A classical exercise in do Carmo's *Differential Geometry of Curves and Surfaces* states that for any compact surface M in \mathbb{R}^3 there is $p \in M$ such that K(p) > 0, where $K: M \to \mathbb{R}$ denotes the Gaussian curvature function of M. Here we present the generalization of this result to higher dimensions. Unfortunately, I do not know where this result has first appeared.

Theorem

For any compact hypersurface $M^n \subseteq \mathbb{R}^{n+1}$ (without boundary) there is $p \in M$ such that $K(\Pi) > 0$, for every 2-plane $\Pi \subseteq T_pM$. Here, $K \colon Gr(TM) \to \mathbb{R}$ denotes the sectional curvature function of M.

Proof: Consider the *energy density* function $f: M \to \mathbb{R}$ given by $f(x) = ||x||^2/2$, and let $p \in M$ realize the maximum value of f (such p exists by compactness of M and continuity of f). As $df_p = 0$, we have that $T_pM = p^{\perp}$, so that writing r = ||p|| > 0, N = p/r is a unit normal vector to M at p.

Now, let $v \in T_p M$ and choose a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\dot{\gamma}(0) = v$. As t = 0 realizes the maximum value of $(-\varepsilon, \varepsilon) \ni t \mapsto f(\gamma(t)) \in \mathbb{R}$, we know that

$$0 \geq \frac{d^2}{dt^2} \Big|_{t=0} f(\gamma(t)) = \frac{d}{dt} \Big|_{t=0} \langle \dot{\gamma}(t), \gamma(t) \rangle$$

= $\langle \ddot{\gamma}(0), \gamma(0) \rangle + \langle \dot{\gamma}(0), \dot{\gamma}(0) \rangle$
= $\langle \ddot{\gamma}(0), p \rangle + \langle v, v \rangle$
= $\langle \ddot{\gamma}(0), N \rangle r + ||v||^2$, (0.1)

so that, by $\langle \ddot{\gamma}(0), N \rangle = \langle v, S(v) \rangle$, where $S: T_p M \to T_p M$ is the shape operator associated with N, it follows that

$$\langle v, S(v) \rangle r + \|v\|^2 \le 0, \qquad \text{for all } v \in T_p M.$$
 (0.2)

Recall that *S* is self-adjoint, and hence diagonalizable (with all real eigenvalues). Letting *v* be a unit eigenvector of *S*, with $S(v) = \lambda v$ and $\lambda \in \mathbb{R}$, relation (0.2) yields $\lambda \leq -1/r < 0$. Hence, $\langle \langle v, w \rangle \rangle = -\langle v, S(w) \rangle$ defines a positive-definite inner product on T_pM . Finally, let $\Pi \subseteq T_pM$ be an arbitrary 2-plane and $\{v, w\}$ be an orthonormal basis of Π . In view of the Gauss equation, we have that

$$K(\Pi) = \langle v, S(v) \rangle \langle w, S(w) \rangle - \langle v, S(w) \rangle^{2}$$

= $\langle \langle v, v \rangle \rangle \langle \langle w, w \rangle \rangle - \langle \langle v, w \rangle \rangle^{2}$
> 0 (0.3)

by the Cauchy-Schwarz inequality applied for $\langle\!\langle \cdot, \cdot \rangle\!\rangle$, with linear independence of $\{v, w\}$ ensuring that the inequality is strict.

Remark. The last step (0.3) only really uses the assumption that some point in *M* has a (positive or negative) definite shape operator, which follows from compactness. On the other hand, the conclusion becomes false when one considers instead compact submanifolds of higher codimension. For instance, the *Clifford torus* $S^1 \times S^1 \subseteq \mathbb{R}^4$, being flat, is an explicit counter-example in codimension two.