
Conformal geometry formulas Ivo Terek

SOME CONFORMAL GEOMETRY FORMULAS

Ivo Terek

Fix a pseudo-Riemannian manifold (M, g) and a smooth function ϕ : M→ R. With
this, define a new pseudo-Riemannian metric g̃ = e2ϕg. Let ∇ and ∇̃ be the Levi-
Civita connections of (M, g) and (M, g̃), respectively, and let U = gradgϕ (this field U
is called the conformal gradient of (M, g)). It will be convenient to set H = Hessgϕ, so
that H(X, Y) = g(∇XU, Y), and also (dϕ)⊗2 = dϕ⊗ dϕ in some proofs. Recall that H
is symmetric because ∇ is torsion-free. We’ll also write ‖dϕ‖2

g = g(U, U), but this has
to be interpreted as a formal symbol, as it might be zero or negative in case g is not
Riemannian.

Theorem 1. For all X, Y ∈ X(M), the relation

∇̃XY = ∇XY + g(Y, U)X + g(X, U)Y− g(X, Y)U

holds.

Proof: Recall the Koszul formula

2g(∇XY, Z) = (LYg)(X, Z) + d(Y[)(X, Z),

where L is the Lie derivative and the exterior derivative of Y[ = g(Y, ·) is to be thought
as the curl of Y. First, note that

LYg̃ = LY(e2ϕg) = Y(e2ϕ)g+ e2ϕLYg = 2Y(ϕ)e2ϕg+ e2ϕLYg.

Secondly, that Ỹ
[
= e2ϕY[ implies that

d(Ỹ
[
) = 2e2ϕdϕ ∧Y[ + e2ϕd(Y[),

so that

2g̃(∇̃XY, Z) = (LYg̃)(X, Z) + d(Ỹ
[
)(X, Z)

= 2Y(ϕ)e2ϕg(X, Z) + e2ϕ(LYg)(X, Z) + 2e2ϕ(dϕ ∧Y[)(X, Z) + e2ϕd(Y[)(X, Z)

= 2Y(ϕ)e2ϕg(X, Z) + 2e2ϕg(∇XY, Z) + 2e2ϕ(X(ϕ)g(Y, Z)− Z(ϕ)g(Y, X)).

Divide everything through by 2e2ϕ and use that g̃ = e2ϕg to get

g(∇̃XY, Z) = Y(ϕ)g(X, Z) + g(∇XY, Z) + X(ϕ)g(Y, Z)− Z(ϕ)g(X, Y).
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Rewriting the above using the conformal gradient U instead of dϕ and reorganizing
the right side in the form g(∗, Z), we have that

g(∇̃XY, Z) = g(∇XY + g(Y, U)Z + g(X, U)Y− g(X, Y)U, Z).

Since Z is arbitrary and g is non-degenerate, we conclude that

∇̃XY = ∇XY + g(Y, U)X + g(X, U)Y− g(X, Y)U,

as wanted.

What about the curvature? First, we take X, Y, Z ∈ X(M) and directly compute
that:

∇̃X∇̃YZ = ∇X∇̃YZ + g(∇̃YZ, U)X + g(X, U)∇̃YZ− g(X, ∇̃YZ)U
= ∇X∇YZ + g(∇XZ, U)Y + g(Z,∇XU)Y + g(Z, U)∇XY
+ g(∇XY, U)Z + g(Y,∇XU)Z + g(Y, U)∇XZ
− g(∇XY, Z)U − g(Y,∇XZ)U − g(Y, Z)∇XU

+ g(∇YZ, U)X + g(Z, U)g(Y, U)X + g(Y, U)g(Z, U)X− ‖dϕ‖2
gg(Y, Z)X

+ g(X, U)∇YZ + g(X, U)g(Z, U)Y + g(X, U)g(Y, U)Z
((((

((((
(((−g(X, U)g(Y, Z)U

− g(X,∇YZ)U − g(Z, U)g(X, Y)U − g(Y, U)g(X, Z)U
(((

((((
((((

+g(Y, Z)g(X, U)U
= ∇X∇YZ + g(∇XZ, U)Y + H(X, Z)Y + g(Z, U)∇XY
+ g(∇XY, U)Z + H(X, Y)Z + g(Y, U)∇XZ
− g(∇XY, Z)U − g(Y,∇XZ)U − g(Y, Z)∇XU

+ g(∇YZ, U)X + g(Z, U)g(Y, U)X + g(Y, U)g(Z, U)X− ‖dϕ‖2
gg(Y, Z)X

+ g(X, U)∇YZ + g(X, U)g(Z, U)Y + g(X, U)g(Y, U)Z
− g(X,∇YZ)U − g(Z, U)g(X, Y)U − g(Y, U)g(X, Z)U.

With this in place, we may compute the curvature tensor.

Theorem 2. For all X, Y, Z, W ∈ X(M), we have that

R̃ = e2ϕR− 2e2ϕg©∧
(

Hessgϕ− dϕ⊗ dϕ +
‖dϕ‖2

g

2
g

)
,

as (0, 4)-tensors.

Proof: By definition, we have

R̃(X, Y)Z = ∇X∇YZ(((((
(((+g(∇XZ, U)Y+H(X, Z)Y(((((

(((+g(Z, U)∇XY

((((
((((+g(∇XY, U)Z���

��
��

+H(X, Y)Z(((((
(((+g(Y, U)∇XZ

(((
((((

(−g(∇XY, Z)U(((((
(((−g(Y,∇XZ)U−g(Y, Z)∇XU

((((
((((

(
+g(∇YZ, U)X+((((

((((
((

g(Z, U)g(Y, U)X+g(Y, U)g(Z, U)X− ‖dϕ‖2
gg(Y, Z)X

((((
((((+g(X, U)∇YZ

(((
((((

((((
+g(X, U)g(Z, U)Y

(((
((((

((((
+g(X, U)g(Y, U)Z
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((((
((((−g(X,∇YZ)U

((((
((((

(((−g(Z, U)g(X, Y)U−g(Y, U)g(X, Z)U
−∇Y∇XZ(((((

(((−g(∇YZ, U)X−H(Y, Z)X(((((
(((−g(Z, U)∇YX

((((
((((−g(∇YX, U)Z���

��
��−H(Y, X)Z(((((

(((−g(X, U)∇YZ

((((
((((+g(∇YX, Z)U(((((

(((+g(X,∇YZ)U+g(X, Z)∇YU

((((
((((−g(∇XZ, U)Y

((((
((((

(((−g(Z, U)g(X, U)Y−g(X, U)g(Z, U)Y + ‖dϕ‖2
gg(X, Z)Y

(((
((((

(−g(Y, U)∇XZ
((((

((((
(((−g(Y, U)g(Z, U)X
((((

((((
(((−g(Y, U)g(X, U)Z

((((
((((+g(Y,∇XZ)U

((((
((((

(((
+g(Z, U)g(Y, X)U+g(X, U)g(Y, Z)U

−∇[X,Y]Z(((((
((((−g(Z, U)[X, Y](((((

((((−g([X, Y], U)Z(((((
((((+g([X, Y], Z)U.

Since R̃ is a tensor, it should depend linearly on X, Y and Z, no covariant derivatives
of these fields should appear, we’ll have terms with U, and terms with∇U. The reader
should take 5 or 10 minutes to parse the above carefully. With these cancellations, we
obtain:

R̃(X, Y)Z = R(X, Y)Z + H(X, Z)Y− g(Y, Z)∇XU + g(Y, U)g(Z, U)X

− ‖dϕ‖2
gg(Y, Z)X− g(Y, U)g(X, Z)U − H(Y, Z)X + g(X, Z)∇YU

− g(X, U)g(Z, U)Y + ‖dϕ‖2
gg(X, Z)Y + g(X, U)g(Y, Z)U.

So, we g-multiply by a fourth field W to get:

g(R̃(X, Y)Z, W) = R(X, Y, Z, W)+H(X, Z)g(Y, W)− g(Y, Z)H(X, W)

+g(Y, U)g(Z, U)g(X, W)− ‖dϕ‖2
gg(Y, Z)g(X, W)

−g(Y, U)g(X, Z)g(U, W)−H(Y, Z)g(X, W)

+g(X, Z)H(Y, W)−g(X, U)g(Z, U)g(Y, W)

+ ‖dϕ‖2
gg(X, Z)g(Y, W)+g(X, U)g(Y, Z)g(U, W)

By definition of the Kulkarni-Nomizu product©∧ , we have that

g(R̃(X, Y)Z, W) = R(X, Y, Z, W)− 2(g©∧ H)(X, Y, Z, W)

− ‖dϕ‖2
g(g©∧ g)(X, Y, Z, W) + 2(g©∧ (dϕ)⊗2)(X, Y, Z, W)

Multiply everything by e2ϕ to conclude.

Example. In the upper half-space Hn+1 = Rn ×R>0, let g = |dx|2 + dy2 be the stan-
dard flat metric, and g̃ = (|dx|2 + dy2)/y2 be the hyperbolic metric. Then e2ϕ = y−2

means that the conformal factor is ϕ(x, y) = − log y. We have that dϕ = −dy/y and
also Hessgϕ = (dy⊗ dy)/y2. In particular, ‖dϕ‖2

g = 1/y2. It follows that

R̃ =
1
y2 · 0−

2
y2g©∧

(
dy⊗ dy

y2 − dy⊗ dy
y2 +

1
2y2g

)
= −g̃©∧ g̃.

Hence (Hn+1, g̃) has constant sectional curvature equal to −1.

For all the other curvatures, we’ll need metric traces. So:
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Lemma 3. Let T be a (0, 2)-tensor field on M. Then tr g̃T = e−2ϕtrgT.

Proof: In coordinates. We have that g̃ij = e2ϕgij implies g̃ij = e−2ϕgij, so that

trg̃T = g̃ijTij = e−2ϕgijTij = e−2ϕtrgT.

Theorem 4. The relation between Ricci tensors is:

R̃ic = Ric− (n− 2)(Hessgϕ− dϕ⊗ dϕ)− (4gϕ + (n− 2)‖dϕ‖2
g)g,

where4gϕ is the g-Laplacian of ϕ.

Proof: It suffices to recall that if T is any symmetric (0, 2)-tensor field on (M, g), then
the relation 2Ric(g©∧ T) = (n− 2)T + tr g(T)g holds, where Ric(·) is the abstract Ricci
contraction of a curvaturelike tensor, on the first and last arguments. When applying
the g̃-trace, the previous lemma will cancel the e2ϕ factors on the right side, so recalling
that trg((dϕ)⊗2) = ‖dϕ‖2

g, we obtain

R̃ic = Ric−
(
(n− 2)

(
Hessgϕ− (dϕ)⊗2 +

‖dϕ‖2
g

2
g

)
+

(
4gϕ− ‖dϕ‖2

g +
n‖dϕ‖2

g

2

)
g

)
.

Reorganize.

Theorem 5. The relation between scalar curvatures is:

s̃ = e−2ϕ
(

s− (2n− 2)4gϕ− (n− 1)(n− 2)‖dϕ‖2
g

)
.

Proof: Take g̃-trace of both sides using the lemma to obtain

s̃ = e−2ϕs− (n− 2)e−2ϕ(4gϕ− ‖dϕ‖2
g)− ne−2ϕ(4gϕ + (n− 2)‖dϕ‖2

g)

= e−2ϕ
(

s− (2n− 2)4gϕ− (n− 1)(n− 2)‖dϕ‖2
g

)
.

Remark (Korn-Lichtenstein theorem). When n = 2, the above turns out to be the rela-
tion between Gaussian curvatures: K̃ = e−2ϕ(K −4gϕ). If g is Riemannian, the PDE
4gϕ = K is elliptic and so has local solutions. This shows the existence of isothermal
coordinates in any surface or, in other words, any point in any surface has a neighbor-
hood conformally equivalent to an open subset of R2 equipped with the standard flat
metric. Of course, what makes this theorem extremely hard to prove is justifying the
italicized part above.

Remark (The Yamabe Problem). It is also convenient to recast the scalar curvature
equation in a different form, by letting e2ϕ = u4/(n−2). We have that

ϕ =
2

n− 2
log u =⇒ dϕ =

2
n− 2

du
u

=⇒ ‖dϕ‖2
g =

4
(n− 2)2

‖du‖2
g

u2 .
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We also have that

∇(dϕ) =
2

n− 2

(
∇(du)

u
− du⊗ du

u2

)
=⇒ 4gϕ =

2
n− 2

(
4gu

u
−
‖du‖2

g

u2

)
.

With this, we obtain

u4/(n−2)s̃ = s− 2(n− 1)
2

n− 2

(
4gu

u
−
‖du‖2

g

u2

)
− (n− 1)(n− 2)

4
(n− 2)2

‖du‖2
g

u2

= s− 4(n− 1)
n− 2

4gu
u

+
4(n− 1)

n− 2
‖du‖2

g

u2 − 4(n− 1)
n− 2

‖du‖2
g

u2

= s− 4(n− 1)
n− 2

4gu
u

.

So we see that the advantage of the (a priori weird) power 4/(n − 2) is to eliminate
‖du‖2

g from the equation. The classical Yamabe problem asks whether every Rieman-
nian metric is conformally equivalent to a metric with constant scalar curvature. We
see that it is equivalent to the existence of a constant c and a function u such that

su− 4(n− 1)
n− 2

4gu + cu(n+2)/(n−2) = 0.

There is always c for which this PDE (called a Yamabe-type equation) has a solution for
the conformal factor u. One may also reorganize the equation as to make the coefficient
of4g equal to 1, so

4gu− (n− 2)
4(n− 1)

su = cu(n+2)/(n−2),

after renaming c. Thus, one defines a differential operator Yg : C∞(M)→ C∞(M) by

Yg = 4g −
(n− 2)

4(n− 1)
s,

and properties of Yg are used in the study of the Yamabe equation.

Recall that the Schouten tensor of (M, g) is defined by

Sch = Ric− s
2(n− 1)

g,

and similarly for (M, g̃).

Theorem 6. The relation between Schouten tensors is

S̃ch = Sch− (n− 2)(Hessgϕ− dϕ⊗ dϕ)− (n− 2)
2
‖dϕ‖2

gg.

Proof: It’s a straightforward computation based on everything obtained so far:

S̃ch = R̃ic− s̃
2(n− 1)

g̃
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= Ric− (n− 2)(Hessgϕ− (dϕ)⊗2)− (4gϕ + (n− 2)‖dϕ‖2
g)g

−
e−2ϕ

(
s− (2n− 2)4gϕ− (n− 1)(n− 2)‖dϕ‖2

g

)
2(n− 1)

e2ϕg

= Ric− (n− 2)(Hessgϕ− (dϕ)⊗2)− (4gϕ + (n− 2)‖dϕ‖2
g)g

− s
2(n− 1)

g+ (4gϕ)g+
(n− 2)

2
‖dϕ‖2

gg

= Sch− (n− 2)(Hessgϕ− (dϕ)⊗2)− (n− 2)
2
‖dϕ‖2

gg.

There’s one last relevant tensor to discuss: the Weyl tensor of (M, g) is defined by

W = R− 2
n− 2

g©∧ Sch.

Similarly for (M, g̃).

Theorem 7. The relation between the Weyl tensors is:

(i) W̃ = e2ϕW, as (0, 4)-tensors.

(ii) W̃ = W, as (1, 3)-tensors.

Explicitly: the (1, 3)-type Weyl tensor is a conformal invariant of (M, g).

Proof: Again, we compute:

W̃ = R̃− 2
n− 2

g̃©∧ S̃ch

= e2ϕR− 2e2ϕg©∧
(

H − dϕ⊗2 +
‖dϕ‖2

g

2
g

)

− 2
n− 2

e2ϕg©∧
(

Sch− (n− 2)(H − (dϕ)⊗2)− (n− 2)
2
‖dϕ‖2

gg

)
= e2ϕR− 2e2ϕg©∧

(
H − dϕ⊗2 +

‖dϕ‖2
g

2
g

)

− 2
n− 2

e2ϕg©∧ Sch− 2e2ϕg©∧
(

H − (dϕ)⊗2 +
‖dϕ‖2

g

2
g

)

= e2ϕ

(
R− 2

n− 2
g©∧ Sch

)
= e2ϕW.

This means that g̃(W̃(X, Y)Z, W) = e2ϕg(W(X, Y)Z, W) for all X, Y, Z, W ∈ X(M).
Since g̃ = e2ϕg, we may cancel the factor e2ϕ everywhere to get W̃(X, Y)Z = W(X, Y)Z
for all X, Y, Z ∈ X(M), as wanted.
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Theorem 8. For any smooth f : M→ R, we have

4g̃ f = e−2ϕ(4g f + (n− 2)g(dϕ, d f )).

Proof: First we compute the Hessian

(∇̃X(d f ))Y = ∇̃X(d f (Y))− d f (∇̃XY)
= ∇X(d f (Y))− d f (∇XY + g(Y, U)X + g(X, U)Y− g(X, Y)U)

= ∇X(d f (Y))− d f (∇XY)− g(Y, U)d f (X)− g(X, U)d f (Y) + g(X, Y)d f (U)

= (∇X(d f ))Y− g(Y, U)d f (X)− g(X, U)d f (Y) + g(X, Y)d f (U).

Now apply the g̃-trace on both sides to obtain

4g̃ f = e−2ϕ(4g f − d f (U)− d f (U) + n d f (U))

= e−2ϕ(4g f + (n− 2)g(dϕ, d f )),

as required.

Page 7


