Some conformal geometry formulas

Ivo Terek

Fix a pseudo-Riemannian manifold (M, g) and a smooth function $\varphi \colon M \to \mathbb{R}$. With this, define a new pseudo-Riemannian metric $\tilde{g} = e^{2\varphi}g$. Let ∇ and $\tilde{\nabla}$ be the Levi-Civita connections of (M, g) and (M, \tilde{g}) , respectively, and let $U = \operatorname{grad}_g \varphi$ (this field Uis called the *conformal gradient* of (M, g)). It will be convenient to set $H = \operatorname{Hess}_g \varphi$, so that $H(X, Y) = g(\nabla_X U, Y)$, and also $(d\varphi)^{\otimes 2} = d\varphi \otimes d\varphi$ in some proofs. Recall that His symmetric because ∇ is torsion-free. We'll also write $||d\varphi||_g^2 = g(U, U)$, but this has to be interpreted as a formal symbol, as it might be zero or negative in case g is not Riemannian.

Theorem 1. For all $X, Y \in \mathfrak{X}(M)$, the relation

$$\nabla_X Y = \nabla_X Y + g(Y, U)X + g(X, U)Y - g(X, Y)U$$

holds.

Proof: Recall the Koszul formula

$$2g(\nabla_X Y, Z) = (\mathscr{L}_Y g)(X, Z) + d(Y_{\flat})(X, Z),$$

where \mathscr{D} is the Lie derivative and the exterior derivative of $Y_{\flat} = g(Y, \cdot)$ is to be thought as the curl of Y. First, note that

$$\mathscr{L}_{Y}\widetilde{g} = \mathscr{L}_{Y}(e^{2\varphi}g) = Y(e^{2\varphi})g + e^{2\varphi}\mathscr{L}_{Y}g = 2Y(\varphi)e^{2\varphi}g + e^{2\varphi}\mathscr{L}_{Y}g$$

Secondly, that $Y_{\tilde{b}} = e^{2\varphi}Y_{b}$ implies that

$$d(Y_{\widetilde{b}}) = 2e^{2\varphi}d\varphi \wedge Y_{\flat} + e^{2\varphi}d(Y_{\flat}),$$

so that

$$\begin{split} &2\widetilde{\mathsf{g}}(\widetilde{\nabla}_{X}Y,Z) = (\mathscr{L}_{Y}\widetilde{\mathsf{g}})(X,Z) + \mathsf{d}(Y_{\widetilde{\flat}})(X,Z) \\ &= 2Y(\varphi)\mathsf{e}^{2\varphi}\mathsf{g}(X,Z) + \mathsf{e}^{2\varphi}(\mathscr{L}_{Y}\mathsf{g})(X,Z) + 2\mathsf{e}^{2\varphi}(\mathsf{d}\varphi \wedge Y_{\flat})(X,Z) + \mathsf{e}^{2\varphi}\mathsf{d}(Y_{\flat})(X,Z) \\ &= 2Y(\varphi)\mathsf{e}^{2\varphi}\mathsf{g}(X,Z) + 2\mathsf{e}^{2\varphi}\mathsf{g}(\nabla_{X}Y,Z) + 2\mathsf{e}^{2\varphi}(X(\varphi)\mathsf{g}(Y,Z) - Z(\varphi)\mathsf{g}(Y,X)). \end{split}$$

Divide everything through by $2e^{2\varphi}$ and use that $\tilde{g} = e^{2\varphi}g$ to get

$$g(\nabla_X Y, Z) = Y(\varphi)g(X, Z) + g(\nabla_X Y, Z) + X(\varphi)g(Y, Z) - Z(\varphi)g(X, Y)$$

Rewriting the above using the conformal gradient *U* instead of $d\varphi$ and reorganizing the right side in the form g(*, Z), we have that

$$g(\widetilde{\nabla}_X Y, Z) = g(\nabla_X Y + g(Y, U)Z + g(X, U)Y - g(X, Y)U, Z).$$

Since *Z* is arbitrary and g is non-degenerate, we conclude that

$$\widetilde{\nabla}_X Y = \nabla_X Y + g(Y, U)X + g(X, U)Y - g(X, Y)U,$$

as wanted.

What about the curvature? First, we take $X, Y, Z \in \mathfrak{X}(M)$ and directly compute that:

$$\begin{split} \widetilde{\nabla}_{X}\widetilde{\nabla}_{Y}Z &= \nabla_{X}\widetilde{\nabla}_{Y}Z + g(\widetilde{\nabla}_{Y}Z,U)X + g(X,U)\widetilde{\nabla}_{Y}Z - g(X,\widetilde{\nabla}_{Y}Z)U \\ &= \nabla_{X}\nabla_{Y}Z + g(\nabla_{X}Z,U)Y + g(Z,\nabla_{X}U)Y + g(Z,U)\nabla_{X}Y \\ &+ g(\nabla_{X}Y,U)Z + g(Y,\nabla_{X}U)Z + g(Y,U)\nabla_{X}Z \\ &- g(\nabla_{X}Y,Z)U - g(Y,\nabla_{X}Z)U - g(Y,Z)\nabla_{X}U \\ &+ g(\nabla_{Y}Z,U)X + g(Z,U)g(Y,U)X + g(Y,U)g(Z,U)X - \|d\varphi\|_{g}^{2}g(Y,Z)X \\ &+ g(X,U)\nabla_{Y}Z + g(X,U)g(Z,U)Y + g(X,U)g(Y,U)Z - g(X,U)g(Y,Z)U \\ &- g(X,\nabla_{Y}Z)U - g(Z,U)g(X,Y)U - g(Y,U)g(X,Z)U + g(Y,Z)g(X,U)U \\ &= \nabla_{X}\nabla_{Y}Z + g(\nabla_{X}Z,U)Y + H(X,Z)Y + g(Z,U)\nabla_{X}Y \\ &+ g(\nabla_{X}Y,U)Z + H(X,Y)Z + g(Y,U)\nabla_{X}Z \\ &- g(\nabla_{X}Y,Z)U - g(Y,\nabla_{X}Z)U - g(Y,Z)\nabla_{X}U \\ &+ g(\nabla_{Y}Z,U)X + g(Z,U)g(Y,U)X + g(Y,U)g(Z,U)X - \|d\varphi\|_{g}^{2}g(Y,Z)X \\ &+ g(X,U)\nabla_{Y}Z + g(X,U)g(Z,U)Y + g(X,U)g(Y,U)Z \\ &- g(X,\nabla_{Y}Z)U - g(Z,U)g(X,Y)U - g(Y,U)g(X,Z)U. \end{split}$$

With this in place, we may compute the curvature tensor.

Theorem 2. For all $X, Y, Z, W \in \mathfrak{X}(M)$, we have that

$$\widetilde{R} = e^{2\varphi}R - 2e^{2\varphi}g \bigotimes \left(\operatorname{Hess}_{g}\varphi - d\varphi \otimes d\varphi + \frac{\|d\varphi\|_{g}^{2}}{2}g \right),$$

as (0, 4)-tensors.

Proof: By definition, we have

$$\begin{split} \widetilde{R}(X,Y)Z &= \nabla_X \nabla_Y Z \pm g(\nabla_X Z, \mathcal{U})Y + H(X, Z)Y \pm g(Z_r \mathcal{U})\nabla_X Y \\ &\pm g(\nabla_X Y, \mathcal{U})Z + H(X, Y)Z \pm g(Y, \mathcal{U})\nabla_X Z \\ &- g(\nabla_X Y, Z)\overline{\mathcal{U}} - g(Y, \nabla_X Z)\overline{\mathcal{U}} - g(Y, Z)\nabla_X \mathcal{U} \\ &+ g(\nabla_Y Z, \mathcal{U})X + g(Z, \mathcal{U})g(Y, \mathcal{U})X + g(Y, \mathcal{U})g(Z, \mathcal{U})X - \|d\varphi\|_g^2 g(Y, Z)X \\ &+ g(X_r \mathcal{U})\nabla_Y Z + g(X, \mathcal{U})g(Z, \mathcal{U})Y + g(X, \mathcal{U})g(Y, \mathcal{U})Z \end{split}$$

$$\begin{aligned} &-g(X,\nabla_YZ)U-g(Z,U)g(X,Y)U-g(Y,U)g(X,Z)U\\ &-\nabla_Y\nabla_XZ-g(\nabla_YZ,U)X-H(Y,Z)X-g(Z,U)\nabla_YX\\ &-g(\nabla_YX,U)Z-H(Y,X)Z-g(X,U)\nabla_YZ\\ &\pm g(\nabla_YX,Z)U\pm g(X,\nabla_YZ)U\pm g(X,Z)\nabla_YU\\ &-g(\nabla_XZ,U)Y-g(Z,U)g(X,U)Y-g(X,U)g(Z,U)Y+\|d\varphi\|_g^2g(X,Z)Y\\ &-g(Y,U)\nabla_XZ-g(Y,U)g(Z,U)X-g(Y,U)g(X,U)Z\\ &\pm g(Y,\nabla_XZ)U\pm g(Z,U)g(Y,X)U\pm g(X,U)g(Y,Z)U\\ &-\nabla_{[X,Y]}Z-g(Z,U)[X,Y]-g([X,Y],U)Z\pm g([X,Y],Z)U. \end{aligned}$$

Since \tilde{R} is a tensor, it should depend linearly on X, Y and Z, no covariant derivatives of these fields should appear, we'll have terms with U, and terms with ∇U . The reader should take 5 or 10 minutes to parse the above carefully. With these cancellations, we obtain:

$$\begin{split} \widetilde{R}(X,Y)Z &= R(X,Y)Z + H(X,Z)Y - \mathsf{g}(Y,Z)\nabla_X U + \mathsf{g}(Y,U)\mathsf{g}(Z,U)X \\ &- \|\mathsf{d}\varphi\|_{\mathsf{g}}^2\mathsf{g}(Y,Z)X - \mathsf{g}(Y,U)\mathsf{g}(X,Z)U - H(Y,Z)X + \mathsf{g}(X,Z)\nabla_Y U \\ &- \mathsf{g}(X,U)\mathsf{g}(Z,U)Y + \|\mathsf{d}\varphi\|_{\mathsf{g}}^2\mathsf{g}(X,Z)Y + \mathsf{g}(X,U)\mathsf{g}(Y,Z)U. \end{split}$$

So, we g-multiply by a fourth field W to get:

$$g(\tilde{R}(X,Y)Z,W) = R(X,Y,Z,W) + H(X,Z)g(Y,W) - g(Y,Z)H(X,W) +g(Y,U)g(Z,U)g(X,W) - ||d\varphi||_{g}^{2}g(Y,Z)g(X,W) -g(Y,U)g(X,Z)g(U,W) - H(Y,Z)g(X,W) +g(X,Z)H(Y,W) - g(X,U)g(Z,U)g(Y,W) + ||d\varphi||_{g}^{2}g(X,Z)g(Y,W) + g(X,U)g(Y,Z)g(U,W)$$

By definition of the Kulkarni-Nomizu product (), we have that

$$g(\widetilde{R}(X,Y)Z,W) = R(X,Y,Z,W) - 2(g \otimes H)(X,Y,Z,W) - \|d\varphi\|_{g}^{2}(g \otimes g)(X,Y,Z,W) + 2(g \otimes (d\varphi)^{\otimes 2})(X,Y,Z,W)$$

Multiply everything by $e^{2\varphi}$ to conclude.

Example. In the upper half-space $\mathbb{H}^{n+1} = \mathbb{R}^n \times \mathbb{R}_{>0}$, let $g = |dx|^2 + dy^2$ be the standard flat metric, and $\tilde{g} = (|dx|^2 + dy^2)/y^2$ be the hyperbolic metric. Then $e^{2\varphi} = y^{-2}$ means that the conformal factor is $\varphi(x, y) = -\log y$. We have that $d\varphi = -dy/y$ and also $\operatorname{Hess}_g \varphi = (dy \otimes dy)/y^2$. In particular, $||d\varphi||_g^2 = 1/y^2$. It follows that

$$\widetilde{R} = \frac{1}{y^2} \cdot 0 - \frac{2}{y^2} g \bigotimes \left(\frac{\mathrm{d}y \otimes \mathrm{d}y}{y^2} - \frac{\mathrm{d}y \otimes \mathrm{d}y}{y^2} + \frac{1}{2y^2} g \right) = -\widetilde{g} \bigotimes \widetilde{g}.$$

Hence $(\mathbb{H}^{n+1}, \tilde{g})$ has constant sectional curvature equal to -1.

For all the other curvatures, we'll need metric traces. So:

Lemma 3. Let T be a (0, 2)-tensor field on M. Then $\operatorname{tr}_{\widetilde{g}}T = e^{-2\varphi}\operatorname{tr}_{g}T$.

Proof: In coordinates. We have that $\tilde{g}_{ij} = e^{2\varphi}g_{ij}$ implies $\tilde{g}^{ij} = e^{-2\varphi}g^{ij}$, so that

$$\operatorname{tr}_{\widetilde{g}}T = \widetilde{g}^{ij}T_{ij} = \mathrm{e}^{-2\varphi}g^{ij}T_{ij} = \mathrm{e}^{-2\varphi}\operatorname{tr}_{g}T.$$

Theorem 4. The relation between Ricci tensors is:

$$\widehat{\operatorname{Ric}} = \operatorname{Ric} - (n-2)(\operatorname{Hess}_{\mathsf{g}}\varphi - \mathsf{d}\varphi \otimes \mathsf{d}\varphi) - (\bigtriangleup_{\mathsf{g}}\varphi + (n-2)\|\mathsf{d}\varphi\|_{\mathsf{g}}^2)\mathsf{g},$$

where $\triangle_{g} \varphi$ is the g-Laplacian of φ .

Proof: It suffices to recall that if *T* is any symmetric (0, 2)-tensor field on (*M*, g), then the relation $2\operatorname{Ric}(g \otimes T) = (n-2)T + \operatorname{tr}_g(T)g$ holds, where $\operatorname{Ric}(\cdot)$ is the abstract Ricci contraction of a curvaturelike tensor, on the first and last arguments. When applying the \tilde{g} -trace, the previous lemma will cancel the $e^{2\varphi}$ factors on the right side, so recalling that $\operatorname{tr}_g((d\varphi)^{\otimes 2}) = ||d\varphi||_g^2$, we obtain

$$\widetilde{\operatorname{Ric}} = \operatorname{Ric} - \left((n-2) \left(\operatorname{Hess}_{g} \varphi - (\mathrm{d}\varphi)^{\otimes 2} + \frac{\|\mathrm{d}\varphi\|_{g}^{2}}{2} \mathsf{g} \right) + \left(\bigtriangleup_{g} \varphi - \|\mathrm{d}\varphi\|_{g}^{2} + \frac{n\|\mathrm{d}\varphi\|_{g}^{2}}{2} \right) \mathsf{g} \right).$$

Reorganize.

Theorem 5. The relation between scalar curvatures is:

$$\widetilde{\mathbf{s}} = \mathrm{e}^{-2\varphi} \left(\mathbf{s} - (2n-2) \triangle_{\mathsf{g}} \varphi - (n-1)(n-2) \| \mathrm{d}\varphi \|_{\mathsf{g}}^2 \right).$$

Proof: Take g̃-trace of both sides using the lemma to obtain

$$\widetilde{\mathbf{s}} = \mathbf{e}^{-2\varphi}\mathbf{s} - (n-2)\mathbf{e}^{-2\varphi}(\triangle_{\mathsf{g}}\varphi - \|\mathbf{d}\varphi\|_{\mathsf{g}}^{2}) - n\mathbf{e}^{-2\varphi}(\triangle_{\mathsf{g}}\varphi + (n-2)\|\mathbf{d}\varphi\|_{\mathsf{g}}^{2})$$
$$= \mathbf{e}^{-2\varphi}\left(\mathbf{s} - (2n-2)\triangle_{\mathsf{g}}\varphi - (n-1)(n-2)\|\mathbf{d}\varphi\|_{\mathsf{g}}^{2}\right).$$

Remark (Korn-Lichtenstein theorem). When n = 2, the above turns out to be the relation between Gaussian curvatures: $\tilde{K} = e^{-2\varphi}(K - \triangle_g \varphi)$. If g is Riemannian, the PDE $\triangle_g \varphi = K$ is elliptic *and so has local solutions*. This shows the existence of isothermal coordinates in any surface or, in other words, any point in any surface has a neighborhood conformally equivalent to an open subset of \mathbb{R}^2 equipped with the standard flat metric. Of course, what makes this theorem extremely hard to prove is justifying the italicized part above.

Remark (The Yamabe Problem). It is also convenient to recast the scalar curvature equation in a different form, by letting $e^{2\varphi} = u^{4/(n-2)}$. We have that

$$\varphi = \frac{2}{n-2}\log u \implies \mathrm{d}\varphi = \frac{2}{n-2}\frac{\mathrm{d}u}{u} \implies \|\mathrm{d}\varphi\|_{\mathrm{g}}^2 = \frac{4}{(n-2)^2}\frac{\|\mathrm{d}u\|_{\mathrm{g}}^2}{u^2}.$$

We also have that

$$\nabla(\mathrm{d}\varphi) = \frac{2}{n-2} \left(\frac{\nabla(\mathrm{d}u)}{u} - \frac{\mathrm{d}u \otimes \mathrm{d}u}{u^2} \right) \implies \triangle_{\mathrm{g}}\varphi = \frac{2}{n-2} \left(\frac{\triangle_{\mathrm{g}}u}{u} - \frac{\|\mathrm{d}u\|_{\mathrm{g}}^2}{u^2} \right)$$

With this, we obtain

$$\begin{split} u^{4/(n-2)}\widetilde{\mathbf{s}} &= \mathbf{s} - 2(n-1)\frac{2}{n-2}\left(\frac{\triangle_{\mathbf{g}}u}{u} - \frac{\|\mathbf{d}u\|_{\mathbf{g}}^2}{u^2}\right) - (n-1)(n-2)\frac{4}{(n-2)^2}\frac{\|\mathbf{d}u\|_{\mathbf{g}}^2}{u^2} \\ &= \mathbf{s} - \frac{4(n-1)}{n-2}\frac{\triangle_{\mathbf{g}}u}{u} + \frac{4(n-1)}{n-2}\frac{\|\mathbf{d}u\|_{\mathbf{g}}^2}{u^2} - \frac{4(n-1)}{n-2}\frac{\|\mathbf{d}u\|_{\mathbf{g}}^2}{u^2} \\ &= \mathbf{s} - \frac{4(n-1)}{n-2}\frac{\triangle_{\mathbf{g}}u}{u}. \end{split}$$

So we see that the advantage of the (a priori weird) power 4/(n-2) is to eliminate $||du||_g^2$ from the equation. The classical Yamabe problem asks whether every Riemannian metric is conformally equivalent to a metric with constant scalar curvature. We see that it is equivalent to the existence of a constant *c* and a function *u* such that

$$su - \frac{4(n-1)}{n-2} \triangle_{g} u + cu^{(n+2)/(n-2)} = 0.$$

There is always *c* for which this PDE (called a *Yamabe-type* equation) has a solution for the conformal factor *u*. One may also reorganize the equation as to make the coefficient of \triangle_g equal to 1, so

$$\Delta_{g}u - \frac{(n-2)}{4(n-1)}su = cu^{(n+2)/(n-2)},$$

after renaming *c*. Thus, one defines a differential operator $Y_g \colon \mathscr{C}^{\infty}(M) \to \mathscr{C}^{\infty}(M)$ by

$$\mathbf{Y}_{\mathsf{g}} = riangle_{\mathsf{g}} - rac{(n-2)}{4(n-1)}\mathbf{s}$$
,

and properties of Y_g are used in the study of the Yamabe equation.

Recall that the Schouten tensor of (M, g) is defined by

$$\operatorname{Sch} = \operatorname{Ric} - \frac{\mathrm{s}}{2(n-1)}\mathrm{g},$$

and similarly for (M, \tilde{g}) .

Theorem 6. The relation between Schouten tensors is

$$\widetilde{\mathrm{Sch}} = \mathrm{Sch} - (n-2)(\mathrm{Hess}_{\mathsf{g}}\varphi - \mathsf{d}\varphi \otimes \mathsf{d}\varphi) - \frac{(n-2)}{2} \|\mathsf{d}\varphi\|_{\mathsf{g}}^2 \mathsf{g}.$$

Proof: It's a straightforward computation based on everything obtained so far:

$$\widetilde{\mathrm{Sch}} = \widetilde{\mathrm{Ric}} - \frac{\widetilde{\mathrm{s}}}{2(n-1)}\widetilde{\mathrm{g}}$$

Page 5

$$= \operatorname{Ric} - (n-2)(\operatorname{Hess}_{g}\varphi - (d\varphi)^{\otimes 2}) - (\bigtriangleup_{g}\varphi + (n-2) \|d\varphi\|_{g}^{2})g \\ - \frac{e^{-2\varphi} \left(s - (2n-2)\bigtriangleup_{g}\varphi - (n-1)(n-2) \|d\varphi\|_{g}^{2}\right)}{2(n-1)} e^{2\varphi}g \\ = \operatorname{Ric} - (n-2)(\operatorname{Hess}_{g}\varphi - (d\varphi)^{\otimes 2}) - (\bigtriangleup_{g}\varphi + (n-2) \|d\varphi\|_{g}^{2})g \\ - \frac{s}{2(n-1)}g + (\bigtriangleup_{g}\varphi)g + \frac{(n-2)}{2} \|d\varphi\|_{g}^{2}g \\ = \operatorname{Sch} - (n-2)(\operatorname{Hess}_{g}\varphi - (d\varphi)^{\otimes 2}) - \frac{(n-2)}{2} \|d\varphi\|_{g}^{2}g.$$

There's one last relevant tensor to discuss: the Weyl tensor of (M, g) is defined by

$$W = R - \frac{2}{n-2} g \bigotimes Sch.$$

Similarly for (M, \tilde{g}) .

Theorem 7. The relation between the Weyl tensors is:

- (i) $\widetilde{W} = e^{2\phi}W$, as (0, 4)-tensors.
- (*ii*) $\widetilde{W} = W$, as (1,3)-tensors.

Explicitly: the (1,3)*-type Weyl tensor is a conformal invariant of* (M, g)*.*

Proof: Again, we compute:

$$\begin{split} \widetilde{\mathsf{W}} &= \widetilde{R} - \frac{2}{n-2} \widetilde{\mathsf{g}} \bigotimes \widetilde{\mathsf{Sch}} \\ &= \mathrm{e}^{2\varphi} R - 2\mathrm{e}^{2\varphi} \mathsf{g} \bigotimes \left(H - \mathrm{d}\varphi^{\otimes 2} + \frac{\|\mathrm{d}\varphi\|_{\mathsf{g}}^{2}}{2} \mathsf{g} \right) \\ &- \frac{2}{n-2} \mathrm{e}^{2\varphi} \mathsf{g} \bigotimes \left(\mathrm{Sch} - (n-2)(H - (\mathrm{d}\varphi)^{\otimes 2}) - \frac{(n-2)}{2} \|\mathrm{d}\varphi\|_{\mathsf{g}}^{2} \mathsf{g} \right) \\ &= \mathrm{e}^{2\varphi} R - 2\mathrm{e}^{2\varphi} \mathsf{g} \bigotimes \left(H - \mathrm{d}\varphi^{\otimes 2} + \frac{\|\mathrm{d}\varphi\|_{\mathsf{g}}^{2}}{2} \mathsf{g} \right) \\ &- \frac{2}{n-2} \mathrm{e}^{2\varphi} \mathsf{g} \bigotimes \mathrm{Sch} - 2\mathrm{e}^{2\varphi} \mathsf{g} \bigotimes \left(H - (\mathrm{d}\varphi)^{\otimes 2} + \frac{\|\mathrm{d}\varphi\|_{\mathsf{g}}^{2}}{2} \mathsf{g} \right) \\ &= \mathrm{e}^{2\varphi} \left(R - \frac{2}{n-2} \mathsf{g} \bigotimes \mathrm{Sch} \right) \\ &= \mathrm{e}^{2\varphi} \mathsf{W}. \end{split}$$

This means that $\tilde{g}(\tilde{W}(X,Y)Z,W) = e^{2\varphi}g(W(X,Y)Z,W)$ for all $X,Y,Z,W \in \mathfrak{X}(M)$. Since $\tilde{g} = e^{2\varphi}g$, we may cancel the factor $e^{2\varphi}$ everywhere to get $\tilde{W}(X,Y)Z = W(X,Y)Z$ for all $X, Y, Z \in \mathfrak{X}(M)$, as wanted. **Theorem 8.** For any smooth $f: M \to \mathbb{R}$, we have

$$\triangle_{\widetilde{g}}f = e^{-2\varphi}(\triangle_{g}f + (n-2)g(d\varphi, df)).$$

Proof: First we compute the Hessian

$$\begin{split} (\widetilde{\nabla}_X(\mathbf{d}f))Y &= \widetilde{\nabla}_X(\mathbf{d}f(Y)) - \mathbf{d}f(\widetilde{\nabla}_X Y) \\ &= \nabla_X(\mathbf{d}f(Y)) - \mathbf{d}f(\nabla_X Y + \mathbf{g}(Y, U)X + \mathbf{g}(X, U)Y - \mathbf{g}(X, Y)U) \\ &= \nabla_X(\mathbf{d}f(Y)) - \mathbf{d}f(\nabla_X Y) - \mathbf{g}(Y, U)\mathbf{d}f(X) - \mathbf{g}(X, U)\mathbf{d}f(Y) + \mathbf{g}(X, Y)\mathbf{d}f(U) \\ &= (\nabla_X(\mathbf{d}f))Y - \mathbf{g}(Y, U)\mathbf{d}f(X) - \mathbf{g}(X, U)\mathbf{d}f(Y) + \mathbf{g}(X, Y)\mathbf{d}f(U). \end{split}$$

Now apply the g̃-trace on both sides to obtain

as required.

Ivo Terek