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Definition 1. A Lorentzian manifold (M, g), dim M = n + 2, is called a pp-wave space-
time if it admits a parallel null field L ∈ X(M) such that the connection induced in
the quotient screen bundle L⊥/RL → M is flat, or, in other words, we may write
R(X, Y) : L⊥ → RL for all X, Y ∈ X(M).

Theorem 2 (Brinkmann). Each point in a pp-wave spacetime (M, g) admits a coordinate
neighborhood with coordinates (x+, x−, x1, . . . , xn) for which the metric is expressed as

g = 2H (dx+)2 + 2 dx+ dx− + δij dxi dxj,

where H is a smooth function not depending on x− and i, j range from 1 to n. On such
coordinates, we have L = ∂−. Given p ∈ M, such coordinates may be chosen centered at p
and such that H(x+, x−, 0) = (∂iH)(x+, x−, 0) = 0 for all i and x+ ranging over an interval
centered at 0 (those are called normal Brinkmann coordinates).

Remark. (M, g) is called a plane wave if the data function H is quadratic on the vari-
ables (xi) with coefficients depending on x+, that is, if it has the form

H(x+, x−, x1, . . . , xn) = Hij(x+)xixj + Hk(x+)xk + H0(x+).

Moreover, note that g(∂−, ·) = dx+, so it will also follow that dx+ is a parallel null
1-form.

Proof: Since L is parallel, the 1-form g(L, ·) is closed, so Poincaré’s Lemma gives a
local smooth function x+ such that g(L, ·) = dx+. Next, since L is a parallel dis-
tribution, so is L⊥ = ker dx+ (for if X ∈ X(M) and Y ∈ Γ(L⊥) are arbitrary, then
we have that g(∇XY , L) = −g(Y ,∇X L) = 0, so ∇XY ∈ Γ(L⊥)). Thus, the Levi-
Civita connection induces connections on all the fibers of x+, which are the integral
hypersurfaces of L⊥ (even though g is degenerate on them). We now claim that those
induced connections are all flat. To wit, given X, Y ∈ Γ(L⊥) and Z, W ∈ X(M), pair-
symmetry of the Riemann tensor gives that R(X, Y , Z, W) = R(Z, W , X, Y) = 0, since
R(Z, W)X is a multiple of L (by definition of a pp-wave) and Y ∈ Γ(L⊥). With this
in place, choose a point p ∈ M and consider the integral hypersurface of L⊥ pass-
ing through p. Take orthonormal parallel fields X1, . . . , Xn along such hypersurface, and
take a geodesic γ : I → M starting at p, orthogonal to X1, . . . , Xn, and transverse to hy-
persurface. The transversality condition allows us to assume1 that dx+

∣∣
γ(t)(γ

′(t)) = 1

1This is a general phenomenon: if M is a smooth manifold, f : M → R is smooth, and α : I → M
is a curve transverse to the fibers of f , then ( f ◦ α)′ 6= 0. So let h be the inverse of f ◦ α defined on its
range, and let γ = α ◦ h. Then ( f ◦ γ)′(t) = ( f ◦ α ◦ h)′(t) = ( f ◦ α)′(h(t))h′(t) = 1, and this implies
that f (γ(t)) = t + t0 for some t0 ∈ R — one can even arrange for t0 = 0 by reparametrizing γ further.
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for all t ∈ I or, in other words, g(L, γ′) = 1. That is, we may assume that x+ is the
geodesic parameter. The fields L, X1, . . . , Xn, being parallel (along the hypersurface),
give coordinates (x−, x1, . . . , xn) on the integral hypersurface passing through p. For
each x+, we consider the parallel transport of all of those fields from p = γ(0) to
γ(x+), and then we extend those to parallel fields along the integral hypersurface of
L⊥ passing through γ(x+) — such extensions (denoted with the same letters) give
coordinates (x−, x1, . . . , xn) on each hypersurface. Thus, given q ∈ M near enough
p, the coordinate x+(q) will be the value corresponding to the hypersurface passing
through q, and the remaining values x−(q), x1(q), . . . , xn(q) are determined by the
hypersurface coordinates just defined. Since parallel translations are isometries and
g(∂i, ∂j) = g(X i, X j) = δij on each hypersurface, these relations hold on the entire co-
ordinate domain. By construction, ∂+ (which in particular satisfies ∂+

∣∣
γ(x+) = γ′(x+))

is orthogonal to all the ∂i, and we have g(∂+, ∂−) = 1. The function H = g(∂+, ∂+)/2
satisfies ∂−H = 0 because ∂− is parallel. For the adjustment needed to get normal
Brinkmann coordinates, see Lemma 3.1 in [1].

Let’s compute the Christoffel symbols, assuming that λ, µ, ν, δ ∈ {+,−, 1, . . . , n}
and using

Γλ
µν =

gλδ

2
(∂µgδν + ∂νgδµ − ∂δgµν).

Note that

(gµν) =

2H 1 0
1 0 0
0 0 Idn

 and (gµν) =

0 1 0
1 −2H 0
0 0 Idn


In particular, note that unless µ = λ = +, we automatically have ∂µgνλ = 0.

• If λ = +: since gδ+ = δδ−, we’ll have terms with ∂− derivatives and only g••
terms where − enters, so Γ+

µν = 0 for all µ and ν.

• If λ = −: this time we have to deal with gδ−, so

Γ−µν =
1
2
(∂µgν+ + ∂νgµ+ − ∂+gµν)− H(∂µgν− + ∂νgµ− − ∂−gµν).

By previous comments, all terms multiplying H vanish. Systematically, we see
that Γ−++ = ∂+H and Γ−+j = ∂jH, while the remaining symbols vanish.

• If λ = k: the only non-zero gδk are when δ = ` is latin, so we have

Γk
µν =

1
2
(∂µgνk + ∂νgµk − ∂kgµν) = −

∂kgµν

2
.

Hence Γk
++ = −∂kH = −∂kH and all the remaining symbols vanish.

So, the non-zero symbols are Γ−++ = ∂+H, Γ−+j = ∂jH and Γk
++ = −∂kH. Let’s

summarize our computations so far.
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Proposition 3. If (M, g) is a pp-wave spacetime, then relative to Brinkmann coordinates we
have that the Levi-Civita connection ∇ is described by

(∇∂µ
∂ν) =

−(∂kH)∂k + (∂+H)∂− 0 (∂jH)∂−
0 0 0

(∂jH)∂− 0 0

 .

Alternatively, we may write all covariant derivatives as

(i) ∇∂+ = −dx+ ⊗ gradxH + dH ⊗ ∂−;

(ii) ∇∂− = 0;

(iii) ∇∂i = ∂iH dx+ ⊗ ∂−,

where gradxH = (∂kH)∂k is the “flat gradient” of H.

With this in place, we systematically move on to curvature operators, simply using
the definition

R(X, Y)Z = ∇X∇Y Z−∇Y∇X Z−∇[X,Y ]Z.

• R(∂+, ∂−) = 0 since ∂− is parallel and ∂−H = 0.

• R(∂+, ∂j)∂+ = (∂j∂
kH)∂k and R(∂+, ∂j)∂k = −(∂j∂kH)∂−.

• R(∂−, ∂j) = 0 again since ∂− is parallel and ∂−H = 0.

• R(∂i, ∂j) = 0 since ∂i∂jH = ∂j∂iH and ∇∂i ∂k = 0.

In essence, the only non-zero curvature operators are

R(∂+, ∂j) = (∂j∂
kH)dx+ ⊗ ∂k − (∂j∂kH)dxk ⊗ ∂−.

Equivalently, the only non-zero curvature components (up to symmetry) are

R k
+j+ = ∂j∂

kH and R −
+jk = −∂j∂kH.

Proposition 4. A pp-wave spacetime if flat if and only if, relative to any system of Brinkmann
coordinates, the “flat Hessian” HessxH = ∂i∂jH dxi ⊗ dxj vanishes.

With this in place, we may compute the Ricci tensor of (M, g).

Proposition 5. The Ricci tensor of a pp-wave spacetime is given by

Ric = −4H dx+ ⊗ dx+,

where 4H = ∂k∂kH stands for the “flat Laplacian” induced by the Brinkmann coordinates.
Hence every pp-wave spacetime is scalar-flat and Ricci-recurrent.

Next, let’s find out when is a pp-wave locally symmetric. Namely, let’s compute
the covariant differential ∇R.
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• ∇∂+R: the only non-zero operator is (∇∂+R)(∂+, ∂j) = ∇∂+(R(∂+, ∂j)), whose
only non-zero values are found to be

[(∇∂+R)(∂+, ∂j)]∂+ = (∂+∂j∂
kH)∂k and [(∇∂+R)(∂+, ∂j)]∂k = −(∂+∂j∂kH)∂−.

• ∇∂−R = 0 because ∂− is parallel and ∂−gµν = 0 for all µ, ν.

• ∇∂i R: the only non-zero operator is (∇∂i R)(∂+, ∂j), whose only non-zero values
are found to be

[(∇∂i R)(∂+, ∂j)]∂+ = (∂i∂j∂
kH)∂k and [(∇∂i R)(∂+, ∂j)]∂k = −(∂i∂j∂kH)∂−.

Theorem 6. A pp-wave spacetime (M, g) with parallel null field L is a plane wave spacetime
if and only if ∇ZR = 0 for all Z ∈ Γ(L⊥).

Theorem 7. A pp-wave spacetime (M, g) is locally symmetric if and only if, relative to
Brinkmann coordinates, the “flat Hessian” matrix of the data function H is a constant. In
particular, this is equivalent to (M, g) being a plane wave for which H is a quadratic polyno-
mial in the variables (xi) with constant coefficients.

As for the next step, we look at the Weyl tensor. Since dim M = n + 2 and s = 0,
we may generally write

W δ
µνλ = R δ

µνλ −
1
n
(Rνλδδ

µ − Rµλδδ
ν + gνλgδεRµε − gµλgδεRνε).

For a pp-wave spacetime, we may use again that gδ+ = δδ− as well as Rµν = −δµ+δν+4H
to simplify things to

W δ
µνλ = R δ

µνλ +
4H

n
(δν+δλ+δδ

µ − δµ+δλ+δδ
ν + gνλδδ−δµ+ − gµλδδ−δν+).

We’ll follow the same order we used to compute curvature operators.

• W(∂+, ∂−) = 0, since gλ− = δλ+.

• W(∂+, ∂j): the formula from above simplifies to

W δ
+jλ = R δ

+jλ +
4H

n
(−δλ+δδ

j + gjλδδ−).

Choosing λ = + gives that

W(∂+, ∂j)∂+ = R(∂+, ∂j)∂+ −
4H

n
∂j =⇒ W(∂+, ∂j)∂+ = (∂j∂

kH)∂k −
4H

n
∂j

and choosing λ = k gives

W(∂+, ∂j)∂k = R(∂+, ∂j)∂k +
4H

n
δjk∂− =⇒ W(∂+, ∂j)∂k =

(
−∂j∂kH +

4H
n

δjk

)
∂−
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• W(∂−, ∂j) = 0 as all the Kronecker deltas vanish.

• W(∂i, ∂j) = 0 as all the Kronecker deltas vanish again.

Alternatively, one can avoid coordinate computations and directly appeal to the
orthogonal decomposition of the fully covariant R, which yields:

Proposition 8. The Weyl tensor of a pp-wave spacetime (M, g) is given in Brinkmann coor-
dinates by

W = R + 2
4H

n
g©∧ (dx+)2.

In particular, a pp-wave spacetime is conformally flat if and only if the “flat Hessian” of the
data function H is “scalar”, that is, if

HessxH =
4H

n
Idn.

Our last goal here will be to compute∇W and give conditions for a pp-wave space-
time to be a ECS manifold (essentially conformally symmetric manifold). A straightfor-
ward computation (using that ∂− is parallel and that none of the ∇∂µ

∂ν has a ∂+-
component) shows that

(∇∂µ
W)(∂+, ∂−) = (∇∂µ

W)(∂−, ∂j) = (∇∂µ
W)(∂i, ∂j) = [(∇∂µ

W)(∂+, ∂j)]∂− = 0

for all choices of indices, while all the other non-zero values are given by

[(∇∂µ
W)(∂+, ∂j)]∂+ = (∂µ∂j∂

kH)∂k −
∂µ(4H)

n
∂j

[(∇∂µ
W)(∂+, ∂j)]∂k =

(
−∂µ∂j∂kH +

∂µ(4H)

n
δjk

)
∂−

Note that for µ = −, the right side of the above two relations is just zero as ∂−H = 0.
(i.e., a tautology). The computations done to verify the first one for µ = + and µ = i
are slightly different (but equally easy). Verifying the second equation, in turn, is again
straightforward using that W(·, ·)∂− = 0.

Proposition 9. A pp-wave spacetime (M, g) has parallel Weyl tensor if and only if, relative
to Brinkmann coordinates, we have

HessxH =
4H

n
Idn + A

for some constant A ∈ sln(R).

Corollary 10. Every pp-wave spacetime with parallel Weyl tensor is a plane wave.

Proof: Fixed x+, we may as well assume the ambient space is the standard Euclidean
space. Let ψ = 4H/n. The goal is to show that dψ = 0, as the Hessian being constant
will imply that (M, g) is a plane wave. Recall the formula d∇(Hess H) = R(·, ·,∇H, ·).
Applying d∇ on both sides of Hess H = ψg+ A and using the flatness assumption
gives 0 = dψ ∧ g. So dψ = 0 as g has full-rank.
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Proposition 11. A pp-wave spacetime (M, g) is ECS if and only if, relative to Brinkmann
coordinates, we have

HessxH =
4H

n
Idn + A

for some non-zero A ∈ sln(R) and ∂+4H 6= 0.

Theorem 12. Every point in a ECS plane wave (M, g) admits a coordinate neighborhood
with coordinates (t, s, (xi)) for which the metric is expressed as

g = κ dt2 + dt ds + δijdxidxj,

where κ is the (smooth) map given by κ(t, s, v) = f (t)〈v, v〉+ 〈Av, v〉, with f non-constant
and A ∈ sln(R) non-zero.

Proof: By Theorem 2, we may already start with a system of normal Brinkmann coor-
dinates (x+, x−, (xi)) centered at the given point. Now let t = x+ and s = 2x−. We
may write H = Hij(x+)xixj, so that Proposition 11 gives us A ∈ sln(R), A 6= 0, such
that

2Hij(x+) = (∂i∂jH)(x+) =
(4H)(x+)

n
δij + aij.

Let f (t) = (4H)(t)/n. With this we clearly have

g = 2H (dx+)2 + 2 dx+ dx− + δij dxi dxj = κ dt2 + dt ds + δijdxidxj,

as required.
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