Why is the Hessian of a function well-defined only at its critical points?

Ivo Terek Couto

Defining $\mathrm{d}^{2} f_{p}$:

Let M^{n} be a differentiable manifold, $f: M \rightarrow \mathbb{R}$ be a smooth function, and $p \in M$ be a critical point of f, that is, satisfying $\mathrm{d} f_{p}=0$. This means that the partial derivatives of f with respect to any chart around p vanish when evaluated at p. This allows us to write the:

Definition. The Hessian of f at p is the bilinear form $\mathrm{d}^{2} f_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ defined by

$$
\mathrm{d}^{2} f_{p}(v, w) \doteq \sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{\alpha}^{i} \partial x_{\alpha}^{j}}(p) v_{\alpha}^{i} w_{\alpha}^{j}
$$

where $\left(U_{\alpha}, \varphi_{\alpha}=\left(x_{\alpha}^{1}, \ldots, x_{\alpha}^{n}\right)\right)$ is a chart around p for which we write

$$
v=\left.\sum_{i=1}^{n} v_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}}\right|_{p} \quad \text { and } \quad w=\left.\sum_{i=1}^{n} w_{\alpha}^{j} \frac{\partial}{\partial x_{\alpha}^{j}}\right|_{p} .
$$

To make this definition valid, we have to verify that the expression does not depend on the choice of chart around p. For this end, assume that we are given a second chart $\left(U_{\beta}, \varphi_{\beta}=\left(x_{\beta}^{1}, \ldots, x_{\beta}^{n}\right)\right)$ around p. Then $U_{\alpha} \cap U_{\beta}$ is an open set around p (hence we are able to take derivatives), and we may assume without loss of generality (and to simplify the writing) that $\varphi_{\alpha}(p)=\varphi_{\beta}(p)=\mathbf{0}=(0, \ldots, 0) \in \mathbb{R}^{n}$. The relation between the coordinate vector fields along $U_{\alpha} \cap U_{\beta}$, evaluated at the correct points, is just

$$
\frac{\partial}{\partial x_{\beta}^{j}}=\sum_{\ell=1}^{n} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}} \frac{\partial}{\partial x_{\alpha}^{\ell}}, \quad j=1,2, \ldots, n .
$$

Seeing this as an equality between differential operators, it follows that

$$
\frac{\partial f}{\partial x_{\beta}^{j}}=\sum_{\ell=1}^{n} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}} \frac{\partial f}{\partial x_{\alpha}^{\ell}}, \quad j=1,2, \ldots, n .
$$

Applying $\partial / \partial x_{\beta}^{i}$ on both sides and applying the product rule, we get

$$
\frac{\partial^{2} f}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}}=\sum_{\ell=1}^{n} \frac{\partial^{2} x_{\alpha}^{\ell}}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}} \frac{\partial f}{\partial x_{\alpha}^{\ell}}+\sum_{k, \ell=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}} \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}} .
$$

Evaluating the above at the point p kills the first sum in the right hand side, in view of the condition $\mathrm{d} f_{p}=0$ (which implies that $\left(\partial f / \partial x_{\alpha}^{\ell}\right)(p)=0$ for $\ell=1,2, \ldots, n$), resulting in

$$
\frac{\partial^{2} f}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}}(p)=\sum_{k, \ell=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}}(\mathbf{0}) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) .
$$

Now, to compute the Hessian of f according to the chart $\left(U_{\beta}, \varphi_{\beta}\right)$, we need to know the components of the tangent vectors v and w with respect to this new coordinate basis. Using self-evident notation, we have that

$$
v_{\beta}^{i}=\sum_{r=1}^{n} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) v_{\alpha}^{r} \quad \text { and } \quad w_{\beta}^{j}=\sum_{s=1}^{n} \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) w_{\alpha}^{s}, \quad i, j=1,2, \ldots, n .
$$

Putting everything together, we finally compute:

$$
\begin{aligned}
\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}}(p) v_{\beta}^{i} w_{\beta}^{j} & =\sum_{i, j, k, \ell, r, s=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}}(\mathbf{0}) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) v_{\alpha}^{r} \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) w_{\alpha}^{s} \\
& =\sum_{k, \ell, r, s=1}^{n}\left(\sum_{i=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0})\right)\left(\sum_{j=1}^{n} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}}(\mathbf{0}) \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0})\right) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) v_{\alpha}^{r} w_{\alpha}^{s} \\
& =\sum_{k, \ell, r, s=1}^{n} \delta_{r}^{k} \delta_{s}^{\ell} \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) v_{\alpha}^{r} w_{\alpha}^{s} \\
& =\sum_{k, \ell=1}^{n} \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) v_{\alpha}^{k} w_{\alpha}^{\ell}
\end{aligned}
$$

as wanted. This means that the Hessian is indeed well-defined if p is a critical point of the function f. Perhaps a more elegant approach for checking this last part, avoiding picking the tangent vectors v and w (but which obviously boils down to the same computation), is to write the transformation law for the differentials at the point p instead:

$$
\left.\mathrm{d} x_{\beta}^{i}\right|_{p}=\left.\sum_{r=1}^{n} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) \mathrm{d} x_{\alpha}^{r}\right|_{p} \quad i=1,2, \ldots, n,
$$

setting up

$$
\left.\left.\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}}(\mathbf{0}) \mathrm{d} x_{\beta}^{i}\right|_{p} \otimes \mathrm{~d} x_{\beta}^{j}\right|_{p}=\sum_{i, j, k, l=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}}(\mathbf{0}) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p)\left(\left.\sum_{r=1}^{n} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) \mathrm{d} x_{\alpha}^{r}\right|_{p}\right) \otimes\left(\left.\sum_{s=1}^{n} \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) \mathrm{d} x_{\alpha}^{s}\right|_{p}\right)
$$

and recognizing δ_{r}^{k} and δ_{s}^{ℓ} to again obtain the same conclusion.

Generalizations:

Everything here uses in a crucial way the fact that $\mathrm{d} f_{p}=0$. So this raises the natural question: is it possible to define such a Hessian for arbitrary points of the manifold M ?

Without additional structure, the answer is no. If you do, however, have some extra structure to work with, here's what happens: let ∇ be a (Koszul) connection in the tangent bundle $T M$, and define the covariant Hessian of f with respect to ∇ at p as the map Hess ${ }^{\nabla}(f)_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ given by

$$
\operatorname{Hess}^{\nabla}(f)_{p}(v, w)=v(\widetilde{\boldsymbol{w}}(f))-\mathrm{d} f_{p}\left(\nabla_{v} \widetilde{\boldsymbol{w}}\right),
$$

where $\widetilde{\boldsymbol{w}}$ is some extension of w to a neighborhood of p (i.e., a vector field defined in a neighborhood of p such that $\widetilde{\boldsymbol{w}}_{p}=w$). By the Leibniz rule for ∇ and its local character, we see that the right hand side above is actually independent of the choice of extension for w, and defines a bilinear form on $T_{p} M$. Note that if p happens to be a critical point of f, we recover $\operatorname{Hess}^{\nabla}(f)_{p}=\mathrm{d}^{2} f_{p}$.

This actually induces a $\mathscr{C}^{\infty}(M)$-bilinear map Hess ${ }^{\nabla}(f): \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathscr{C}^{\infty}(M)$, which is given in local coordinates $\left(U,\left(x^{1}, \ldots, x^{n}\right)\right)$ by

$$
\begin{aligned}
\operatorname{Hess}^{\nabla}(f)\left(\partial_{i}, \partial_{j}\right) & =\partial_{i} \partial_{j} f-\mathrm{d} f\left(\nabla_{\partial_{i}} \partial_{j}\right) \\
& =\partial_{i} \partial_{j} f-\mathrm{d} f\left(\sum_{k=1}^{n} \Gamma_{i j}^{k} \partial_{k}\right) \\
& =\partial_{i} \partial_{j} f-\sum_{k=1}^{n} \Gamma_{i j}^{k} \partial_{k} f,
\end{aligned}
$$

where the n^{3} functions $\Gamma_{i j}^{k}$ are the connection components of ∇. Writing it in its full glory, we have

$$
\operatorname{Hess}^{\nabla}(f)=\sum_{i, j=1}^{n}\left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}-\sum_{k=1}^{n} \Gamma_{i j}^{k} \frac{\partial f}{\partial x^{k}}\right) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}
$$

One might also recognize the object Hess $\nabla(f)$ as the covariant differential $\nabla(\mathrm{d} f)$ of the $(0,1)$-tensor $\mathrm{d} f$, which is then a $(0,2)$-tensor. But despite all these ways of looking at the Hessian, we cannot expect it to necessarily have good properties, since the connection ∇ was so arbitrary. In fact, recall that the torsion of the connection ∇ is the $(0,2)$-tensor field $\tau^{\nabla}: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ given by

$$
\tau^{\nabla}(\boldsymbol{X}, \boldsymbol{Y})=\nabla_{\boldsymbol{X}} \boldsymbol{Y}-\nabla_{\boldsymbol{Y}} \boldsymbol{X}-[\boldsymbol{X}, \boldsymbol{Y}]
$$

where $[\boldsymbol{X}, \boldsymbol{Y}]$ is the Lie bracket of \boldsymbol{X} and \boldsymbol{Y}. The presence of $[\boldsymbol{X}, \boldsymbol{Y}]$ has the purpose of making the torsion $\tau^{\nabla} \mathscr{C}^{\infty}(M)$-bilinear. We'll conclude the discussion with the following characterization of this torsion:
Proposition. $\tau^{\nabla}=0$ if and only if $\operatorname{Hess}^{\nabla}(f)$ is a symmetric tensor, for every $f \in \mathscr{C}^{\infty}(M)$.
Proof: Given vector fields $\boldsymbol{X}, \boldsymbol{Y} \in \mathfrak{X}(M)$, we compute directly that

$$
\begin{gathered}
\operatorname{Hess}^{\nabla}(f)(\boldsymbol{Y}, \boldsymbol{X})=\boldsymbol{Y}(\boldsymbol{X}(f))-\mathrm{d} f\left(\nabla_{\boldsymbol{Y}} \boldsymbol{X}\right)=\boldsymbol{X}(\boldsymbol{Y}(f))-[\boldsymbol{X}, \boldsymbol{Y}](f)-\mathrm{d} f\left(\nabla_{\boldsymbol{Y}} \boldsymbol{X}\right) \\
=\boldsymbol{X}(\boldsymbol{Y}(f))-\mathrm{d} f\left(\nabla_{\boldsymbol{Y}} \boldsymbol{X}+[\boldsymbol{X}, \boldsymbol{Y}]\right)=\boldsymbol{X}(\boldsymbol{Y}(f))-\mathrm{d} f\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}-\tau^{\nabla}(\boldsymbol{X}, \boldsymbol{Y})\right) \\
=\operatorname{Hess}^{\nabla}(f)(\boldsymbol{X}, \boldsymbol{Y})+\tau^{\nabla}(\boldsymbol{X}, \boldsymbol{Y})(f) .
\end{gathered}
$$

The conclusion follows.

