COMPUTATIONS ON PP-WAVE SPACETIMES

Ivo Terek

Definition 1. A Lorentzian manifold $(M, \mathrm{~g}), \operatorname{dim} M=n+2$, is called a $p p$-wave spacetime if it admits a parallel null field $L \in \mathfrak{X}(M)$ such that the connection induced in the quotient screen bundle $L^{\perp} / \mathbb{R} L \rightarrow M$ is flat, or, in other words, we may write $R(\boldsymbol{X}, \boldsymbol{Y}): \boldsymbol{L}^{\perp} \rightarrow \mathbb{R} \boldsymbol{L}$ for all $\boldsymbol{X}, \boldsymbol{Y} \in \mathfrak{X}(M)$.
Theorem 2 (Brinkmann). Each point in a pp-wave spacetime $(M, \mathrm{~g})$ admits a coordinate neighborhood with coordinates $\left(x^{+}, x^{-}, x^{1}, \ldots, x^{n}\right)$ for which the metric is expressed as

$$
\mathrm{g}=2 H\left(\mathrm{~d} x^{+}\right)^{2}+2 \mathrm{~d} x^{+} \mathrm{d} x^{-}+\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

where H is a smooth function not depending on x^{-}and i, j range from 1 to n. On such coordinates, we have $L=\partial_{-}$. Given $p \in M$, such coordinates may be chosen centered at p and such that $H\left(x^{+}, x^{-}, \mathbf{0}\right)=\left(\partial_{i} H\right)\left(x^{+}, x^{-}, \mathbf{0}\right)=0$ for all i and x^{+}ranging over an interval centered at 0 (those are called normal Brinkmann coordinates).

Remark. $(M, \mathrm{~g})$ is called a plane wave if the data function H is quadratic on the variables $\left(x^{i}\right)$ with coefficients depending on x^{+}, that is, if it has the form

$$
H\left(x^{+}, x^{-}, x^{1}, \ldots, x^{n}\right)=H_{i j}\left(x^{+}\right) x^{i} x^{j}+H_{k}\left(x^{+}\right) x^{k}+H_{0}\left(x^{+}\right) .
$$

Moreover, note that $\mathrm{g}\left(\partial_{-}, \cdot\right)=\mathrm{d} x^{+}$, so it will also follow that $\mathrm{d} x^{+}$is a parallel null 1-form.

Proof: Since L is parallel, the 1-form $g(L, \cdot)$ is closed, so Poincaré's Lemma gives a local smooth function x^{+}such that $g(L, \cdot)=\mathrm{d} x^{+}$. Next, since L is a parallel distribution, so is $L^{\perp}=\operatorname{kerd} x^{+}$(for if $\boldsymbol{X} \in \mathfrak{X}(M)$ and $\boldsymbol{Y} \in \Gamma\left(\boldsymbol{L}^{\perp}\right)$ are arbitrary, then we have that $\mathrm{g}\left(\nabla_{X} \boldsymbol{Y}, \boldsymbol{L}\right)=-\mathrm{g}\left(\boldsymbol{Y}, \nabla_{X} \boldsymbol{L}\right)=0$, so $\left.\nabla_{X} \boldsymbol{Y} \in \Gamma\left(\boldsymbol{L}^{\perp}\right)\right)$. Thus, the LeviCivita connection induces connections on all the fibers of x^{+}, which are the integral hypersurfaces of \boldsymbol{L}^{\perp} (even though g is degenerate on them). We now claim that those induced connections are all flat. To wit, given $\boldsymbol{X}, \boldsymbol{Y} \in \Gamma\left(\boldsymbol{L}^{\perp}\right)$ and $\boldsymbol{Z}, \boldsymbol{W} \in \mathfrak{X}(M)$, pairsymmetry of the Riemann tensor gives that $R(\boldsymbol{X}, \boldsymbol{Y}, \mathbf{Z}, \boldsymbol{W})=R(\boldsymbol{Z}, \boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Y})=0$, since $R(\boldsymbol{Z}, \boldsymbol{W}) \boldsymbol{X}$ is a multiple of \boldsymbol{L} (by definition of a pp-wave) and $\boldsymbol{Y} \in \Gamma\left(\boldsymbol{L}^{\perp}\right)$. With this in place, choose a point $p \in M$ and consider the integral hypersurface of L^{\perp} passing through p. Take orthonormal parallel fields $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ along such hypersurface, and take a geodesic $\gamma: I \rightarrow M$ starting at p, orthogonal to $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$, and transverse to hypersurface. The transversality condition allows us to assume ${ }^{1}$ that $\left.\mathrm{d} x^{+}\right|_{\gamma(t)}\left(\gamma^{\prime}(t)\right)=1$

[^0]for all $t \in I$ or, in other words, $g\left(L, \gamma^{\prime}\right)=1$. That is, we may assume that x^{+}is the geodesic parameter. The fields $L, \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$, being parallel (along the hypersurface), give coordinates $\left(x^{-}, x^{1}, \ldots, x^{n}\right)$ on the integral hypersurface passing through p. For each x^{+}, we consider the parallel transport of all of those fields from $p=\gamma(0)$ to $\gamma\left(x^{+}\right)$, and then we extend those to parallel fields along the integral hypersurface of L^{\perp} passing through $\gamma\left(x^{+}\right)$- such extensions (denoted with the same letters) give coordinates $\left(x^{-}, x^{1}, \ldots, x^{n}\right)$ on each hypersurface. Thus, given $q \in M$ near enough p, the coordinate $x^{+}(q)$ will be the value corresponding to the hypersurface passing through q, and the remaining values $x^{-}(q), x^{1}(q), \ldots, x^{n}(q)$ are determined by the hypersurface coordinates just defined. Since parallel translations are isometries and $\mathrm{g}\left(\partial_{i}, \partial_{j}\right)=\mathrm{g}\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right)=\delta_{i j}$ on each hypersurface, these relations hold on the entire coordinate domain. By construction, ∂_{+}(which in particular satisfies $\left.\partial_{+}\right|_{\gamma\left(x^{+}\right)}=\gamma^{\prime}\left(x^{+}\right)$) is orthogonal to all the ∂_{i}, and we have $\mathrm{g}\left(\partial_{+}, \partial_{-}\right)=1$. The function $H=\mathrm{g}\left(\partial_{+}, \partial_{+}\right) / 2$ satisfies $\partial_{-} H=0$ because ∂_{-}is parallel. For the adjustment needed to get normal Brinkmann coordinates, see Lemma 3.1 in [1].

Let's compute the Christoffel symbols, assuming that $\lambda, \mu, v, \delta \in\{+,-, 1, \ldots, n\}$ and using

$$
\Gamma_{\mu \nu}^{\lambda}=\frac{g^{\lambda \delta}}{2}\left(\partial_{\mu} g_{\delta \nu}+\partial_{\nu} g_{\delta \mu}-\partial_{\delta} g_{\mu \nu}\right)
$$

Note that

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{ccc}
2 H & 1 & \mathbf{0} \\
1 & 0 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathrm{Id}_{n}
\end{array}\right) \quad \text { and } \quad\left(g^{\mu \nu}\right)=\left(\begin{array}{ccc}
0 & 1 & \mathbf{0} \\
1 & -2 H & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \operatorname{Id}_{n}
\end{array}\right)
$$

In particular, note that unless $\mu=\lambda=+$, we automatically have $\partial_{\mu} g_{\nu \lambda}=0$.

- If $\lambda=+$: since $g^{\delta+}=\delta^{\delta-}$, we'll have terms with ∂_{-}derivatives and only $g_{\bullet \bullet}$ terms where - enters, so $\Gamma_{\mu \nu}^{+}=0$ for all μ and ν.
- If $\lambda=-$: this time we have to deal with $g^{\delta-}$, so

$$
\Gamma_{\mu \nu}^{-}=\frac{1}{2}\left(\partial_{\mu} g_{\nu+}+\partial_{\nu} g_{\mu+}-\partial_{+} g_{\mu \nu}\right)-H\left(\partial_{\mu} g_{\nu-}+\partial_{\nu} g_{\mu-}-\partial_{-} g_{\mu \nu}\right) .
$$

By previous comments, all terms multiplying H vanish. Systematically, we see that $\Gamma_{++}^{-}=\partial_{+} H$ and $\Gamma_{+j}^{-}=\partial_{j} H$, while the remaining symbols vanish.

- If $\lambda=k$: the only non-zero $g^{\delta k}$ are when $\delta=\ell$ is latin, so we have

$$
\Gamma_{\mu \nu}^{k}=\frac{1}{2}\left(\partial_{\mu} g_{\nu k}+\partial_{\nu} g_{\mu k}-\partial_{k} g_{\mu v}\right)=-\frac{\partial_{k} g_{\mu \nu}}{2}
$$

Hence $\Gamma_{++}^{k}=-\partial_{k} H=-\partial^{k} H$ and all the remaining symbols vanish.
So, the non-zero symbols are $\Gamma_{++}^{-}=\partial_{+} H, \Gamma_{+j}^{-}=\partial_{j} H$ and $\Gamma_{++}^{k}=-\partial^{k} H$. Let's summarize our computations so far.

Proposition 3. If $(M, \mathrm{~g})$ is a pp-wave spacetime, then relative to Brinkmann coordinates we have that the Levi-Civita connection ∇ is described by

$$
\left(\nabla_{\partial_{\mu}} \partial_{\nu}\right)=\left(\begin{array}{ccc}
-\left(\partial^{k} H\right) \partial_{k}+\left(\partial_{+} H\right) \partial_{-} & \mathbf{0} & \left(\partial_{j} H\right) \partial_{-} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\left(\partial_{j} H\right) \partial_{-} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

Alternatively, we may write all covariant derivatives as
(i) $\nabla \partial_{+}=-\mathrm{d} x^{+} \otimes \operatorname{grad}_{x} H+\mathrm{d} H \otimes \partial_{-}$;
(ii) $\nabla \partial_{-}=0$;
(iii) $\nabla \partial_{i}=\partial_{i} H \mathrm{~d} x^{+} \otimes \partial_{-}$,
where $\operatorname{grad}_{x} H=\left(\partial^{k} H\right) \partial_{k}$ is the "flat gradient" of H.
With this in place, we systematically move on to curvature operators, simply using the definition

$$
R(\boldsymbol{X}, \boldsymbol{Y}) \mathbf{Z}=\nabla_{\boldsymbol{X}} \nabla_{\boldsymbol{Y}} \mathbf{Z}-\nabla_{\boldsymbol{Y}} \nabla_{\boldsymbol{X}} \mathbf{Z}-\nabla_{[\boldsymbol{X}, \boldsymbol{Y}]} \mathbf{Z} .
$$

- $R\left(\partial_{+}, \partial_{-}\right)=0$ since ∂_{-}is parallel and $\partial_{-} H=0$.
- $R\left(\partial_{+}, \partial_{j}\right) \partial_{+}=\left(\partial_{j} \partial^{k} H\right) \partial_{k}$ and $R\left(\partial_{+}, \partial_{j}\right) \partial_{k}=-\left(\partial_{j} \partial_{k} H\right) \partial_{-}$.
- $R\left(\partial_{-}, \partial_{j}\right)=0$ again since ∂_{-}is parallel and $\partial_{-} H=0$.
- $R\left(\partial_{i}, \partial_{j}\right)=0$ since $\partial_{i} \partial_{j} H=\partial_{j} \partial_{i} H$ and $\nabla_{\partial_{i}} \partial_{k}=\mathbf{0}$.

In essence, the only non-zero curvature operators are

$$
R\left(\partial_{+}, \partial_{j}\right)=\left(\partial_{j} \partial^{k} H\right) \mathrm{d} x^{+} \otimes \partial_{k}-\left(\partial_{j} \partial_{k} H\right) \mathrm{d} x^{k} \otimes \partial_{-}
$$

Equivalently, the only non-zero curvature components (up to symmetry) are

$$
R_{+j+}^{k}=\partial_{j} \partial^{k} H \quad \text { and } \quad R_{+j k}^{-}=-\partial_{j} \partial_{k} H
$$

Proposition 4. A pp-wave spacetime if flat if and only if, relative to any system of Brinkmann coordinates, the "flat Hessian" $\operatorname{Hess}_{x} H=\partial_{i} \partial_{j} H \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}$ vanishes.

With this in place, we may compute the Ricci tensor of $(M, \mathrm{~g})$.
Proposition 5. The Ricci tensor of a pp-wave spacetime is given by

$$
\text { Ric }=-\triangle H \mathrm{~d} x^{+} \otimes \mathrm{d} x^{+}
$$

where $\triangle H=\partial_{k} \partial^{k} H$ stands for the "flat Laplacian" induced by the Brinkmann coordinates. Hence every pp-wave spacetime is scalar-flat and Ricci-recurrent.

Next, let's find out when is a pp-wave locally symmetric. Namely, let's compute the covariant differential ∇R.

- $\nabla_{\partial_{+}} R$: the only non-zero operator is $\left(\nabla_{\partial_{+}} R\right)\left(\partial_{+}, \partial_{j}\right)=\nabla_{\partial_{+}}\left(R\left(\partial_{+}, \partial_{j}\right)\right)$, whose only non-zero values are found to be
$\left[\left(\nabla_{\partial_{+}} R\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{+}=\left(\partial_{+} \partial_{j} \partial^{k} H\right) \partial_{k} \quad$ and $\quad\left[\left(\nabla_{\partial_{+}} R\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{k}=-\left(\partial_{+} \partial_{j} \partial_{k} H\right) \partial_{-}$.
- $\nabla_{\partial_{-}} R=0$ because ∂_{-}is parallel and $\partial_{-} g_{\mu \nu}=0$ for all μ, v.
- $\nabla_{\partial_{i}} R$: the only non-zero operator is $\left(\nabla_{\partial_{i}} R\right)\left(\partial_{+}, \partial_{j}\right)$, whose only non-zero values are found to be

$$
\left[\left(\nabla_{\partial_{i}} R\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{+}=\left(\partial_{i} \partial_{j} \partial^{k} H\right) \partial_{k} \quad \text { and } \quad\left[\left(\nabla_{\partial_{i}} R\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{k}=-\left(\partial_{i} \partial_{j} \partial_{k} H\right) \partial_{-}
$$

Theorem 6. A pp-wave spacetime $(M, \mathrm{~g})$ with parallel null field \mathbf{L} is a plane wave spacetime if and only if $\nabla_{\mathbf{Z}} R=0$ for all $\mathbf{Z} \in \Gamma\left(\boldsymbol{L}^{\perp}\right)$.

Theorem 7. A pp-wave spacetime $(M, \mathrm{~g})$ is locally symmetric if and only if, relative to Brinkmann coordinates, the "flat Hessian" matrix of the data function H is a constant. In particular, this is equivalent to $(M, \mathrm{~g})$ being a plane wave for which H is a quadratic polynomial in the variables (x^{i}) with constant coefficients.

As for the next step, we look at the Weyl tensor. Since $\operatorname{dim} M=n+2$ and $s=0$, we may generally write

$$
\mathrm{W}_{\mu \nu \lambda}^{\delta}=R_{\mu \nu \lambda}^{\delta}-\frac{1}{n}\left(R_{\nu \lambda} \delta_{\mu}^{\delta}-R_{\mu \lambda} \delta_{v}^{\delta}+g_{\nu \lambda} g^{\delta \varepsilon} R_{\mu \varepsilon}-g_{\mu \lambda} g^{\delta \varepsilon} R_{\nu \varepsilon}\right)
$$

For a pp-wave spacetime, we may use again that $g^{\delta+}=\delta^{\delta-}$ as well as $R_{\mu v}=-\delta_{\mu+} \delta_{v+} \triangle H$ to simplify things to

$$
\mathrm{W}_{\mu v \lambda}^{\delta}=R_{\mu \nu \lambda}^{\delta}+\frac{\triangle H}{n}\left(\delta_{v+} \delta_{\lambda+} \delta_{\mu}^{\delta}-\delta_{\mu+} \delta_{\lambda+} \delta_{v}^{\delta}+g_{v \lambda} \delta^{\delta-} \delta_{\mu+}-g_{\mu \lambda} \delta^{\delta-} \delta_{\nu+}\right)
$$

We'll follow the same order we used to compute curvature operators.

- $\mathrm{W}\left(\partial_{+}, \partial_{-}\right)=0$, since $g_{\lambda-}=\delta_{\lambda+}$.
- $\mathrm{W}\left(\partial_{+}, \partial_{j}\right)$: the formula from above simplifies to

$$
\mathrm{W}_{+j \lambda}^{\delta}=R_{+j \lambda}^{\delta}+\frac{\triangle H}{n}\left(-\delta_{\lambda+} \delta_{j}^{\delta}+g_{j \lambda} \delta^{\delta-}\right) .
$$

Choosing $\lambda=+$ gives that

$$
\mathrm{W}\left(\partial_{+}, \partial_{j}\right) \partial_{+}=R\left(\partial_{+}, \partial_{j}\right) \partial_{+}-\frac{\triangle H}{n} \partial_{j} \Longrightarrow \mathrm{~W}\left(\partial_{+}, \partial_{j}\right) \partial_{+}=\left(\partial_{j} \partial^{k} H\right) \partial_{k}-\frac{\triangle H}{n} \partial_{j}
$$

and choosing $\lambda=k$ gives

$$
\mathrm{W}\left(\partial_{+}, \partial_{j}\right) \partial_{k}=R\left(\partial_{+}, \partial_{j}\right) \partial_{k}+\frac{\triangle H}{n} \delta_{j k} \partial_{-} \Longrightarrow \mathrm{W}\left(\partial_{+}, \partial_{j}\right) \partial_{k}=\left(-\partial_{j} \partial_{k} H+\frac{\triangle H}{n} \delta_{j k}\right) \partial_{-}
$$

- $\mathrm{W}\left(\partial_{-}, \partial_{j}\right)=0$ as all the Kronecker deltas vanish.
- $\mathrm{W}\left(\partial_{i}, \partial_{j}\right)=0$ as all the Kronecker deltas vanish again.

Alternatively, one can avoid coordinate computations and directly appeal to the orthogonal decomposition of the fully covariant R, which yields:

Proposition 8. The Weyl tensor of a pp-wave spacetime $(M, \mathrm{~g})$ is given in Brinkmann coordinates by

$$
\mathrm{W}=R+2 \frac{\triangle H}{n} \mathrm{~g} \boxtimes\left(\mathrm{~d} x^{+}\right)^{2} .
$$

In particular, a pp-wave spacetime is conformally flat if and only if the "flat Hessian" of the data function H is "scalar", that is, if

$$
\operatorname{Hess}_{x} H=\frac{\triangle H}{n} \operatorname{Id}_{n} .
$$

Our last goal here will be to compute $\nabla \mathrm{W}$ and give conditions for a pp-wave spacetime to be a ECS manifold (essentially conformally symmetric manifold). A straightforward computation (using that ∂_{-}is parallel and that none of the $\nabla_{\partial_{\mu}} \partial_{\nu}$ has a ∂_{+-} component) shows that

$$
\left(\nabla_{\partial_{\mu}} \mathrm{W}\right)\left(\partial_{+}, \partial_{-}\right)=\left(\nabla_{\partial_{\mu}} \mathrm{W}\right)\left(\partial_{-}, \partial_{j}\right)=\left(\nabla_{\partial_{\mu}} \mathrm{W}\right)\left(\partial_{i}, \partial_{j}\right)=\left[\left(\nabla_{\partial_{\mu}} \mathrm{W}\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{-}=0
$$

for all choices of indices, while all the other non-zero values are given by

$$
\begin{aligned}
& {\left[\left(\nabla_{\partial_{\mu}} W\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{+}=\left(\partial_{\mu} \partial_{j} \partial^{k} H\right) \partial_{k}-\frac{\partial_{\mu}(\triangle H)}{n} \partial_{j}} \\
& {\left[\left(\nabla_{\partial_{\mu}} W\right)\left(\partial_{+}, \partial_{j}\right)\right] \partial_{k}=\left(-\partial_{\mu} \partial_{j} \partial_{k} H+\frac{\partial_{\mu}(\triangle H)}{n} \delta_{j k}\right) \partial_{-}}
\end{aligned}
$$

Note that for $\mu=-$, the right side of the above two relations is just zero as $\partial_{-} H=0$. (i.e., a tautology). The computations done to verify the first one for $\mu=+$ and $\mu=i$ are slightly different (but equally easy). Verifying the second equation, in turn, is again straightforward using that $W(\cdot, \cdot) \partial_{-}=0$.

Proposition 9. A pp-wave spacetime ($M, \mathrm{~g}$) has parallel Weyl tensor if and only if, relative to Brinkmann coordinates, we have

$$
\operatorname{Hess}_{x} H=\frac{\triangle H}{n} \operatorname{Id}_{n}+A
$$

for some constant $A \in \mathfrak{s l}_{n}(\mathbb{R})$.
Corollary 10. Every pp-wave spacetime with parallel Weyl tensor is a plane wave.
Proof: Fixed x^{+}, we may as well assume the ambient space is the standard Euclidean space. Let $\psi=\triangle H / n$. The goal is to show that $\mathrm{d} \psi=0$, as the Hessian being constant will imply that $(M, \mathrm{~g})$ is a plane wave. Recall the formula $\mathrm{d}^{\nabla}($ Hess $H)=R(\cdot, \cdot, \nabla H, \cdot)$. Applying d^{∇} on both sides of Hess $H=\psi \mathrm{g}+A$ and using the flatness assumption gives $0=\mathrm{d} \psi \wedge \mathrm{g}$. So $\mathrm{d} \psi=0$ as g has full-rank.

Proposition 11. A pp-wave spacetime ($M, \mathrm{~g}$) is ECS if and only if, relative to Brinkmann coordinates, we have

$$
\operatorname{Hess}_{x} H=\frac{\triangle H}{n} \operatorname{Id}_{n}+A
$$

for some non-zero $A \in \mathfrak{s l}_{n}(\mathbb{R})$ and $\partial_{+} \triangle H \neq 0$.
Theorem 12. Every point in a ECS plane wave $(M, \mathrm{~g})$ admits a coordinate neighborhood with coordinates $\left(t, s,\left(x^{i}\right)\right)$ for which the metric is expressed as

$$
\mathrm{g}=\kappa \mathrm{d} t^{2}+\mathrm{d} t \mathrm{~d} s+\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

where κ is the (smooth) map given by $\kappa(t, s, \boldsymbol{v})=f(t)\langle\boldsymbol{v}, \boldsymbol{v}\rangle+\langle A v, \boldsymbol{v}\rangle$, with f non-constant and $A \in \mathfrak{s l}_{n}(\mathbb{R})$ non-zero.

Proof: By Theorem 2, we may already start with a system of normal Brinkmann coordinates $\left(x^{+}, x^{-},\left(x^{i}\right)\right)$ centered at the given point. Now let $t=x^{+}$and $s=2 x^{-}$. We may write $H=H_{i j}\left(x^{+}\right) x^{i} x^{j}$, so that Proposition 11 gives us $A \in \mathfrak{s l}_{n}(\mathbb{R}), A \neq 0$, such that

$$
2 H_{i j}\left(x^{+}\right)=\left(\partial_{i} \partial_{j} H\right)\left(x^{+}\right)=\frac{(\triangle H)\left(x^{+}\right)}{n} \delta_{i j}+a_{i j} .
$$

Let $f(t)=(\Delta H)(t) / n$. With this we clearly have

$$
\mathrm{g}=2 H\left(\mathrm{~d} x^{+}\right)^{2}+2 \mathrm{~d} x^{+} \mathrm{d} x^{-}+\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=\kappa \mathrm{d} t^{2}+\mathrm{d} t \mathrm{~d} s+\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j},
$$

as required.

References

[1] Globke, W.; Leistner, T.; Locally homogeneous pp-waves, Journal of Geometry and Physics 108, pp. 83-101, 2016.

[^0]: ${ }^{1}$ This is a general phenomenon: if M is a smooth manifold, $f: M \rightarrow \mathbb{R}$ is smooth, and $\alpha: I \rightarrow M$ is a curve transverse to the fibers of f, then $(f \circ \alpha)^{\prime} \neq 0$. So let h be the inverse of $f \circ \alpha$ defined on its range, and let $\gamma=\alpha \circ h$. Then $(f \circ \gamma)^{\prime}(t)=(f \circ \alpha \circ h)^{\prime}(t)=(f \circ \alpha)^{\prime}(h(t)) h^{\prime}(t)=1$, and this implies that $f(\gamma(t))=t+t_{0}$ for some $t_{0} \in \mathbb{R}$ - one can even arrange for $t_{0}=0$ by reparametrizing γ further.

