Affine modifications on curvature

Ivo Terek

If M is a smooth manifold, then the space Conn(TM) of affine connections on the tangent bundle of M is an affine space, whose associated translation space is the space of type (1,2)-tensor fields on M, i.e., sections of the vector bundle $\left[T^{*} M\right]^{\otimes 2} \otimes T M$ over M. For any $\nabla \in \operatorname{Conn}(T M)$, we have $\tau^{\nabla}, R^{\nabla}$, and Ric ${ }^{\nabla}$. Let's see how each of them behaves when we add a tensor field A to ∇. Write:

- \widetilde{A} for (twice) the skew-symmetrization of A, i.e., $\widetilde{A}_{X} Y=A_{X} Y-A_{Y} X$.
- $A_{\tau \nabla}$ for the type (1,3)-tensor field given by $(X, Y, Z) \mapsto A_{\tau \nabla(X, Y)} Z$.
- $\operatorname{tr}_{1}^{1}(A)$ for the 1-form defined by $\operatorname{tr}_{1}^{1}(A)(Y)=\operatorname{tr}(A Y)$, as well as $\operatorname{tr}_{1}^{1}\left(A_{\tau \nabla}\right)$ for the type (0,2)-tensor field given by $\operatorname{tr}_{1}^{1}\left(A_{\tau^{\nabla}}\right)(Y, Z)=\operatorname{tr}\left(X \mapsto A_{\tau^{\nabla}(X, Y)} Z\right)$.
- $[A, A]$ for the commutator given by $[A, A](X, Y)=2\left[A_{X}, A_{Y}\right]$.
- $\mathrm{d}^{\nabla} A$ for the exterior derivative (computed with the aid of ∇) of the tensor A regarded a $\operatorname{End}(T M)$-valued 1-form.
- div ${ }^{\nabla}$ for the ∇-divergence of A, i.e., the $(0,2)$-tensor field defined by the trace $\operatorname{div}^{\nabla}(A)(X, Y)=\operatorname{tr}\left(Z \mapsto\left(\nabla_{Z} A\right)(X, Y)\right)$.
- $\operatorname{tr}(A \circ A)$ for the map $(Y, Z) \mapsto \operatorname{tr}\left(A Z \circ A_{Y}\right)$.
- $\nabla \omega$ is given by $(X, Y) \mapsto\left[\nabla_{X} \omega\right] Y$ (in this order of arguments), for each 1-form ω on M.

Theorem

(i) $\tau^{\nabla+A}=\tau^{\nabla}+\widetilde{A}$.
(ii) $R^{\nabla+A}=R^{\nabla}+\mathrm{d}^{\nabla} A+[A, A] / 2$.
(iii) $\operatorname{Ric}^{\nabla+A}=\operatorname{Ric}^{\nabla}+\operatorname{div}^{\nabla} A-\nabla \operatorname{tr}_{1}^{1}(A)+\operatorname{tr}_{1}^{1}(A) \circ A-\operatorname{tr}(A \circ A)+\operatorname{tr}_{1}^{1}\left(A_{\tau^{\nabla}}\right)$.

Proof:

(i) This is the easiest one to establish, as expected:

$$
\begin{aligned}
\tau^{\nabla+A}(X, Y) & =(\nabla+A)_{X} Y-(\nabla+A)_{Y} X-[X, Y] \\
& =\nabla_{X} Y+A_{X} Y-\nabla_{Y} X-A_{Y} X-[X, Y] \\
& =\tau^{\nabla}(X, Y)+\widetilde{A}_{X} Y .
\end{aligned}
$$

(ii) This is a slightly longer brute-force computation. First we compute

$$
(\nabla+A)_{X}(\nabla+A)_{Y} Z=\nabla_{X} \nabla_{Y} Z+\nabla_{X} A_{Y} Z+A_{X} \nabla_{Y} Z+A_{X} A_{Y} Z
$$

as well as

$$
(\nabla+A)_{[X, Y]} Z=\nabla_{[X, Y]} Z+A_{[X, Y]} Z
$$

so that

$$
R^{\nabla+A}(X, Y) Z=R^{\nabla}(X, Y) Z+\left[A_{X}, A_{Y}\right] Z+(*)
$$

where

$$
(*)=\nabla_{X} A_{Y} Z+A_{X} \nabla_{Y} Z-\nabla_{Y} A_{X} Z-A_{Y} \nabla_{X} Z-A_{[X, Y]} Z
$$

It remains to see that the above expression indeed equals $\left(\mathrm{d}^{\nabla} A\right)(X, Y) Z$. But

$$
\begin{aligned}
\left(\mathrm{d}^{\nabla} A\right)(X, Y) Z & =\left(\nabla_{X}\left(A_{Y}\right)-\nabla_{Y}\left(A_{X}\right)-A_{[X, Y]}\right) Z \\
& =\nabla_{X} A_{Y} Z-A_{Y} \nabla_{X} Z-\nabla_{Y} A_{X} Z+A_{X} \nabla_{Y} Z-A_{[X, Y]} Z
\end{aligned}
$$

as required, by definition of exterior derivative.
(iii) It suffices to compute traces in the first variable of $\mathrm{d}^{\nabla} A$ and $[A, A] / 2$. Let's do a coordinate computation ${ }^{1}$. Fix $Y=\partial_{r}$ and $Z=\partial_{s}$. First, we have that

$$
\begin{aligned}
{\left[A_{\partial_{j}}, A_{\partial_{r}}\right] \partial_{s} } & =A_{\partial_{j}} A_{\partial_{r}} \partial_{s}-A_{\partial_{r}} A_{\partial_{j}} \partial_{s} \\
& =A_{\partial_{j}}\left(A_{r s}^{k} \partial_{k}\right)-A_{\partial_{r}}\left(A_{j s}^{k} \partial_{k}\right) \\
& =\left(A_{r s}^{k} A_{j k}^{i}-A_{j s}^{k} A_{r k}^{i}\right) \partial_{i}
\end{aligned}
$$

so that contracting $j=i$ yields

$$
\operatorname{tr}\left(X \mapsto\left[A_{X}, A_{\partial_{r}}\right] \partial_{s}\right)=A_{r s}^{k} A_{i k}^{i}-A_{i s}^{k} A_{r k}^{i}=\left(\operatorname{tr}_{1}^{1}(A)\right)_{k} A_{r s}^{k}-A_{i s}^{k} A_{r k}^{i} .
$$

Hence $\operatorname{tr}\left(X \mapsto\left[A_{X}, A_{Y}\right] Z\right)=\operatorname{tr}_{1}^{1}(A) A_{Y} Z-\operatorname{tr}\left(A Z \circ A_{Y}\right)$ for general Y and Z, by tensoriality. Lastly, we focus on the exterior derivative of A. Namely, recall that

$$
\left(\mathrm{d}^{\nabla} A\right)_{j r s}{ }^{i}=A_{r s ; j}^{i}-A_{j s, r}^{i}+\tau_{j r}^{k} A_{k s}^{i}
$$

where $\tau_{j r}^{k}$ are the coordinate components of τ^{∇}. Now, contract $j=i$ to obtain

$$
\left(\mathrm{d}^{\nabla} A\right)_{i r s}^{i}=\left(\operatorname{div}^{\nabla} A\right)_{r s}-\operatorname{tr}_{1}^{1}(A)_{s ; r}+\tau_{i r}^{k} A_{k s^{\prime}}^{i}
$$

as required.

Remark. The torsion $\tau: \operatorname{Conn}(T M) \rightarrow \Gamma\left(\left[T^{*} M\right]^{\wedge 2} \otimes T M\right)$ is an affine map, whose associated linear part is (twice) skew-symmetrization. The Riemann map $\nabla \mapsto R^{\nabla}$ and the Ricci map $\nabla \mapsto \operatorname{Ric}^{\nabla}$, in turn, are not affine (as we have obtained terms which are manifestly quadratic in the variable A, in the expressions for the differences $R^{\nabla+A}-R^{\nabla}$ and $\left.\operatorname{Ric}^{\nabla+A}-\operatorname{Ric}^{\nabla}\right)$.

[^0]
[^0]: ${ }^{1}$ If you see a quick(er) way to do this without coordinates, let me know.

