Some index computations with curvature tensors

Ivo Terek*

1 Definitions

Let $\left(M^{n}, g\right), n \geq 3$, be a (connected) pseudo-Riemannian manifold.
Definition 1 (Products).
(i) Given $\alpha \in \Omega^{1}(M)$ and $\beta \in \Omega^{2}(M)$, we regard β as an element of $\Omega^{1}\left(M ; T^{*} M\right)$ and compute the actual wedge product $\alpha \wedge \beta \in \Omega^{2}\left(M ; T^{*} M\right)$. It is given by $(\alpha \wedge \beta)(X, Y) Z=\alpha(X) \beta(Y, Z)-\alpha(Y) \beta(X, Z)$.
(ii) Given symmetric tensors $T, S \in \Gamma\left(T^{*} M^{\odot 2}\right)$, we define their Kulkarni-Nomizu product as

$$
2(T \boxtimes S)(X, Y, Z, W)=T(Y, Z) S(X, W)-T(X, Z) S(Y, W)+\operatorname{switch}(T \leftrightarrow S)
$$

where by switch $(T \leftrightarrow S)$ we mean the previous terms with T and S switched.
Remark. The relation $\nabla_{X}(T \boxtimes S)=\left(\nabla_{X} T\right) \boxtimes S+T \boxtimes\left(\nabla_{X} S\right)$ always holds. This is easily verified pointwise by using a geodesic frame centered at the arbitrary chosen point.

Definition 2 (Curvatures).

(i) The Riemann curvature tensor of (M, g) is defined by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
$$

(ii) The Ricci tensor is $\operatorname{Ric}(Y, Z)=\operatorname{tr}(X \mapsto R(X, Y) Z)$.
(iii) The scalar curvature is $s=\operatorname{tr}_{g}$ Ric.

With the operation \boxtimes, we have that (M, g) has constant curvature c if $R=c(g \boxtimes g)$. In general, we may decompose R as

$$
R=\frac{\mathrm{s}}{n(n-1)} g \boxtimes g+\frac{2}{n-2} g \boxtimes\left(\operatorname{Ric}-\frac{\mathrm{s}}{n} g\right)+\mathrm{W}
$$

[^0]where W is called the Weyl tensor of (M, g). Essentially, this decomposition consists in writing R as a sum of: a multiple of $g \boxtimes g$, a term $g \boxtimes E$ where $\operatorname{tr}_{g} E=0$, and a term W whose abstract Ricci contraction vanishes. The tensor W controls conformal flatness, and while we can just solve for W in the above formula, it is more convenient to write it as
$$
\mathrm{W}=R-\frac{2}{n-2} g @ \mathrm{Sch},
$$
where
$$
\text { Sch }=\operatorname{Ric}-\frac{\mathrm{s}}{2(n-1)} g
$$
is called the Schouten tensor of (M, g).
Definition 3 (Divergence).
(i) If $T \in \Gamma\left(T^{*} M^{\otimes k}\right)$ is a tensor field, we define the g-divergence $\delta T \in \Gamma\left(T^{*} M^{\otimes(k-1)}\right)$ as
$$
(\delta T)\left(X_{1}, \ldots, X_{k-1}\right)=\operatorname{tr}_{g}\left((X, Y) \mapsto\left(\nabla_{X} T\right)\left(X_{1}, \ldots, X_{k-1}, Y\right)\right)
$$
(ii) If T is a type $(1, k)$-tensor, we define the g-divergence δT as the $(0, k)$ tensor given by
$$
\delta T\left(X_{1}, \ldots, X_{k}\right)=\operatorname{tr}\left(X \mapsto\left(\nabla_{X} T\right)\left(X_{1}, \ldots, X_{k}\right)\right)
$$

Definition 4 (Exterior derivative). Let $T \in \Gamma\left(T^{*} M^{\otimes 2}\right)$ be a tensor field. We define the exterior derivative $\mathrm{d}^{\nabla} T \in \Gamma\left(T^{*} M^{\otimes 3}\right)$ by

$$
\left(\mathrm{d}^{\nabla} T\right)(X, Y) Z=\left(\nabla_{X} T\right)(Y, Z)-\left(\nabla_{Y} T\right)(X, Z)
$$

Remark. Since ∇ is torsion-free, the above is the same as regarding T as an element of $\Omega^{1}\left(M ; T^{*} M\right)$ and then taking the exterior derivative $\mathrm{d}^{\nabla} T \in \Omega^{2}\left(M ; T^{*} M\right)$ with the aid of ∇.

Using coordinates, and denoting covariant derivatives in direction of coordinate fields with a semi-colon, we have that:

- $(\alpha \wedge \beta)_{i j k}=\alpha_{i} \beta_{j k}-\alpha_{j} \beta_{i k}$
- $2(T \boxtimes S)_{i j k \ell}=T_{j k} S_{i \ell}-T_{i k} S_{j \ell}+S_{j k} T_{i \ell}-S_{i k} T_{j \ell}$
- $R\left(\partial_{i}, \partial_{j}\right) \partial_{k}=R_{i j k}{ }^{\ell} \partial_{\ell}$
- $\operatorname{Ric}\left(\partial_{i}, \partial_{j}\right)=R_{j k}$ with $R_{j k}=R_{i j k}{ }^{i}$
- $\mathrm{s}=g^{i j} R_{i j}$
- $(\delta T)_{i_{1} \cdots i_{k-1}}=g^{i j} T_{i_{1} \cdots i_{k-1} i ; j}$ if T is of type $(0, k)$
- $(\delta T)_{i_{1} \cdots i_{k}}=T_{i_{1} \cdots i_{k} ; j}{ }^{j}$ if T is of type $(1, k)$.
- $\left(\mathrm{d}^{\nabla} T\right)_{i j k}=T_{j k ; i}-T_{i k ; j}$
- $R_{i j k \ell}+R_{j k i \ell}+R_{k i j \ell}=0$ (first Bianchi identity $\mathrm{d}^{\nabla} \tau=0$)
- $R_{i j k \ell ; r}+R_{j r k \ell ; i}+R_{r i k \ell ; j}=0$ (second Bianchi identity $\mathrm{d}^{\nabla} R=0$).

Lastly, recall that if $E \rightarrow M$ is a vector bundle equipped with a connection (also to be denoted by ∇), and $\psi \in \Gamma(E)$, one may define the second covariant derivative of ψ by $\left(\nabla_{X}(\nabla \psi)\right) Y=\nabla_{X} \nabla_{Y} \psi-\nabla_{\nabla_{X}} \psi$. Using coordinates $\left(x^{j}\right)$ in M and a local trivialization $\left(e_{a}\right)$, we may write

$$
\psi=\psi^{a} e_{a}, \quad \nabla_{\partial_{j}} \psi=\psi_{; j}^{a} e_{a} \quad \text { and } \quad\left(\nabla_{\partial_{k}}(\nabla \psi)\right) \partial_{j}=\psi_{; j k}^{a} e_{a} .
$$

In the last expression, note that the index k is the second index in $\psi_{; j k}^{a}$ because $\nabla_{\partial_{k}}$ is the last derivative to be applied. In particular, we have that $\psi_{; k j}^{a}-\psi_{; j k}^{a}=R_{j k b}{ }^{a} \psi^{b}$, by definition of curvature.

This should be enough to get us going. Unless said otherwise, f stands for an arbitrary $f \in \mathscr{C}^{\infty}(M)$.

2 Formulas

Proposition 5. $\delta(\nabla X)-\mathrm{d}(\delta X)=\operatorname{Ric}(\cdot, X)$.
Corollary 6. For $X=\nabla f$, we get $\delta(\operatorname{Hess} f)=\operatorname{Ric}(\nabla f, \cdot)+\mathrm{d}(\Delta f)$.
Proof: Make $i=j$ in $X_{; k j}^{i}-X_{; j k}^{i}=R_{j k \ell}{ }^{i} X^{\ell}$.
Proposition 7. $\left(\mathrm{d}^{\nabla}(\right.$ Hess $\left.f)\right)(X, Y) Z=R(X, Y, \nabla f, Z)$.

Proof:

$$
\begin{aligned}
\left(\mathrm{d}^{\nabla}(\operatorname{Hess} f)\right)_{i j k} & =(\operatorname{Hess} f)_{j k ; i}-(\text { Hess } f)_{i k ; j} \\
& =f_{; j k i}-f_{; i k j} \\
& =f_{; k j i}-f_{; k i j} \\
& =R_{i j k k} f^{\ell}
\end{aligned}
$$

Proposition 8. $\mathrm{d}^{\nabla}(f T)=\mathrm{d} f \wedge T+f \mathrm{~d}^{\nabla} T$.
Corollary 9. For $T=g$, we get $\mathrm{d}^{\nabla}(f g)=\mathrm{d} f \wedge g$.

Proof:

$$
\begin{aligned}
\mathrm{d}^{\nabla}(f T) & =(f T)_{j k ; i}-(f T)_{i k ; j} \\
& =\left(f T_{j k}\right)_{; i}-\left(f T_{i k}\right)_{; j} \\
& =f_{; i} T_{j k}+f T_{j k ; i}-f_{; j} T_{i k}-f T_{i k ; j} \\
& =f_{; i} T_{j k}-f_{; j} T_{i k}+f\left(T_{j k ; i}-T_{i k ; j}\right) \\
& =(\mathrm{d} f \wedge T)_{i j k}+\left(f \mathrm{~d}^{\nabla} T\right)_{i j k}
\end{aligned}
$$

Proposition 10. $\delta(f T)=T(\cdot, \nabla f)+f \delta T$
Corollary 11. For $T=g, \delta(f g)=\mathrm{d} f$.
Proof:

$$
\begin{aligned}
(\delta(f T))_{i} & =(f T)_{i j ;}^{j} \\
& =\left(f T_{i j}\right)_{;}^{j} \\
& =f^{j j} T_{i j}+f T_{i j ;}^{j} \\
& =f^{j j} T_{i j}+f(\delta T)_{i}
\end{aligned}
$$

Proposition 12. $\delta T=\operatorname{tr}_{1,3}\left(\mathrm{~d}^{\nabla} T\right)+\mathrm{d}(\operatorname{tr} T)$, if T has rank 2 .

Proof:

$$
(\delta T)_{i}=g^{j k} T_{i j ; k}=g^{j k}\left(\left(\mathrm{~d}^{\nabla} T\right)_{k i j}+T_{k j ; i}\right)=\left(\operatorname{tr}_{1,3}\left(\mathrm{~d}^{\nabla} T\right)\right)_{i}+(\operatorname{tr} T)_{; i}
$$

Proposition 13. $\delta R=\mathrm{d}^{\nabla}$ Ric.

Proof:

$$
\begin{aligned}
(\delta R)_{i j k} & =R_{i j k ; \ell}^{\ell} \\
& =g^{\ell r} R_{i j k r ; \ell} \\
& =-g^{\ell \ell} R_{j \ell k r ; i}-g^{\ell r} R_{\ell i k r ; j} \\
& =g^{\ell r} R_{\ell j k r ; i}-g^{\ell r} R_{\ell i k r ; j} \\
& =R_{j k ; i}-R_{i k ; j} \\
& =\left(\mathrm{d}^{\nabla} R_{i c}\right)_{i j k}
\end{aligned}
$$

Proposition 14. δ Ric $=\mathrm{d} s / 2$.
Remark. This also follows from Proposition 12, as $\operatorname{tr}_{1,3}\left(\mathrm{~d}^{\nabla}\right.$ Ric $)=-\delta$ Ric.

Proof:

$$
\begin{aligned}
(\delta \mathrm{Ric})_{i} & =R_{i j ;}^{j} \\
& =g^{k \ell} R_{k i j}{ }^{j} \\
& =g^{r j} g^{k \ell} R_{k i j \ell ; r} \\
& =-g^{r j} g^{k \ell} R_{i r j \ell ; k}-g^{r j} g^{k \ell} R_{r k j \ell ; i} \\
& =-g^{k \ell} R_{i \ell ; k}+g^{r j} R_{r j ; i} \\
& =-(\delta \operatorname{Ric})_{i}+\mathrm{s}_{; i}
\end{aligned}
$$

Proposition 15. $2 \delta(g ® S)=\delta S \wedge g+\mathrm{d}^{\nabla} S$.

Proof:

$$
\begin{aligned}
(2 \delta(g \boxtimes S))_{i j k} & =(2 g \boxtimes S)_{i j k \ell ;} \\
& =\left(g_{j k} S_{i \ell}-g_{i k} S_{j \ell}+S_{j k} g_{i \ell}-S_{i k} g_{j \ell}\right)_{;}^{\ell} \\
& =g_{j k} S_{i \ell ;}^{\ell}-g_{i k} S_{j \ell ;}^{\ell}+S_{j k ;}^{\ell} g_{i \ell}-S_{i k ;}^{\ell} g_{j \ell} \\
& =g_{j k}(\delta S)_{i}-g_{i k}(\delta S)_{j}+S_{j k ; i}-S_{i k ; j} \\
& =(\delta S \wedge g)_{i j k}+\left(\mathrm{d}^{\nabla} S\right)_{i j k} \\
& =\left(\delta S \wedge g+\mathrm{d}^{\nabla} S\right)_{i j k}
\end{aligned}
$$

Proposition 16. $\delta \mathrm{Sch}=\frac{n-2}{2(n-1)} \mathrm{ds}$.

Proof:

$$
\begin{aligned}
\delta \text { Sch } & =\delta\left(\operatorname{Ric}-\frac{\mathrm{s}}{2(n-1)} g\right) \\
& =\delta \operatorname{Ric}-\frac{1}{2(n-1)} \delta(\mathrm{s} g) \\
& =\frac{\mathrm{ds}}{2}-\frac{\mathrm{ds}}{2(n-1)} \\
& =\frac{n-2}{2(n-1)} \mathrm{ds}
\end{aligned}
$$

Proposition 17. $\delta \mathrm{W}=\frac{n-3}{n-2} \mathrm{~d}^{\nabla}$ Sch.

Proof:

$$
\begin{aligned}
\delta \mathrm{W} & =\delta\left(R-\frac{2}{n-2} g \boxtimes \mathrm{Sch}\right) \\
& =\delta R-\frac{2 \delta(g \mathbb{S c h})}{n-2} \\
& =\mathrm{d}^{\nabla} \text { Ric }-\frac{\delta \mathrm{Sch} \wedge g}{n-2}-\frac{1}{n-2} \mathrm{~d}^{\nabla} \text { Sch } \\
& =\mathrm{d}^{\nabla} \text { Ric }-\frac{\mathrm{ds} \wedge g}{2(n-1)}-\frac{1}{n-2} \mathrm{~d}^{\nabla} \text { Sch } \\
& =\mathrm{d}^{\nabla} \text { Sch }-\frac{1}{n-2} \mathrm{~d}^{\nabla} \text { Sch } \\
& =\frac{n-3}{n-2} \mathrm{~d}^{\nabla} \text { Sch }
\end{aligned}
$$

Proposition 18. $\delta R=\frac{\mathrm{ds} \wedge g}{2(n-1)}+\frac{n-2}{n-3} \delta \mathrm{~W}$.
Proof: This is equivalent to the previous proposition.
Proposition 19. $\delta \mathrm{W}=0 \Longrightarrow \mathrm{~d}^{\nabla} \mathrm{W}=0$.
Remark. This justifies the name "harmonic" Weyl curvature, as W will be both closed and co-closed.

Proof: Computing $\left(\mathrm{d}^{\nabla} \mathrm{W}\right)_{i j k \ell m}$ by definition gives a sum of six terms of the form $g_{j k}\left(\mathrm{~d}^{\nabla} \text { Sch }\right)_{m i \ell}$.

3 Immediate consequences

Corollary 20. If (M, g) is locally symmetric (that is, $\nabla R=0$), then we also have $\nabla T=0$ (hence $\delta T=0$), for $T \in\{$ Ric, $\mathrm{s}, \mathrm{Sch}, \mathrm{W}\}$.

Corollary 21 (Schur). If $n \geq 3$ and Ric $=$ fg for some $f \in \mathscr{C}^{\infty}(M)$, then f is automatically constant so that (M, g) is Einstein (and has constant scalar curvature).

Proof: Applying tr to Ric $=f g$ gives $f=\mathrm{s} / n$, while applying δ gives $\mathrm{ds} / 2=\mathrm{ds} / n$, so $\mathrm{d} s=\mathrm{d} f=0$.

Corollary 22. (M, g) has harmonic curvature \Longleftrightarrow Ric is closed. In this case, s is constant. Proof:

$$
\mathrm{s}_{; k}=g^{i j} R_{i j ; k}=g^{i j} R_{k j ; i}=R_{k j ;}^{j}=(\delta \text { Ric })_{k}=\frac{s_{; k}}{2} \Longrightarrow \mathrm{~s}_{; k}=0 .
$$

Corollary 23. If $n \geq 3, \delta \mathrm{Sch}=0 \Longleftrightarrow \mathrm{~s}$ is constant.
Corollary 24. If $n \geq 4,(M, g)$ is has harmonic Weyl curvature \Longleftrightarrow Sch is closed.
Corollary 25. If $n \geq 4$, then (M, g) has harmonic curvature \Longleftrightarrow it has harmonic Weyl curvature and s is constant.

Proof: If (M, g) has harmonic curvature, note that s is constant by Proposition 22, so d^{∇} Ric $=0$ implies d^{∇} Sch $=0$ by definition of Sch. The converse is clear from Proposition 18.

Remark. For instance, every Einstein manifold and every locally symmetric manifold satisfy the assumptions above.

[^0]: *terekcouto.1@osu.edu

