi \cdot g)_x(v) = d(R_{g(x)})_{\psi(x)}(d\psi_x(v)) + (g^*\Theta)_x(v)_{\psi(x)\cdot g(x)}^{\#}$, for all $x \in U$ and $v \in T_x M$.
- (d) $A_{\psi \cdot g} = \operatorname{Ad}(g^{-1}) \circ A_{\psi} + g^* \Theta.$

Remark. Above, $\Theta \in \Omega^1(G, \mathfrak{g})$ is the left-invariant Maurer-Cartan form on *G*, given by $\Theta_a(w) = d(L_{a^{-1}})_a w$. Occasionally, we'll just write $a^{-1}w$.

Proof:

- (a) $s = [\psi \cdot g, s_{\psi \cdot g}] = [\psi, gs_{\psi \cdot g}]$ implies that $s_{\psi} = gs_{\psi \cdot g}$, and the conclusion follows.
- (b) The usual trick of separating variables works: define $F(x,y) = \rho(g(x)^{-1})s_{\psi}(y)$ and note that $s_{\psi \cdot g}(x) = F(x, x)$, so

$$\mathbf{d}(s_{\psi \cdot g})_{x}(\boldsymbol{v}) = (\partial_{1}F)_{(x,x)}(\boldsymbol{v}) + (\partial_{2}F)_{(x,x)}(\boldsymbol{v}).$$

But

$$(\partial_2 F)_{(x,x)}(\boldsymbol{v}) = \rho(g(x)^{-1}) \mathbf{d}(s_{\psi})_x(\boldsymbol{v}),$$

and

$$\begin{aligned} (\partial_1 F)_{(x,x)}(v) &= \mathrm{d}\rho_{g(x)^{-1}}(-g(x)^{-1}\mathrm{d}g_x(v)g(x)^{-1})s_{\psi}(x) \\ &= -\mathrm{d}\rho_{g(x)^{-1}}((g^*\Theta)_x(v)g(x)^{-1})s_{\psi}(x) \\ &= -\rho_*((g^*\Theta)_x(v))\rho(g(x)^{-1})s_{\psi}(x). \end{aligned}$$

We're using the standard formulas for the derivative of the inversion in any Lie group, the chain rule to differentiate $\rho \circ R_{g(x)^{-1}} = R_{\rho(g(x)^{-1})} \circ \rho$ (because ρ is a homomorphism) at the identity $e \in G$, and that multiplication in GL(V) is the restriction of a linear map $\mathfrak{gl}(V) \to \mathfrak{gl}(V)$ (so its derivative is itself).

(c) The usual trick works again: define $F(x, y) = \psi(x) \cdot g(y)$, note that $\psi'(x) = F(x, x)$, so

$$\mathbf{d}(\boldsymbol{\psi}')_{\boldsymbol{x}}(\boldsymbol{v}) = (\partial_1 F)_{(\boldsymbol{x},\boldsymbol{x})}(\boldsymbol{v}) + (\partial_2 F)_{(\boldsymbol{x},\boldsymbol{x})}(\boldsymbol{v}).$$

But

$$(\partial_1 F)_{(x,x)}(\boldsymbol{v}) = \mathbf{d}(R_{g(x)})_{\psi(x)}(\mathbf{d}\psi_x(\boldsymbol{v})),$$

and

$$(\partial_2 F)_{(x,x)}(\boldsymbol{v}) = \mathbf{d}(\mathbb{G}_{\psi(x)})_{g(x)}(\mathbf{d}g_x(\boldsymbol{v}))$$

= $\mathbf{d}(\mathbb{G}_{\psi(x)\cdot g(x)})_e((\mathbf{d}(\mathbf{L}_{g(x)})_{g(x)}^{-1}\mathbf{d}g_x(\boldsymbol{v}))))$
= $\mathbf{d}(\mathbb{G}_{\psi(x)\cdot g(x)})_e((g^*\Theta)_x(\boldsymbol{v}))$
= $(g^*\Theta)_x(\boldsymbol{v})_{\psi(x)\cdot g(x)}^{\#}.$

(d) From (c), we have that

$$\begin{aligned} (A_{\psi \cdot g})_{x}(v) &= A_{\psi(x) \cdot g(x)}(d(\psi \cdot g)_{x}(v)) \\ &= A_{\psi(x) \cdot g(x)}(d(R_{g(x)})_{\psi(x)}(d\psi_{x}(v)) + (g^{*}\Theta)_{x}(v)_{\psi(x) \cdot g(x)}^{\#}) \\ &= A_{\psi(x) \cdot g(x)}(d(R_{g(x)})_{\psi(x)}(d\psi_{x}(v))) + (g^{*}\Theta)_{x}(v) \\ &= (R_{g(x)}^{*}A)_{\psi(x)}(d\psi_{x}(v)) + (g^{*}\Theta)_{x}(v) \\ &= \operatorname{Ad}(g(x)^{-1})(A_{\psi(x)}(d\psi_{x}(v)) + (g^{*}\Theta)_{x}(v) \\ &= \operatorname{Ad}(g(x)^{-1})((A_{\psi})_{x}(v)) + (g^{*}\Theta)_{x}(v). \end{aligned}$$

Now everything is in place. Since

$$[\psi \cdot g, \mathbf{d}(s_{\psi \cdot g}) + \rho_*(A_{\psi \cdot g})s_{\psi \cdot g}] = [\psi, g(\mathbf{d}(s_{\psi \cdot g}) + \rho_*(A_{\psi \cdot g})s_{\psi \cdot g})],$$

there is only one computation left to do. Let's carry ρ , *x* and *v* in full detail.

$$\rho(g(x))\left(\mathrm{d}(s_{\psi\cdot g})_x(v)+\rho_*((A_{\psi\cdot g})_x(v))s_{\psi\cdot g}(x)\right)=$$

$$\begin{split} &= \rho(g(x)) \Big(-\rho_*((g^* \Theta)_x(v)) \rho(g(x)^{-1}) s_{\psi}(x) + \rho(g(x)^{-1}) d(s_{\psi})_x(v) \\ &\quad + \rho_* \big(\mathrm{Ad}_{g(x)^{-1}}(A_{\psi})_x(v) + (g^* \Theta)_x(v) \big) \rho(g(x)^{-1}) s_{\psi}(x) \big) \\ &\stackrel{(+)}{=} \rho(g(x)) \Big(\rho(g(x)^{-1}) d(s_{\psi})_x(v) + \rho_*(\mathrm{Ad}_{g(x)^{-1}}(A_{\psi})_x(v)) \rho(g(x)^{-1}) s_{\psi}(x) \big) \\ &\stackrel{(\frac{t}{=}}{=} d(s_{\psi})_x(v) + \rho_*((A_{\psi})_x(v)) s_{\psi}(x), \end{split}$$

where in (†) we cancel all the terms with Θ , and in (‡) we use that ρ is a homomorphism and $g(x)\operatorname{Ad}_{g(x)^{-1}}((A_{\psi})_{x}(v))g(x)^{-1} = (A_{\psi})_{x}(v)$.

6 Curvature

The curvature of $A \in \Omega^1(P, \mathfrak{g})$ is $F_A \in \Omega^2(P, \mathfrak{g})$ given by

$$F_A = \mathrm{d}A + \frac{1}{2}[A, A]$$

or, more explicitly, $F_A(X, Y) = dA(X, Y) + [A(X), A(Y)]$, for all $X, Y \in \mathfrak{X}(P)$. If we have coordinates (x^{μ}) for the base manifold, and a local gauge ψ , all on some open set $U \subseteq M$, then we have $F_{A,\psi} = \psi^*(F_A) \in \Omega^2(U, \mathfrak{g})$, and we set $F_{\mu\nu} = F_{A,\psi}(\partial_{\mu}, \partial_{\nu})$. Then, we have

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}],$$

where $A_{\mu} = (A_{\psi})(\partial_{\mu})$. Note that $A_{\mu}, F_{\mu\nu}$ are smooth functions on U, valued on \mathfrak{g} . When G is abelian, $[A_{\mu}, A_{\nu}] = 0$. It remains to establish what is the relation between R^{∇^A} and F_A . We do this using ψ .

Proposition 12

 $R^{\nabla^A}(\partial_{\mu},\partial_{\nu})s_{\psi}=\rho_*(F_{\mu\nu})s_{\psi}.$

Proof: It's a direct computation:

$$\begin{split} R^{\nabla^{A}}(\partial_{\mu},\partial_{\nu})s_{\psi} &= \nabla^{A}_{\partial_{\mu}}\nabla^{A}_{\partial_{\nu}}s_{\psi} - \nabla^{A}_{\partial_{\nu}}\nabla^{A}_{\partial_{\mu}}s_{\psi} \\ &= \nabla^{A}_{\partial_{\mu}}(\partial_{\nu}s_{\psi} + \rho_{*}(A_{\nu})s_{\psi}) - \nabla^{A}_{\partial_{\nu}}(\partial_{\mu}s_{\psi} + \rho_{*}(A_{\mu})s_{\psi}) \\ &= \partial_{\mu}\partial_{\nu}s_{\psi} + \rho_{*}(A_{\mu})\partial_{\nu}s_{\psi} + \partial_{\mu}[\rho_{*}(A_{\nu})s_{\psi}] + \rho_{*}(A_{\mu})\rho_{*}(A_{\nu})s_{\psi} \\ &\quad -\partial_{\nu}\partial_{\mu}s_{\psi} + \rho_{*}(A_{\nu})\partial_{\mu}s_{\psi} - \partial_{\nu}[\rho_{*}(A_{\mu})s_{\psi}] - \rho_{*}(A_{\nu})\rho_{*}(A_{\mu})s_{\psi} \\ &= \rho_{*}(A_{\mu})\partial_{\nu}s_{\psi} + \rho_{*}(\partial_{\mu}A_{\nu})s_{\psi} + \rho_{*}(A_{\nu})\partial_{\mu}s_{\psi} \\ &\quad -\rho_{*}(A_{\nu})\partial_{\mu}s_{\psi} - \rho_{*}(\partial_{\nu}A_{\mu})s_{\psi} - \rho_{*}(A_{\mu})\partial_{\nu}s_{\psi} + \rho_{*}([A_{\mu}, A_{\nu}])s_{\psi} \\ &= \rho_{*}(\partial_{\mu}A_{\nu})s_{\psi} - \rho_{*}(\partial_{\nu}A_{\mu})s_{\psi} + \rho_{*}([A_{\mu}, A_{\nu}])s_{\psi} \\ &= \rho_{*}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}])s_{\psi} \\ &= \rho_{*}(F_{\mu\nu})s_{\psi}, \end{split}$$

as required.

Remark. It's not clear how to write such an expression without relying on a local gauge. If $X \in \mathfrak{g}$, trying to define $\rho_*(X)[p,v]$ as $[p, \rho_*(X)v]$ doesn't work, as replacing p and v with $p \cdot g$ and $\rho(g^{-1})v$ leads to $[p, \rho_*(\operatorname{Ad}_g(X))v]$ instead.

7 Arbitrary associated fiber bundles

Essentially everything that happened here can be done replacing ρ and V with a manifold F and an action $G \circlearrowright F$. We have that $(P \times F) \circlearrowright G$ via $(p, y)g = (pg, g^{-1}y)$, and $P \times_G F = (P \times F)/G$ is a manifold whose elements are classes [p, y]. This is a locally trivial fiber bundle with typical fiber F, and local trivializations $(U, \tilde{\Phi})$ are constructed from principal G-charts (U, Φ) for P, via $\tilde{\Phi}[p, y] = (\pi(p), \Phi_G(p)y)$, as before (it is well-defined). Inverses are $\tilde{\Phi}^{-1}(x, y) = [\Phi^{-1}(x, e), y]$. Restrictions to fibers are diffeomorphisms onto F. One can locally define horizontal lifts (but the domains pay the price: given $x \in M$ and $\gamma[0, 1] \to M$ with $\gamma(0) = x$, the map $y \mapsto \gamma_y^h(t)$ is not necessarily defined for all $y \in (P \times_G F)_y$ and/or $t \in [0, 1]$). And so on.

References

- [1] Hamilton, M. J. D.; *Mathematical Gauge Theory With Applications to the Standard Model of Particle Physics*, Springer, 2017.
- [2] Sontz, S. B.; Principal Bundles The Classical Case, Springer, 2015.
- [3] Terek, I.; Comparing principal and vector bundles. Notes. 2019. https://www.asc.ohio-state.edu/terekcouto.1/texts/principal.pdf
- [4] Tu, L. W.; *Differential Geometry Connections, Curvature, and Characteristic Classes,* Springer, 2017.