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Defining d2 fp:

Let Mn be a differentiable manifold, f : M→ R be a smooth function, and p ∈ M be
a critical point of f , that is, satisfying d fp = 0. This means that the partial derivatives
of f with respect to any chart around p vanish when evaluated at p. This allows us to
write the:

Definition. The Hessian of f at p is the bilinear form d2 fp : TpM× TpM → R defined
by

d2 fp(v, w)
.
=
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α
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α,

where (Uα, ϕα = (x1
α, . . . , xn

α)) is a chart around p for which we write
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∣∣∣∣
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.

To make this definition valid, we have to verify that the expression does not depend
on the choice of chart around p. For this end, assume that we are given a second chart
(Uβ, ϕβ = (x1

β, . . . , xn
β)) around p. Then Uα ∩ Uβ is an open set around p (hence we

are able to take derivatives), and we may assume without loss of generality (and to
simplify the writing) that ϕα(p) = ϕβ(p) = 0 = (0, . . . , 0) ∈ Rn. The relation between
the coordinate vector fields along Uα ∩Uβ, evaluated at the correct points, is just

∂

∂xj
β

=
n

∑
`=1

∂x`α
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β

∂
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, j = 1, 2, . . . , n.

Seeing this as an equality between differential operators, it follows that
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∂ f
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, j = 1, 2, . . . , n.

Applying ∂/∂xi
β on both sides and applying the product rule, we get
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Evaluating the above at the point p kills the first sum in the right hand side, in view
of the condition d fp = 0 (which implies that (∂ f /∂x`α)(p) = 0 for ` = 1, 2, . . . , n),
resulting in

∂2 f
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(p).

Now, to compute the Hessian of f according to the chart (Uβ, ϕβ), we need to know
the components of the tangent vectors v and w with respect to this new coordinate
basis. Using self-evident notation, we have that

vi
β =

n
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α, i, j = 1, 2, . . . , n.

Putting everything together, we finally compute:
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as wanted. This means that the Hessian is indeed well-defined if p is a critical point of
the function f . Perhaps a more elegant approach for checking this last part, avoiding
picking the tangent vectors v and w (but which obviously boils down to the same
computation), is to write the transformation law for the differentials at the point p
instead:
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and recognizing δk

r and δ`s to again obtain the same conclusion.

Generalizations:

Everything here uses in a crucial way the fact that d fp = 0. So this raises the natural
question: is it possible to define such a Hessian for arbitrary points of the manifold M?

2



Without additional structure, the answer is no. If you do, however, have some extra
structure to work with, here’s what happens: let ∇ be a (Koszul) connection in the
tangent bundle TM, and define the covariant Hessian of f with respect to ∇ at p as the
map Hess∇( f )p : TpM× TpM→ R given by

Hess∇( f )p(v, w) = v(w̃( f ))− d fp(∇vw̃),

where w̃ is some extension of w to a neighborhood of p (i.e., a vector field defined
in a neighborhood of p such that w̃p = w). By the Leibniz rule for ∇ and its local
character, we see that the right hand side above is actually independent of the choice
of extension for w, and defines a bilinear form on TpM. Note that if p happens to be a
critical point of f , we recover Hess∇( f )p = d2 fp.

This actually induces a C∞(M)-bilinear map Hess∇( f ) : X(M)×X(M)→ C∞(M),
which is given in local coordinates (U, (x1, . . . , xn)) by

Hess∇( f )(∂i, ∂j) = ∂i∂j f − d f (∇∂i ∂j)

= ∂i∂j f − d f

(
n

∑
k=1

Γk
ij∂k

)

= ∂i∂j f −
n

∑
k=1

Γk
ij∂k f ,

where the n3 functions Γk
ij are the connection components of ∇. Writing it in its full

glory, we have

Hess∇( f ) =
n

∑
i,j=1

(
∂2 f

∂xi∂xj −
n

∑
k=1

Γk
ij

∂ f
∂xk

)
dxi ⊗ dxj.

One might also recognize the object Hess∇( f ) as the covariant differential ∇(d f ) of
the (0, 1)-tensor d f , which is then a (0, 2)-tensor. But despite all these ways of look-
ing at the Hessian, we cannot expect it to necessarily have good properties, since the
connection ∇ was so arbitrary. In fact, recall that the torsion of the connection ∇ is the
(0, 2)-tensor field τ∇ : X(M)×X(M)→ X(M) given by

τ∇(X, Y) = ∇XY −∇Y X − [X, Y ],

where [X, Y ] is the Lie bracket of X and Y . The presence of [X, Y ] has the purpose
of making the torsion τ∇ C∞(M)-bilinear. We’ll conclude the discussion with the
following characterization of this torsion:

Proposition. τ∇ = 0 if and only if Hess∇( f ) is a symmetric tensor, for every f ∈ C∞(M).

Proof: Given vector fields X, Y ∈ X(M), we compute directly that

Hess∇( f )(Y ,X) = Y(X( f ))− d f (∇Y X) = X(Y( f ))− [X, Y ]( f )− d f (∇Y X)

= X(Y( f ))− d f (∇Y X + [X, Y ]) = X(Y( f ))− d f (∇XY − τ∇(X, Y))

= Hess∇( f )(X, Y) + τ∇(X, Y)( f ).

The conclusion follows.
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