CONNECTIONS ON ASSOCIATED VECTOR BUNDLES

Ivo Terek

Quick summary on G-torsors, associated vector bundles and associated connections. Discussion on direct definition of ∇^{A} in terms of local gauges; independence of local gauge. Lastly, $R^{\nabla^{A}}$ versus F_{A}.

1 G-torsors

Let's quickly introduce the language of G-torsors, as it will be useful for the discussion later.

Definition 1

A set X is called a (left) G-torsor if it is equipped with a free and transitive action $G \circlearrowright X$. Equivalently, it is a G-set for which the enriched map

$$
G \times X \ni(x, g) \mapsto(x, g \cdot x) \in X \times X
$$

is an isomorphism.

Remark. Right G-torsors are defined on a similar way and the theory is unchanged, as a left G-torsor can be changed into a right G-torsor, and vice-versa. Affine spaces with translation vector space V are nothing more than right V-torsors.

Given $x^{\prime}, x^{\prime \prime} \in X$, there is a unique element $g \in G$ such that $x^{\prime \prime}=g \cdot x^{\prime}$. We will denote it by $x^{\prime \prime} / x^{\prime}$. So, on a G-torsor, one can "multiply" elements of G by elements of X, but one cannot multiply two elements of X. What one can do, instead, is to "divide" elements of X to obtain elements in G. The division notation is precise, because all algebraic manipulations you think should hold, will hold.

Proposition 1

Let X be a G-torsor, $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime} \in X$ and $g \in G$. Then:
(a) $\frac{x^{\prime \prime \prime}}{x^{\prime \prime}} \cdot \frac{x^{\prime \prime}}{x^{\prime}}=\frac{x^{\prime \prime \prime}}{x^{\prime}}$.
(b) $\frac{x^{\prime}}{x^{\prime}}=e$.
(c) $\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{-1}=\frac{x^{\prime}}{x^{\prime \prime}}$.
(d) $\frac{g \cdot x^{\prime \prime}}{x^{\prime}}=g \cdot \frac{x^{\prime \prime}}{x^{\prime}}$.
(e) $\frac{x^{\prime \prime}}{g \cdot x^{\prime}}=\frac{x^{\prime \prime}}{x^{\prime}} \cdot g^{-1}$.

Proof:

(a) Compute

$$
\left(\frac{x^{\prime \prime \prime}}{x^{\prime \prime}} \cdot \frac{x^{\prime \prime}}{x^{\prime}}\right) \cdot x^{\prime}=\frac{x^{\prime \prime \prime}}{x^{\prime \prime}} \cdot\left(\frac{x^{\prime \prime}}{x^{\prime}} \cdot x^{\prime}\right)=\frac{x^{\prime \prime \prime}}{x^{\prime \prime}} \cdot x^{\prime \prime}=x^{\prime \prime \prime}
$$

(b) Obvious.
(c) Compute

$$
\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{-1} \cdot x^{\prime \prime}=\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{-1} \cdot\left(\frac{x^{\prime \prime}}{x^{\prime}} \cdot x^{\prime}\right)=\left(\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{-1} \cdot\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)\right) \cdot x^{\prime}=e \cdot x^{\prime}=x^{\prime}
$$

(d) Compute

$$
\left(g \cdot \frac{x^{\prime \prime}}{x^{\prime}}\right) \cdot x^{\prime}=g \cdot\left(\frac{x^{\prime \prime}}{x^{\prime}} \cdot x^{\prime}\right)=g \cdot x^{\prime \prime} .
$$

(e) Use the previous items:

$$
\frac{x^{\prime \prime}}{g \cdot x^{\prime}}=\left(\frac{g \cdot x^{\prime}}{x^{\prime \prime}}\right)^{-1}=\left(g \cdot \frac{x^{\prime}}{x^{\prime \prime}}\right)^{-1}=\frac{x^{\prime \prime}}{x^{\prime}} \cdot g^{-1}
$$

2 Review

We work on the smooth category. Let $\pi: P \rightarrow M$ be a principal G-bundle, and $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of the Lie group G on a vector space V. Given $g \in G$ and $v \in V$, we'll write $g v$ for $\rho(g) v$. Then we have a right action $(P \times V) \circlearrowleft G$ given by $(p, v) \cdot g=\left(p \cdot g, g^{-1} v\right)$. The quotient $E(P, \rho)=P \times{ }_{\rho} V \doteq(P \times V) / G$ (written as E, for short) turns out to be a manifold. Elements of E are equivalence classes $[p, v]$, subject to the rule $[p \cdot g, v]=[p, g v]$. Since the action $P \circlearrowleft G$ is fiber-preserving, the projection $P \times V \ni(p, v) \mapsto \pi(p) \in M$ induces a projection $\pi_{E}: E \rightarrow M$. The fibers $\pi_{E}^{-1}(x)$ will be vector spaces, all isomorphic to V, by using that each P_{x} is a G-torsor. Namely, we write

$$
\left[p^{\prime}, v^{\prime}\right]+\left[p^{\prime \prime}, v^{\prime \prime}\right] \doteq\left[p^{\prime}, v^{\prime}+\frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right] \quad \text { and } \quad \lambda[p, v] \doteq[p, \lambda v] .
$$

The scalar multiplication doesn't require explanation, but for the sum, the idea is that one cannot add $\left(p^{\prime}, v^{\prime}\right)$ and $\left(p^{\prime \prime}, v^{\prime \prime}\right)$ if $p^{\prime} \neq p^{\prime \prime}$. In the quotient, if $p^{\prime}, p^{\prime \prime} \in P_{x}$, we may write that

$$
\left[p^{\prime \prime}, v^{\prime \prime}\right]=\left[p^{\prime} \frac{p^{\prime \prime}}{p^{\prime}}, v^{\prime \prime}\right]=\left[p^{\prime}, \frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right]
$$

and this last expression is admissible to add with $\left[p^{\prime}, v^{\prime}\right]$.

Proposition 2

The above operations are well-defined.
Proof: Let's verify that the sum is well-defined first. Replace p^{\prime} and v^{\prime} with $p^{\prime} \cdot g^{\prime}$ and $\left(g^{\prime}\right)^{-1} v^{\prime}$, and similarly for $p^{\prime \prime}$ and $v^{\prime \prime}$. Then compute

$$
\begin{aligned}
{\left[p^{\prime} \cdot g^{\prime},\left(g^{\prime}\right)^{-1} v^{\prime}+\frac{p^{\prime \prime} \cdot g^{\prime \prime}}{p^{\prime} \cdot g^{\prime}}\left(g^{\prime \prime}\right)^{-1} v^{\prime \prime}\right] } & =\left[p^{\prime} \cdot g^{\prime},\left(g^{\prime}\right)^{-1} v^{\prime}+\left(g^{\prime}\right)^{-1} \frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right] \\
& =\left[p^{\prime} \cdot g^{\prime},\left(g^{\prime}\right)^{-1}\left(v^{\prime}+\frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right)\right] \\
& =\left[p^{\prime}, v^{\prime}+\frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right] .
\end{aligned}
$$

For the scalar multiplication, take $[p, v] \in \pi_{E}^{-1}(x), \lambda \in \mathbb{R}$, replace p with $p \cdot g, v$ with $g^{-1} v$, and compute

$$
\left[p \cdot g, \lambda g^{-1} v\right]=\left[p \cdot g, g^{-1}(\lambda v)\right]=[p, \lambda v],
$$

since the representation ρ takes values in $\operatorname{GL}(V)$.
To get trivializations for E in terms of trivializations for P, one proceeds as follows: let (U, Φ) be a principal G-chart, where $U \subseteq M$ is open. So $\Phi: \pi^{-1}[U] \rightarrow U \times G$ has the form $\Phi(p)=\left(\pi(p), \Phi_{G}(p)\right)$, with G-equivariant $\Phi_{G}: \pi^{-1}[U] \rightarrow G$. We set $\Phi^{E}: \pi_{E}^{-1}[U] \rightarrow U \times V$ via $\Phi^{E}[p, v]=\left(\pi(p), \Phi_{G}(p) v\right)$.

Proposition 3

Φ^{E} is a well-defined VB-chart for E with inverse $\left(\Phi^{E}\right)^{-1}: U \times V \rightarrow \pi_{E}^{-1}[U]$ given by $\left(\Phi^{E}\right)^{-1}(x, v)=\left[\Phi^{-1}(x, e), v\right]$.

Proof: First, take $[p, v] \in \pi_{E}^{-1}[U]$, and replace p and v with $p \cdot g$ and $g^{-1} v$. Now

$$
\left(\pi(p \cdot g), \Phi_{G}(p \cdot g) g^{-1} v\right)=\left(\pi(p), \Phi_{G}(p) g g^{-1} v\right)=\left(\pi(p), \Phi_{G}(p) v\right)
$$

as required, since Φ_{G} is G-equivariant. Next, we have that

$$
\Phi^{E}\left[\Phi^{-1}(x, e), v\right]=\left(\pi \Phi^{-1}(x, e), \Phi_{G}\left(\Phi^{-1}(x, e)\right) v\right)=(x, e v)=(x, v)
$$

as well as

$$
\left[\Phi^{-1}(\pi(p), e), \Phi_{G}(p) v\right]=\left[\Phi^{-1}(\pi(p), e) \Phi_{G}(p), v\right]=\left[\Phi^{-1}\left(\pi(p), \Phi_{G}(p)\right), v\right]=[p, v]
$$

So, what we claim to be $\left(\Phi^{E}\right)^{-1}$, indeed is. Finally, let's show that restrictions of Φ^{E} to fibers of π_{E} are linear isomorphisms.

- Linearity.

$$
\begin{aligned}
\Phi^{E}\left(\left[p^{\prime}, v^{\prime}\right]+\left[p^{\prime \prime}, v^{\prime \prime}\right]\right) & =\Phi^{E}\left[p^{\prime}, v^{\prime}+\frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right] \\
& =\left(\pi\left(p^{\prime}\right), \Phi_{G}\left(p^{\prime}\right)\left(v^{\prime}+\frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right)\right) \\
& =\left(\pi\left(p^{\prime}\right), \Phi_{G}\left(p^{\prime}\right) v^{\prime}+\Phi_{G}\left(p^{\prime}\right) \frac{p^{\prime \prime}}{p^{\prime}} v^{\prime \prime}\right) \\
& =\left(\pi\left(p^{\prime}\right), \Phi_{G}\left(p^{\prime}\right) v^{\prime}+\Phi_{G}\left(p^{\prime} \frac{p^{\prime \prime}}{p^{\prime}}\right) v^{\prime \prime}\right) \\
& =\left(\pi\left(p^{\prime}\right), \Phi_{G}\left(p^{\prime}\right) v^{\prime}+\Phi_{G}\left(p^{\prime \prime}\right) v^{\prime \prime}\right) \\
& =\left(\pi\left(p^{\prime}\right), \Phi_{G}\left(p^{\prime}\right) v^{\prime}\right)+\left(\pi\left(p^{\prime \prime}\right), \Phi_{G}\left(p^{\prime \prime}\right) v^{\prime \prime}\right) \\
& =\Phi^{E}\left[p^{\prime}, v^{\prime}\right]+\Phi^{E}\left[p^{\prime \prime}, v^{\prime \prime}\right]
\end{aligned}
$$

using that Φ_{G} is G-equivariant and $\pi\left(p^{\prime}\right)=\pi\left(p^{\prime \prime}\right)$. Also:

$$
\begin{aligned}
\Phi^{E}(\lambda[p, v]) & =\Phi^{E}[p, \lambda v]=\left(\pi(p), \Phi_{G}(p) \lambda v\right) \\
& =\left(\pi(p), \lambda \Phi_{G}(p) v\right)=\lambda\left(\pi(p), \Phi_{G}(p) v\right)
\end{aligned}
$$

using that ρ takes values in $\mathrm{GL}(V)$ and that the vector space structure on the fiber $\{\pi(p)\} \times V$ is the obvious one, happening only on the V-factor.

- Injectivity. Assume that $\Phi^{E}[p, v]=(\pi(p), 0)$. This means that $\Phi_{G}(p) v=0$. But $v \mapsto \Phi_{G}(p) v$ is an isomorphism (because ρ takes values in GL (V), so this immediately gives that $v=0$.
- Surjectivity. Assume given $(\pi(p), v) \in\{\pi(p)\} \times V$. Then we clearly have that $\Phi^{E}\left[p, \Phi_{G}(p)^{-1} v\right]=\left(\pi(p), \Phi_{G}(p) \Phi_{G}(p)^{-1} v\right)=(\pi(p), v)$.

Proceeding, to understand local sections s of E properly, we'll use local gauges for P. Namely, on some open set $U \subseteq M$, fix a local gauge $\psi: U \rightarrow P$. Writing the section s as $s(x)=\left[\psi(x), s_{\psi}(x)\right]$ (this can be arranged for since $s(x) \in E_{x}$ and $\left.\psi(x) \in P_{x}\right)$, we obtain a bijective correspondence between local sections s: $U \rightarrow E$ and functions $s_{\psi}: U \rightarrow V$ - to be regarded as matter fields. The gauge group $\mathscr{G}(P)$ acts not only on P by evaluation, but also on E. We set $\Phi \cdot[p, v]=[\Phi(p), v]$.

Proposition 4

The action $\mathscr{G}(P) \circlearrowright E$ is well-defined.

Proof: Replace p and v with $p \cdot g$ and $g^{-1} v$. Then

$$
\left[\Phi(p \cdot g), g^{-1} v\right]=\left[\Phi(p) \cdot g, g^{-1} v\right]=[\Phi(p), v],
$$

since $\Phi \in \mathscr{G}(P)$ is G-equivariant.

With this in place, $\mathscr{G}(P)$ acts on local sections of E as well, pointwise. To express how this happens relative to a local gauge, recall that $\mathscr{G}(P) \cong \mathscr{C}^{\infty}(P, G)^{G}$ as follows: since $\Phi(p)$ and p are on the same fiber, there is $\sigma_{\Phi}(p) \in G$ such that $\Phi(p)=p \cdot \sigma_{\Phi}(p)$. Moreover, the G-equivariance relation, $\Phi(p \cdot g)=\Phi(p) \cdot g$, now implies that we have $(p \cdot g) \cdot \sigma_{\Phi}(p \cdot g)=\left(p \cdot \sigma_{\Phi}(p)\right) \cdot g$, so $\sigma_{\Phi}(p \cdot g)=g^{-1} \sigma_{\Phi}(p) g$. The correspondence is $\Phi \leftrightarrow \sigma_{\Phi}$.

Proposition 5

Let s be a local section of $E, \Phi \in \mathscr{G}(P)$, and ψ be a local gauge for P. Then we have

$$
(\Phi \cdot s)(x)=\left[\psi(x), \sigma_{\Phi}(\psi(x)) s_{\psi}(x)\right] .
$$

Proof: Directly compute

$$
\begin{aligned}
(\Phi \cdot s)(x) & =\Phi\left[\psi(x), s_{\psi}(x)\right]=\left[\Phi(\psi(x)), s_{\psi}(x)\right] \\
& =\left[\psi(x) \cdot \sigma_{\Phi}(\psi(x)), s_{\psi}(x)\right]=\left[\psi(x), \sigma_{\Phi}(\psi(x)) s_{\psi}(x)\right] .
\end{aligned}
$$

3 Differential forms

Recall that if Q is a smooth manifold and we have an action $G \circlearrowright Q$ which is free and proper (so Q / G is a smooth manifold), then $\Omega^{k}(Q / G) \cong \Omega_{\text {hor }}^{k}(Q)^{G}$, where $\Omega_{\text {hor }}^{k}(Q)^{G}$ consists of all the G-invariant horizontal k-forms. Here, horizontal means that the differential form produces zero whenever one of its arguments in the kernel of the derivative of the quotient projection $Q \rightarrow Q / G$. In our setting, similar arguments work, considering V-valued forms instead. Since the principal G-bundle $P \rightarrow M$ is such that $P / G \cong M$, we have that $\Omega_{\text {hor }}^{k}(P, V)^{\rho} \cong \Omega^{k}(M, E)$. Suggestively, each $\omega \in \Omega_{\mathrm{hor}}^{k}(P, V)^{\rho}$ satisfies $\mathrm{R}_{g}^{*} \omega=\rho\left(g^{-1}\right) \circ \omega$ and ω produces zero whenever one of its arguments is horizontal (relative to the fixed $A \in \Omega^{1}(P, \mathfrak{g})$.

4 Connections

Assume that the principal bundle $\pi: P \rightarrow M$ is equipped with an Ehresmann connection. That is, a 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ such that $A\left(X^{\#}\right)=X$ for all $X \in \mathfrak{g}$ (where $X^{\#} \in \mathfrak{X}(P)$ stands for the action field generated by $\left.X\right)$ and $R_{g}^{*} A=\operatorname{Ad}\left(g^{-1}\right) \circ A$, for all $g \in G$, where $R_{g}: P \rightarrow P$ is the right action of the element g. Choosing such A is equivalent to choosing a horizontal distribution $\mathscr{H} \hookrightarrow T P$ with $T P=\mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_{p}=\operatorname{ker} \mathrm{d} \pi_{p}$ is the natural vertical distribution of the bundle, and $\mathrm{d}\left(\mathrm{R}_{g}\right)_{p}\left[\mathscr{H}_{p}\right]=\mathscr{H}_{p \cdot g}$. The correspondence is $A \leftrightarrow \operatorname{ker} A$. The restriction of $\mathrm{d} \pi_{p}$ gives an isomorphism $\mathscr{H}_{p} \cong T_{\pi(p)} M$.

Proposition 6

Given $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=x$ and $\gamma(1)=y$, for each $p \in P_{x}$ there is a unique horizontal lift $\gamma_{p}^{\mathrm{h}}:[0,1] \rightarrow P$ with $\gamma_{p}^{\mathrm{h}}(0)=p$.

Proof: Since $P \rightarrow M$ is a bundle and $[0,1]$ is contractible, there is a lift $\widetilde{\gamma}:[0,1] \rightarrow P$ of γ, which is not, in general, horizontal. So, we must correct it. Let's solve a differential equation for $g:[0,1] \rightarrow G$ making $\alpha(t) \doteq \widetilde{\gamma}(t) \cdot g(t)$ horizontal. We have that

$$
\dot{\alpha}(t)=\mathrm{d}\left(\mathrm{R}_{g(t)}\right)_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t))+\mathrm{d}\left(\sigma_{\widetilde{\gamma}(t)}\right)_{g(t)}(\dot{g}(t))
$$

by the chain rule, but the second term can be simplified, by using the general relation $\sigma_{p \cdot g}=\sigma_{p} \circ \mathrm{~L}_{g}$:

$$
\dot{\alpha}(t)=\mathrm{d}\left(\mathrm{R}_{g(t)}\right)_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t))+\mathrm{d}\left(\sigma_{\alpha(t)}\right)_{e}\left(g(t)^{-1} \dot{g}(t)\right) .
$$

This reads

$$
\dot{\alpha}(t)=\mathrm{d}\left(\mathrm{R}_{g(t)}\right)_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t))+\left(g(t)^{-1} \dot{g}(t)\right)_{\alpha(t)}^{\#} .
$$

Apply A to obtain

$$
0=\operatorname{Ad}\left(g(t)^{-1}\right) A_{\widetilde{\gamma}(t)}(\dot{\tilde{\gamma}}(t))+g(t)^{-1} \dot{g}(t)
$$

So, simplifying Ad, we consider the initial value problem for g :

$$
\left\{\begin{array}{l}
\dot{g}(t)=-A_{\widetilde{\gamma}(t)}(\dot{\widetilde{\gamma}}(t)) g(t) \\
g(0)=e
\end{array}\right.
$$

This system has a unique solution defined for all $t \in[0,1]$.
With this, we define $\Pi_{\gamma}^{A}: P_{x} \rightarrow P_{y}$ by $\Pi_{\gamma}^{A}(p)=\gamma_{p}^{\mathrm{h}}(1)$. This is called the parallel transport operator along γ, induced by A.

Proposition 7

(a) $\Pi_{\gamma}^{A}: P_{x} \rightarrow P_{y}$ is G-equivariant.
(b) $\Pi_{\gamma * \eta}^{A}=\Pi_{\eta}^{A} \circ \Pi_{\gamma}^{A}$, where $*$ denotes concatenation and the initial point of η equals the terminal point of γ.
(c) $\left(\Pi_{\gamma}^{A}\right)^{-1}=\Pi_{\gamma^{\leftarrow}}^{A}$, where $\gamma^{\leftarrow}(t)=\gamma(1-t)$ is γ travelled in the reverse order.
(d) If $\Phi \in \mathscr{G}(P)$, then $\gamma_{\Phi(p)}^{\mathrm{h}, A}(t)=\Phi\left(\gamma_{p}^{\mathrm{h}, \Phi^{*} A}(t)\right)$. Hence $\Pi_{\gamma}^{\Phi^{*} A}=\Phi^{-1} \circ \Pi_{\gamma}^{A} \circ \Phi$.

Proof:

(a) This is a general consequence of the fact that $\gamma_{p \cdot g}^{\mathrm{h}}(t)=\gamma_{p}^{\mathrm{h}}(t) \cdot g$ for all $t \in[0,1]$. Indeed, for $t=0$ we have that $\gamma_{p}^{\mathrm{h}}(0) \cdot g=p \cdot g$, and $t \mapsto \gamma_{p}^{\mathrm{h}}(t) \cdot g$ is horizontal, since $\operatorname{ker} A$ is G-invariant (so that the derivative of R_{g} takes horizontal vectors to horizontal vectors).
(b) Clear.
(c) Follows from (b).
(d) If \mathscr{H}^{A} and $\mathscr{H}^{\Phi^{*} A}$ are the horizontal distributions of A and $\Phi^{*} A$, recall that we have the relation $\mathrm{d} \Phi_{p}\left[\mathscr{H}_{p}^{\Phi^{*} A}\right]=\mathscr{H}_{\Phi(p)}^{A}$, for all $p \in P$. For $t=0$, we have that $\Phi\left(\gamma_{p}^{\mathrm{h}, \Phi^{*}} A(0)\right)=\Phi(p)$. And moreover, we have that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \Phi\left(\gamma_{p}^{\mathrm{h}, \Phi^{*} A}(t)\right)=\mathrm{d} \Phi_{\gamma_{p}^{\mathrm{h}, \Phi^{*} A}(t)}\left(\dot{\gamma}_{p}^{\mathrm{h}, \Phi^{*} A}(t)\right)
$$

is A-horizontal. This establishes the relation between horizontal lifts. Now plug $t=1$ to conclude that $\Pi_{\gamma}^{A}(\Phi(p))=\Phi\left(\Pi_{\gamma}^{\Phi^{*} A}(p)\right)$, as required.

Keeping this notation, every parallel transport operator also acts on E. Namely, we define $\Pi_{\gamma}^{E, A}: E_{x} \rightarrow E_{y}$ by $\Pi_{\gamma}^{E, A}[p, v]=\left[\Pi_{\gamma}^{A}(p), v\right]$.

Proposition 8

$\Pi_{\gamma}^{E, A}$ is well-defined.

Proof: Replace p with $p \cdot g$ and v with $g^{-1} v$. Then

$$
\left[\Pi_{\gamma}^{A}(p \cdot g), g^{-1} v\right]=\left[\Pi_{\gamma}^{A}(p) \cdot g, g^{-1} v\right]=\left[\Pi_{\gamma}^{A}(p), v\right]
$$

as required.
To explore things further, we'll use the expressions for A relative to a local gauge $\psi: U \rightarrow P$. The pull-back $\psi^{*} A$ is denoted simply by $A_{\psi} \in \Omega^{1}(U, \mathfrak{g})$. Generally, we know that parallel transport operators between fibers of a vector bundle allow us to reconstruct the covariant derivative ∇. We'll use the $\Pi_{\gamma}^{E, A}$ to define a connection ∇^{A} on E, as follows:
(1) Pick $x \in M$ and $v \in T_{x} M$. Take a curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=x$. For each $t \in[0,1]$, write $\gamma_{t}=\left.\gamma\right|_{[0, t]}$
(2) Take a (local) section s of E. Then $s(\gamma(t)) \in E_{\gamma(t)}$ for all $t \in[0,1]$. Then transport it back: $\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1}\left(s(\gamma(t)) \in E_{x}\right.$.
(3) Take the derivative:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1}(s(\gamma(t)))
$$

Proposition 9

Relative to ψ, if $\dot{\gamma}(0)=v$, we have

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\Pi_{\gamma_{t}}^{E_{t}, A}\right)^{-1}(s(\gamma(t)))=\left[\psi(x), \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v})+\rho_{*}\left(A_{\psi}(\boldsymbol{v})\right) s_{\psi}(x)\right]
$$

Proof: We clearly have

$$
\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1} s(\gamma(t))=\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1}\left[\psi(\gamma(t)), s_{\psi}(\gamma(t))\right]=\left[\left(\Pi_{\gamma_{t}}^{A}\right)^{-1} \psi(\gamma(t)), s_{\psi}(\gamma(t))\right]
$$

but since $\left(\Pi_{\gamma_{t}}^{A}\right)^{-1} \psi(\gamma(t)) \in P_{x}$ for all t, there is $g:[0,1] \rightarrow G$ such that

$$
\left(\Pi_{\gamma_{t}}^{A}\right)^{-1} \psi(\gamma(t))=\psi(x) \cdot g(t)
$$

for all $t \in[0,1]$. This immediately gives that

$$
\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1} s(\gamma(t))=\left[\psi(x), g(t) s_{\psi}(\gamma(t))\right] .
$$

Now, γ_{0} is the constant curve x, meaning that the corresponding parallel transport operator is the identity, and thus $g(0)=e$. We will also need to find $\dot{g}(0) \in \mathfrak{g}$, since

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1} s(\gamma(t))=\left[\psi(x), \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v})+\rho_{*}(\dot{g}(0)) s_{\psi}(x)\right]
$$

by the product rule (and recalling that the juxtaposition $g(t) s_{\psi}(\gamma(t))$ was a shorthand for $\left.\rho(g(t)) s_{\psi}(\gamma(t))\right)$. Taking derivatives at 0 , we immediately see that

$$
\psi(x) \cdot g(t)=\left(\Pi_{\gamma_{t}}^{A}\right)^{-1} \psi(\gamma(t)) \Longrightarrow \dot{g}(0)_{\psi(x)}^{\#}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\Pi_{\gamma_{t}}^{A}\right)^{-1} \psi(\gamma(t))
$$

but differentiating this last expression on the right requires the little usual trick: define

$$
F(s, t)=\Pi_{\gamma_{s}}^{A}\left(\left(\Pi_{\gamma_{t}}^{A}\right)^{-1} \psi(\gamma(t))\right)
$$

and note that $\psi(\gamma(t))=F(t, t)$, and compute

$$
\mathrm{d} \psi_{x}(v)=\frac{\partial F}{\partial t}(0,0)+\frac{\partial F}{\partial s}(0,0)=\dot{g}(0)_{\psi(x)}^{\#}+\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \Pi_{\gamma_{t}}^{A}(\psi(x)) .
$$

Since the curve $t \mapsto \Pi_{\gamma_{t}}^{A}(\psi(x))$ is horizontal, applying A to everything gives that $A_{\psi}(v)=\dot{g}(0)$, as required.

In particular, such expression depends on $\gamma(0)$ and $\dot{\gamma}(0)$, but not on γ itself. So if, again, $\dot{\gamma}(0)=v \in T_{x} M$, we define

$$
\nabla_{v}^{A} s=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\Pi_{\gamma_{t}}^{E, A}\right)^{-1}(s(\gamma(t)))
$$

and if $\boldsymbol{X} \in \mathfrak{X}(M)$, we also define $\nabla_{X}^{A} s$. Relative to ψ, we write $\nabla_{X}^{A} s=\left[\psi, \nabla_{X}^{A} s_{\psi}\right]$, where

$$
\nabla_{\boldsymbol{X}}^{A} s_{\psi}=\mathrm{d}\left(s_{\psi}\right)(\boldsymbol{X})+\rho_{*}\left(A_{\psi}(\boldsymbol{X})\right) s_{\psi} .
$$

So $\nabla^{A}=\mathrm{d}+\rho_{*} A_{\psi}$. For this reason, A_{ψ} is called the Christoffel form of A relative to ψ.

Proposition 10

$$
\nabla^{A} \text { is a Koszul connection on } E \text {. }
$$

Proof: All the properties are local, so we may verify them with a local gauge ψ, as usual. The expression for $\nabla_{X}^{A} s_{\psi}$ is clearly additive in \boldsymbol{X} and s_{ψ}, and $\mathscr{C}^{\infty}(M)$-linear in the variable \boldsymbol{X}. Let's verify the Leibniz rule. Let $f \in \mathscr{C}^{\infty}(M)$. Clearly $(f s)_{\psi}=f s_{\psi}$, so

$$
\begin{aligned}
\nabla_{\boldsymbol{X}}^{A}\left(f s_{\psi}\right) & =\mathrm{d}\left(f s_{\psi}\right)(\boldsymbol{X})+\rho_{*}\left(A_{\psi}(\boldsymbol{X})\right)\left(f s_{\psi}\right) \\
& =\boldsymbol{X}(f) s_{\psi}+f \mathrm{~d}\left(s_{\psi}\right)(\boldsymbol{X})+f \rho_{*}\left(A_{\psi}(\boldsymbol{X})\right) s_{\psi} \\
& =\boldsymbol{X}(f) s_{\psi}+f \nabla_{\boldsymbol{X}}^{A} s_{\psi},
\end{aligned}
$$

Remark. A shorter argument: $\nabla^{A}=\mathrm{d}+\rho_{*} A_{\psi}$ equals a connection (d) plus a tensor ($\rho_{*} A_{\psi}$), so it is a connection.

Last three remarks:

- If \mathscr{F} is a smooth endofunctor of the category of finite-dimensional real vector spaces and linear maps (smooth means that the action on the level of morphisms is smooth), then for each $\rho: G \rightarrow \mathrm{GL}(V)$ we get $\mathscr{F} \rho: G \rightarrow \mathrm{GL}(\mathscr{F} V)$, and so we can form the associated bundle $P \times_{\mathscr{F} \rho} \mathscr{F} V$. But \mathscr{F} also acts fiberwise on the associated vector bundle $P \times{ }_{\rho} V$, producing $\mathscr{F}\left(P \times{ }_{\rho} V\right)$. These two bundles are isomorphic simply because they are described by the same cocycles (relative to trivializations induced by principal G-charts for P). If $\tau_{\alpha \beta}$ is an element of the cocycle, then $\rho \circ \tau_{\alpha \beta}$ is an element of the cocycle defining $P \times{ }_{\rho} V$. And the associativity law $\mathscr{F} \circ\left(\rho \circ \tau_{\alpha \beta}\right)=(\mathscr{F} \circ \rho) \circ \tau_{\alpha \beta}$ holds. If \mathscr{F} is a multivariable smooth functor, a similar argument applies. So, for example, the associated vector bundle to P under the dual representation of ρ is in fact the dual of the associated vector bundle to P under ρ. And so on.
- Generally, if V carries a linear G-structure, then we have an induced G-structure on $\operatorname{Fr}(E)$, which is parallel relative to ∇^{A}. Here's one concrete example: if we take a covariant k-tensor $T \in\left(V^{*}\right)^{\otimes k}$ on V which is T invariant, then we have $T^{E} \in \Gamma\left(\left(E^{*}\right)^{\otimes k}\right)$ defined by $T_{x}^{E}\left(\left[p, v_{1}\right], \ldots,\left[p, v_{k}\right]\right)=T\left(v_{1}, \ldots, v_{k}\right)$ (it is welldefined). Now, suppressing ρ and ρ_{*}, differentiating the G-invariance relation $T\left(g v_{1}, \ldots, g v_{k}\right)=T\left(v_{1}, \ldots, v_{k}\right)$ relative to the variable g and evaluating at $X \in \mathfrak{g}$, we obtain

$$
\sum_{i=1}^{n} T\left(v_{1}, \ldots, X v_{i}, \ldots, v_{k}\right)=0 .
$$

This means that, choosing a local gauge ψ for P, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} T^{E}\left(s_{1}, \ldots, \nabla_{\boldsymbol{X}}^{A} s_{i}, \ldots, s_{k}\right)=\sum_{i=1}^{n} T\left(s_{1, \psi}, \ldots, \nabla_{\boldsymbol{X}}^{A} s_{i, \psi}, \ldots, s_{k, \psi}\right) \\
&=\sum_{i=1}^{n} T\left(s_{1, \psi}, \ldots, \mathrm{~d}\left(s_{i, \psi}\right)(\boldsymbol{X})+\rho_{*}\left(A_{\psi}(\boldsymbol{X})\right) s_{i, \psi}, \ldots, s_{k, \psi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} T\left(s_{1, \psi}, \ldots, \mathrm{~d}\left(s_{i, \psi}\right)(\boldsymbol{X}), \ldots, s_{k, \psi}\right) \\
& =\boldsymbol{X}\left(T\left(s_{1, \psi}, \ldots, s_{k, \psi}\right)\right. \\
& =\boldsymbol{X}\left(T^{E}\left(s_{1}, \ldots, s_{k}\right)\right),
\end{aligned}
$$

for all $\boldsymbol{X} \in \mathfrak{X}(M)$ and (local) sections s_{1}, \ldots, s_{k} of E. This means that $\nabla^{A} T^{E}=0$. In particular, a G-invariant inner product on V (which always exists when G is compact, by Weyl's unitary trick) induces a parallel fiber metric on E.

- If we denote ∇^{A} by $\nabla^{A, p}$, and noting that if E has a connection, then $\mathscr{F} E$ also inherits one (usually by requiring some structure to be parallel - e.g., connections in hom-bundles are characterized by making the evaluation map parallel), then it turns out that $\mathscr{F}\left(\nabla^{A, \rho}\right)=\nabla^{A, \mathscr{F} \rho}$ by default, so there is no ambiguity when writing things like $\nabla^{A} T^{E}$ as in the previous item.

5 Gauge independence of direct definition of ∇^{A}

Often, one defines ∇^{A} on E by choosing a local gauge $\psi: U \rightarrow P$ and declaring

$$
\nabla_{\boldsymbol{X}}^{A} s=\left[\psi, \mathrm{d}\left(s_{\psi}\right)(\boldsymbol{X})+\rho_{*}\left(A_{\psi}(\boldsymbol{X})\right) s_{\psi}\right] .
$$

Then it is necessary to check that this definition is independent of ψ. So, let's make a change of gauge $\psi \mapsto \psi^{\prime}=\psi \cdot g$, where $g: U \rightarrow G$ is a physical gauge transformation. More precisely, $\psi^{\prime}(x)=\psi(x) \cdot g(x)$ for all $x \in U$.

Proposition 11

(a) $s_{\psi \cdot g}=g^{-1} s_{\psi}$.
(b) $\mathrm{d}\left(s_{\psi \cdot g}\right)_{x}(\boldsymbol{v})=-\rho_{*}\left(\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})\right) \rho\left(g(x)^{-1}\right) s_{\psi}(x)+\rho\left(g(x)^{-1}\right) \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v})$.
(c) $\mathrm{d}(\psi \cdot g)_{x}(v)=\mathrm{d}\left(R_{g(x)}\right)_{\psi(x)}\left(\mathrm{d} \psi_{x}(v)\right)+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})_{\psi(x) \cdot g(x)}^{\#}$, for all $x \in U$ and $v \in T_{x} M$.
(d) $A_{\psi \cdot g}=\operatorname{Ad}\left(g^{-1}\right) \circ A_{\psi}+g^{*} \Theta$.

Remark. Above, $\Theta \in \Omega^{1}(G, \mathfrak{g})$ is the left-invariant Maurer-Cartan form on G, given by $\Theta_{a}(\boldsymbol{w})=\mathrm{d}\left(\mathrm{L}_{a^{-1}}\right)_{a} \boldsymbol{w}$. Occasionally, we'll just write $a^{-1} \boldsymbol{w}$.

Proof:

(a) $s=\left[\psi \cdot g, s_{\psi \cdot g}\right]=\left[\psi, g s_{\psi \cdot g}\right]$ implies that $s_{\psi}=g s_{\psi \cdot g}$, and the conclusion follows.
(b) The usual trick of separating variables works: define $F(x, y)=\rho\left(g(x)^{-1}\right) s_{\psi}(y)$ and note that $s_{\psi \cdot g}(x)=F(x, x)$, so

$$
\mathrm{d}\left(s_{\psi \cdot g}\right)_{x}(\boldsymbol{v})=\left(\partial_{1} F\right)_{(x, x)}(\boldsymbol{v})+\left(\partial_{2} F\right)_{(x, x)}(\boldsymbol{v}) .
$$

But

$$
\left(\partial_{2} F\right)_{(x, x)}(\boldsymbol{v})=\rho\left(g(x)^{-1}\right) \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v})
$$

and

$$
\begin{aligned}
\left(\partial_{1} F\right)_{(x, x)}(v) & =\mathrm{d} \rho_{g(x)^{-1}}\left(-g(x)^{-1} \mathrm{~d} g_{x}(v) g(x)^{-1}\right) s_{\psi}(x) \\
& =-\mathrm{d} \rho_{g(x)^{-1}}\left(\left(g^{*} \Theta\right)_{x}(\boldsymbol{v}) g(x)^{-1}\right) s_{\psi}(x) \\
& =-\rho_{*}\left(\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})\right) \rho\left(g(x)^{-1}\right) s_{\psi}(x)
\end{aligned}
$$

We're using the standard formulas for the derivative of the inversion in any Lie group, the chain rule to differentiate $\rho \circ \mathrm{R}_{g(x)^{-1}}=\mathrm{R}_{\rho\left(g(x)^{-1}\right)} \circ \rho$ (because ρ is a homomorphism) at the identity $e \in G$, and that multiplication in $\operatorname{GL}(V)$ is the restriction of a linear map $\mathfrak{g l}(V) \rightarrow \mathfrak{g l}(V)$ (so its derivative is itself).
(c) The usual trick works again: define $F(x, y)=\psi(x) \cdot g(y)$, note that $\psi^{\prime}(x)=F(x, x)$, so

$$
\mathrm{d}\left(\psi^{\prime}\right)_{x}(v)=\left(\partial_{1} F\right)_{(x, x)}(v)+\left(\partial_{2} F\right)_{(x, x)}(v)
$$

But

$$
\left(\partial_{1} F\right)_{(x, x)}(\boldsymbol{v})=\mathrm{d}\left(R_{g(x)}\right)_{\psi(x)}\left(\mathrm{d} \psi_{x}(\boldsymbol{v})\right),
$$

and

$$
\begin{aligned}
\left(\partial_{2} F\right)_{(x, x)}(\boldsymbol{v}) & =\mathrm{d}\left(\sigma_{\psi(x)}\right)_{g(x)}\left(\mathrm{d} g_{x}(\boldsymbol{v})\right) \\
& \left.=\mathrm{d}\left(\sigma_{\psi(x) \cdot g(x)}\right)_{e}\left(\left(\mathrm{~d}\left(\mathrm{~L}_{g(x)}\right)_{g(x)}^{-1} \mathrm{~d} g_{x}(\boldsymbol{v})\right)\right)\right) \\
& =\mathrm{d}\left(\sigma_{\psi(x) \cdot g(x)}\right)_{e}\left(\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})\right) \\
& =\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})_{\psi(x) \cdot g(x)}^{\#} .
\end{aligned}
$$

(d) From (c), we have that

$$
\begin{aligned}
\left(A_{\psi \cdot g}\right)_{x}(\boldsymbol{v}) & =A_{\psi(x) \cdot g(x)}\left(\mathrm{d}(\psi \cdot g)_{x}(\boldsymbol{v})\right) \\
& =A_{\psi(x) \cdot g(x)}\left(\mathrm{d}\left(R_{g(x)}\right)_{\psi(x)}\left(\mathrm{d} \psi_{x}(\boldsymbol{v})\right)+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})_{\psi(x) \cdot g(x)}^{\#}\right) \\
& =A_{\psi(x) \cdot g(x)}\left(\mathrm{d}\left(R_{g(x)}\right)_{\psi(x)}\left(\mathrm{d} \psi_{x}(\boldsymbol{v})\right)\right)+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v}) \\
& =\left(\mathrm{R}_{g(x)}^{*} A\right)_{\psi(x)}\left(\mathrm{d} \psi_{x}(\boldsymbol{v})\right)+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v}) \\
& =\operatorname{Ad}\left(g(x)^{-1}\right)\left(A_{\psi(x)}\left(\mathrm{d} \psi_{x}(\boldsymbol{v})\right)+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})\right. \\
& =\operatorname{Ad}\left(g(x)^{-1}\right)\left(\left(A_{\psi}\right)_{x}(\boldsymbol{v})\right)+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})
\end{aligned}
$$

Now everything is in place. Since

$$
\left[\psi \cdot g, \mathrm{~d}\left(s_{\psi \cdot g}\right)+\rho_{*}\left(A_{\psi \cdot g}\right) s_{\psi \cdot g}\right]=\left[\psi, g\left(\mathrm{~d}\left(s_{\psi \cdot g}\right)+\rho_{*}\left(A_{\psi \cdot g}\right) s_{\psi \cdot g}\right)\right]
$$

there is only one computation left to do. Let's carry ρ, x and v in full detail.

$$
\rho(g(x))\left(\mathrm{d}\left(s_{\psi \cdot g}\right)_{x}(\boldsymbol{v})+\rho_{*}\left(\left(A_{\psi \cdot g}\right)_{x}(\boldsymbol{v})\right) s_{\psi \cdot g}(x)\right)=
$$

$$
\begin{aligned}
&=\rho(g(x))(- \rho_{*}\left(\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})\right) \rho\left(g(x)^{-1}\right) s_{\psi}(x)+\rho\left(g(x)^{-1}\right) \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v}) \\
&\left.+\rho_{*}\left(\operatorname{Ad}_{g(x)^{-1}}\left(A_{\psi}\right)_{x}(\boldsymbol{v})+\left(g^{*} \Theta\right)_{x}(\boldsymbol{v})\right) \rho\left(g(x)^{-1}\right) s_{\psi}(x)\right) \\
& \stackrel{(+)}{=} \rho(g(x))\left(\rho\left(g(x)^{-1}\right) \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v})+\rho_{*}\left(\operatorname{Ad}_{g(x)^{-1}}\left(A_{\psi}\right)_{x}(\boldsymbol{v})\right) \rho\left(g(x)^{-1}\right) s_{\psi}(x)\right) \\
& \stackrel{(\ddagger)}{=} \mathrm{d}\left(s_{\psi}\right)_{x}(\boldsymbol{v})+\rho_{*}\left(\left(A_{\psi}\right)_{x}(\boldsymbol{v})\right) s_{\psi}(x),
\end{aligned}
$$

where in (\dagger) we cancel all the terms with Θ, and in (\ddagger) we use that ρ is a homomorphism and $g(x) \operatorname{Ad}_{g(x)^{-1}}\left(\left(A_{\psi}\right)_{x}(v)\right) g(x)^{-1}=\left(A_{\psi}\right)_{x}(v)$.

6 Curvature

The curvature of $A \in \Omega^{1}(P, \mathfrak{g})$ is $F_{A} \in \Omega^{2}(P, \mathfrak{g})$ given by

$$
F_{A}=\mathrm{d} A+\frac{1}{2}[A, A]
$$

or, more explictly, $F_{A}(\boldsymbol{X}, \boldsymbol{Y})=\mathrm{d} A(\boldsymbol{X}, \boldsymbol{Y})+[A(\boldsymbol{X}), A(\boldsymbol{Y})]$, for all $\boldsymbol{X}, \boldsymbol{Y} \in \mathfrak{X}(P)$. If we have coordinates $\left(x^{\mu}\right)$ for the base manifold, and a local gauge ψ, all on some open set $U \subseteq M$, then we have $F_{A, \psi}=\psi^{*}\left(F_{A}\right) \in \Omega^{2}(U, \mathfrak{g})$, and we set $F_{\mu \nu}=F_{A, \psi}\left(\partial_{\mu}, \partial_{\nu}\right)$. Then, we have

$$
F_{\mu v}=\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right],
$$

where $A_{\mu}=\left(A_{\psi}\right)\left(\partial_{\mu}\right)$. Note that $A_{\mu}, F_{\mu \nu}$ are smooth functions on U, valued on \mathfrak{g}. When G is abelian, $\left[A_{\mu}, A_{\nu}\right]=0$. It remains to establish what is the relation between $R^{\nabla^{A}}$ and F_{A}. We do this using ψ.

Proposition 12

$$
R^{\nabla^{A}}\left(\partial_{\mu}, \partial_{\nu}\right) s_{\psi}=\rho_{*}\left(F_{\mu v}\right) s_{\psi}
$$

Proof: It's a direct computation:

$$
\begin{aligned}
R^{\nabla^{A}}\left(\partial_{\mu}, \partial_{\nu}\right) s_{\psi}= & \nabla_{\partial_{\mu}}^{A} \nabla_{\partial_{\nu}}^{A} s_{\psi}-\nabla_{\partial_{\nu}}^{A} \nabla_{\partial_{\mu}}^{A} s_{\psi} \\
= & \nabla_{\partial_{\mu}}^{A}\left(\partial_{\nu} s_{\psi}+\rho_{*}\left(A_{\nu}\right) s_{\psi}\right)-\nabla_{\partial_{\nu}}^{A}\left(\partial_{\mu} s_{\psi}+\rho_{*}\left(A_{\mu}\right) s_{\psi}\right) \\
= & \partial_{\mu} \partial_{\nu} s_{\psi}+\rho_{*}\left(A_{\mu}\right) \partial_{\nu} s_{\psi}+\partial_{\mu}\left[\rho_{*}\left(A_{\nu}\right) s_{\psi}\right]+\rho_{*}\left(A_{\mu}\right) \rho_{*}\left(A_{\nu}\right) s_{\psi} \\
& -\partial_{\nu} \partial_{\mu} s_{\psi}+\rho_{*}\left(A_{\nu}\right) \partial_{\mu} s_{\psi}-\partial_{\nu}\left[\rho_{*}\left(A_{\mu}\right) s_{\psi}\right]-\rho_{*}\left(A_{\nu}\right) \rho_{*}\left(A_{\mu}\right) s_{\psi} \\
= & \rho_{*}\left(A_{\mu}\right) \partial_{\nu} s_{\psi}+\rho_{*}\left(\partial_{\mu} A_{\nu}\right) s_{\psi}+\rho_{*}\left(A_{\nu}\right) \partial_{\mu} s_{\psi} \\
& -\rho_{*}\left(A_{\nu}\right) \partial_{\mu} s_{\psi}-\rho_{*}\left(\partial_{\nu} A_{\mu}\right) s_{\psi}-\rho_{*}\left(A_{\mu}\right) \partial_{\nu} s_{\psi}+\rho_{*}\left(\left[A_{\mu}, A_{\nu}\right]\right) s_{\psi} \\
= & \rho_{*}\left(\partial_{\mu} A_{\nu}\right) s_{\psi}-\rho_{*}\left(\partial_{\nu} A_{\mu}\right) s_{\psi}+\rho_{*}\left(\left[A_{\mu}, A_{\nu}\right]\right) s_{\psi} \\
== & \rho_{*}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]\right) s_{\psi} \\
= & \rho_{*}\left(F_{\mu \nu}\right) s_{\psi}
\end{aligned}
$$

as required.

Remark. It's not clear how to write such an expression without relying on a local gauge. If $X \in \mathfrak{g}$, trying to define $\rho_{*}(X)[p, v]$ as $\left[p, \rho_{*}(X) v\right]$ doesn't work, as replacing p and v with $p \cdot g$ and $\rho\left(g^{-1}\right) v$ leads to $\left[p, \rho_{*}\left(\operatorname{Ad}_{g}(X)\right) v\right]$ instead.

7 Arbitrary associated fiber bundles

Essentially everything that happened here can be done replacing ρ and V with a manifold F and an action $G \circlearrowright F$. We have that $(P \times F) \circlearrowleft G$ via $(p, y) g=\left(p g, g^{-1} y\right)$, and $P \times_{G} F=(P \times F) / G$ is a manifold whose elements are classes $[p, y]$. This is a locally trivial fiber bundle with typical fiber F, and local trivializations $(U, \widetilde{\Phi})$ are constructed from principal G-charts (U, Φ) for P, via $\widetilde{\Phi}[p, y]=\left(\pi(p), \Phi_{G}(p) y\right)$, as before (it is well-defined). Inverses are $\widetilde{\Phi}^{-1}(x, y)=\left[\Phi^{-1}(x, e), y\right]$. Restrictions to fibers are diffeomorphisms onto F. One can locally define horizontal lifts (but the domains pay the price: given $x \in M$ and $\gamma[0,1] \rightarrow M$ with $\gamma(0)=x$, the map $y \mapsto \gamma_{y}^{h}(t)$ is not necessarily defined for all $y \in\left(P \times_{G} F\right)_{y}$ and/or $\left.t \in[0,1]\right)$. And so on.

References

[1] Hamilton, M. J. D.; Mathematical Gauge Theory - With Applications to the Standard Model of Particle Physics, Springer, 2017.
[2] Sontz, S. B.; Principal Bundles - The Classical Case, Springer, 2015.
[3] Terek, I.; Comparing principal and vector bundles. Notes. 2019. https://www.asc.ohio-state.edu/terekcouto.1/texts/principal.pdf
[4] Tu, L. W.; Differential Geometry - Connections, Curvature, and Characteristic Classes, Springer, 2017.

