EQUIVALENCE RELATIONS, QUOTIENTS, AND EXAMPLES

Ivo Terek

A quick summary on equivalence relations, quotient sets, basic properties, and some examples, and constructions.

1 Equivalence relations

Definition 1

Let X be a set. An equivalence relation \sim on X is a relation ${ }^{a}$ which is:
(i) reflexive, that is, $x \sim x$ for all $x \in X$.
(ii) symmetric, that is, $x \sim y$ implies $y \sim x$ for all $x, y \in X$.
(iii) transitive, that is, $x \sim y$ and $y \sim z$ implies $x \sim z$ for all $x, y, z \in X$.
${ }^{a}$ A subset \sim of $X \times X$, where we write $x \sim y$ to mean $(x, y) \in \sim$.

Example 1

On the set \mathbb{Z}, for each $m \in \mathbb{Z}$, say that $x \sim y$ if $m \mid(x-y)$. This relation is called congruence modulo m, and one writes $x \equiv y(\bmod m)$ or $x \equiv_{m} y$ instead of \sim.

Example 2

Let X be the set of students taking a certain math class together, and say that $x \sim y$ if x and y got the same score on the final exam.

Example 3 (Equivalence relations given by functions)
Let X and Y be sets and $f: X \rightarrow Y$ be a function. Say that $x \sim y$ if $f(x)=f(y)$. The above example is a particular case of the situation described here, where f is the function "score on the final exam".

Example 4 (A tragic non-example)

Let X be the set of all people on planet Earth, and say that $x \sim y$ if x loves y. The fact that \sim is not symmetric is a huge source of drama and relationship problems. And the fact that \sim is not reflexive can be seen as a symptom of a disease called depression.

Definition 2

Let X be a set equipped with an equivalence relation \sim.
(i) The equivalence class of an element $x \in X$ is the set $[x]_{\sim} \doteq\{y \in X \mid x \sim y\}$.
(ii) The quotient of X by \sim is the set $X / \sim \doteq\{[x] \mid x \in X\}$.
(iii) The map $\pi: X \rightarrow X / \sim$ given by $\pi(x)=[x]_{\sim}$ is called quotient projection.

Remark. Note that, simultaneously, we have $[x]_{\sim} \subseteq X$ and $[x]_{\sim} \in X / \sim$.

Example 5

Consider again in \mathbb{Z}, congruence modulo $m \in \mathbb{Z}$. We have that the congruence class of each $k \in \mathbb{Z}$ is simply $k+m \mathbb{Z}=\{k+m a \mid a \in \mathbb{Z}\}$. The quotient set, denoted by $\mathbb{Z} / m \mathbb{Z}$, is the set

$$
\mathbb{Z} / m \mathbb{Z}=\{0+m \mathbb{Z}, 1+m \mathbb{Z}, \ldots,(m-1)+m \mathbb{Z}\}
$$

It has m elements.

Proposition 1

Let X be a set equipped with an equivalence relation \sim. Then:
(a) Any two equivalence classes are either equal or disjoint.
(b) The union of all equivalence classes equals X.

In other words, X / \sim is a partition of X.

Proof:

(a) Take $x, y \in X$ and consider $[x]_{\sim},[y]_{\sim} \in X / \sim$. If $[x]_{\sim} \cap[y]_{\sim}=\varnothing$, there's nothing to prove. But if there is z in such intersection, then $x \sim z$ and $y \sim z$ together imply that $x \sim y$, meaning that $[x]_{\sim}=[y]_{\sim}$.
(b) For each $x \in X$, we have $x \in[x]_{\sim}$.

So, equivalence relations give rise to partitions. The converse holds:

Proposition 2

Let X be a set and $\mathscr{P}=\left(P_{\alpha}\right)_{\alpha \in A}$ be a partition of X. There is a unique equivalence relation \sim on X for which for all $x \in X$ and $\alpha \in A, x \in P_{\alpha}$ if and only if $[x]_{\sim}=P_{\alpha}$. In other words, $X / \sim=\mathscr{P}$.

Proof: Let $x \in y$ if there is $\alpha \in A$ such that $x, y \in P_{\alpha}$. This \sim is reflexive because each $x \in X$ is in some P_{α}. It is symmetric because $x \sim y$ says that x and y are in some P_{α}, so y and x are in this same P_{α}, leading to $y \sim x$. Finally, it is transitive because if $x \sim y$ and $y \in z$, there are $\alpha, \beta \in A$ with $x, y \in P_{\alpha}$ and $y, z \in P_{\beta}$ - in particular $y \in P_{\alpha} \cap P_{\beta} \neq \varnothing$ means that $P_{\alpha}=P_{\beta}$, so that $x, z \in P_{\alpha}$ leads to $x \sim z$. The rest is clear.

Hence, there is a 1-1 correspondence between equivalence relations and partitions of X. In particular, the partition corresponding to the equivalence relation given in Example 3 is just the partition of X by inverse images under f of points in Y (called fibers of f). We note that if \sim is any equivalence relation on X, then \sim arises from this construction with the quotient projection π playing the role of f. This suggests we should explore this in more detail.

Definition 3

Let X and Y be sets, and $f: X \rightarrow Y$ be a function. The set-kernel of f is the set

$$
\operatorname{ker}_{s}(f)=\{(x, y) \in X \times X \mid f(x)=f(y)\}
$$

Proposition 3 (Injectiveness equals trivial kernel - set-version)
Let X and Y be sets, and $f: X \rightarrow Y$ be a function. Then f is injective if and only if $\operatorname{ker}_{\mathrm{s}}(f)=\Delta$, where $\Delta=\{(x, x) \in X \times X \mid x \in X\}$ is the diagonal of X.

Proof: Clearly $\Delta \subseteq \operatorname{ker}_{s}(f)$ in all cases. If f is injective, then $(x, y) \in \operatorname{ker}_{s}(f)$ implies that $f(x)=f(y)$, so $x=y$ and thus $\operatorname{ker}_{\mathrm{s}}(f)=\Delta$. Conversely, if such equality holds, and we take $x, y \in X$ with $f(x)=f(y)$, then $(x, y) \in \Delta$ gives that $x=y$.

Theorem 1

Let X be a set equipped with a equivalence relation \sim, Y be a second set, and $f: X \rightarrow Y$. If f is constant along equivalence classes of \sim, there is a unique function $\tilde{f}: X / \sim \rightarrow Y$ such that $\widetilde{f} \circ \pi=f$, where π is the quotient projection. In particular, we have the equality $\operatorname{Im}(f)=\operatorname{Im}(\tilde{f})$ between images.

Proof: Define $\widetilde{f}\left([x]_{\sim}\right) \doteq f(x)$. This is well-defined as we assume that f is constant along equivalence classes of \sim, and it satisfies $\tilde{f} \circ \pi=f$ by construction. Such relation implies that $\operatorname{Im}(f)=\operatorname{Im}(\widetilde{f})$ since π is surjective.
Remark. We say that f has passed to the quotient, and think of \tilde{f} as f itself, not really as a different function.

Corollary 1 (First isomorphism theorem)
Let X and Y be sets and $f: X \rightarrow Y$ be a function. If \sim is defined via f, then there is a unique injective function $\tilde{f}: X / \sim \rightarrow Y$ such that $\tilde{f} \circ \pi=f$, where $\pi: X \rightarrow X / \sim$ is the quotient projection. In particular, we have the equality $\operatorname{Im}(f)=\operatorname{Im}(\widetilde{f})$ between images.

Remark. When f is surjective, this establishes that X / \sim is in bijection with Y.
Proof: The function \tilde{f} exists and is unique in view of the previous theorem because f is constant on the equivalence classes of \sim, by definition of the latter. If we start from $\widetilde{f}\left([x]_{\sim}\right)=\widetilde{f}\left([y]_{\sim}\right)$, then $f(x)=f(y)$, which means that $x \sim y$, so $[x]_{\sim}=[y]_{\sim}$. Hence \widetilde{f} is injective.

2 On vector spaces

Let \mathbb{K} be a field, V be a \mathbb{K}-vector space, and W be a subspace of V. There is no harm in thinking that $\mathbb{K}=\mathbb{R}$ is the field of real numbers here, it makes no difference on what will happen next.

Definition 4

Let's say that two vectors $v, v^{\prime} \in V$ are congruent modulo W, written simply as $v \equiv v^{\prime}(\bmod W)$ or $v \equiv{ }_{W} v^{\prime}$, if $v-v^{\prime} \in W$.

Lemma 1

\equiv_{W} is an equivalence relation.

Proof:

- \equiv_{W} is reflexive because for all $v \in V, v-v=0 \in W$ says that $v \equiv_{W} v$.
- \equiv_{W} is symmetric because if $v \equiv_{W} v^{\prime}$, then $v^{\prime}-v=-\left(v-v^{\prime}\right) \in W$ says that $v^{\prime} \equiv_{W} v$, as W is closed under taking opposites.
- \equiv_{W} is transitive because if $v \equiv_{W} v^{\prime}$ and $v^{\prime} \equiv_{W} v^{\prime \prime}$, then

$$
v-v^{\prime \prime}=\left(v-v^{\prime}\right)+\left(v^{\prime}-v^{\prime \prime}\right) \in W
$$

says that $v \equiv_{W} v^{\prime \prime}$, as W is closed under addition.

Note that the equivalence class of $v \in V$ is the translate

$$
v+W=\{v+w \mid w \in W\} .
$$

Since we started with a vector space V, it would make sense to ask whether the quotient set V / \equiv_{W}, simply denoted by V / W, can be made into a vector space.

Proposition 4

The maps $+: V / W \times V / W$ and $\cdot: \mathbb{K} \times V / W \rightarrow V / W$ defined by

$$
(v+W)+\left(v^{\prime}+W\right) \doteq\left(v+v^{\prime}\right)+W \quad \text { and } \quad \lambda \cdot(v+W) \doteq(\lambda v)+W
$$

are well-defined and turn V / W into a vector space.

Proof: If $v_{1} \equiv{ }_{W} v_{1}^{\prime}$ and $v_{2} \equiv{ }_{W} v_{2}^{\prime}$, let's show that $\left(v_{1}+v_{2}\right) \equiv_{W}\left(v_{1}^{\prime}+v_{2}^{\prime}\right)$. Indeed, we have that

$$
\left(v_{1}+v_{2}\right)-\left(v_{1}^{\prime}+v_{2}^{\prime}\right)=\left(v_{1}-v_{1}^{\prime}\right)+\left(v_{2}-v_{2}^{\prime}\right) \in W
$$

because W is closed under addition. So + is well-defined on V / W. As for scalar multiplication, keeping the above notation and assumptions, let's just show that the equivalence $\lambda v_{1} \equiv_{W} \lambda v_{1}^{\prime}$ holds. This happens because

$$
\lambda v_{1}-\lambda v_{1}^{\prime}=\lambda\left(v_{1}-v_{1}^{\prime}\right) \in W
$$

as W is closed under scalar multiplication. Hence \cdot is well-defined on V / W. As for the algebraic axioms that + and • must satisfy, they're all trivial consequences of the fact that the axioms already hold for the operations on V. For example:

$$
(v+W)+\left(v^{\prime}+W\right)=\left(v+v^{\prime}\right)+W=\left(v^{\prime}+v\right)+W=\left(v^{\prime}+W\right)+(v+W)
$$

so + is commutative on V / W. The zero vector is, obviously, $0+W$.
Remark. $V /\{0\} \cong V($ via $v \mapsto v+\{0\})$ and $V / V=\{0+V\}$.

Corollary 2

The quotient projection $\pi: V \rightarrow V / W$ is a surjective linear map with kernel W.

Proof: By design.

Remark. If one already knows the rank-nullity theorem, applying it to π yields the dimension relation $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim}(V / W)$. When the dimensions are finite, it makes sense to write $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$. If one does not want to assume (for the sake of the presentation) that the rank-nullity theorem holds yet, we'll establish it with quotients in what follows.

As a consequence of what we have seen before, abstractly, we have the:
Theorem 2 (First isomorphism theorem)
Let $T: V \rightarrow W$ be a linear map. Then T passes to the quotient as an injective linear $\operatorname{map} \widetilde{T}: V / \operatorname{ker} T \rightarrow W$, showing that $V / \operatorname{ker} T \cong \operatorname{Im}(T)$.

Corollary 3

Write $V=W \oplus W^{\prime}$ for some complementary subspace W^{\prime} to W. Then $V / W \cong W^{\prime}$. In particular, $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim}(V / W)$.

Proof: Since $V=W \oplus W^{\prime}$, we have two projection operators $\mathrm{pr}_{W}: V \rightarrow W$ and $\mathrm{pr}_{W^{\prime}}: V \rightarrow W^{\prime}$. Applying the first isomorphism theorem to $\mathrm{pr}_{W^{\prime}}$ (which is surjective with kernel W) yields $V / W \cong W^{\prime}$. The dimension relation follows from the direct sum decomposition, which implies that $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\prime}$, and we use $\operatorname{dim} W^{\prime}=\operatorname{dim}(V / W)$.

Remark. Note that $\mathrm{pr}_{W^{\prime}}$ morally corresponds to $\left.\pi\right|_{W^{\prime}}$. The restriction of a surjective linear map to any subspace complementary to its kernel is, in fact, an isomorphism.

In practice, it is good to know how to find bases for quotient spaces.
Proposition 5 (Quotient basis algorithm)
Assume that $\left(e_{1}, \ldots, e_{n}\right)$ is a basis for V which is adapted to W, in the sense that the subcollection $\left(e_{1}, \ldots, e_{k}\right)$ is a basis for W (in other words, we complete a basis for W to a basis for V). Then

$$
\left(e_{k+1}+W, \ldots, e_{n}+W\right)
$$

is a basis for V / W.
Proof: Note that π sends $\left(e_{1}, \ldots, e_{k}, e_{k+1}, \ldots, e_{n}\right)$ to

$$
\left(0+W, \ldots, 0+W, e_{k+1}+W, \ldots, e_{n}+W\right)
$$

Since π is surjective, the above set spans V / W (even though it is linearly dependent, as it has zeros, which must be removed). It remains to show that the surviving vectors $\left(e_{k+1}+W, \ldots, e_{n}+W\right)$ are linearly independent in V / W. This is done as follows: start with $a_{k+1}, \ldots, a_{n} \in \mathbb{K}$ such that

$$
a_{k+1}\left(e_{k+1}+W\right)+\cdots+a_{n}\left(e_{n}+W\right)=0+W
$$

The goal is to show that $a_{k+1}=\cdots=a_{n}=0$. Reorganize this linear combination, using the definition of quotient operations, as

$$
\left(a_{k+1} e_{k+1}+\cdots+a_{n} e_{n}\right)+W=0+W
$$

so that $a_{k+1} e_{k+1}+\cdots+a_{n} e_{n} \in W$. This means that there are $b_{1}, \ldots, b_{k} \in \mathbb{K}$ such that

$$
a_{k+1} e_{k+1}+\cdots+a_{n} e_{n}=b_{1} e_{1}+\cdots+b_{k} e_{k}
$$

simply because $\left(e_{1}, \ldots, e_{k}\right)$ is a basis for W. Now linear independence of the original basis for V together with the relation

$$
-b_{1} e_{1}-\cdots-b_{k} e_{k}+a_{k+1} e_{k+1}+\cdots+a_{n} e_{n}=0
$$

implies that $b_{1}=\cdots=b_{k}=a_{k+1}=\cdots=a_{n}=0$, as required.

Remark. The result still holds for infinite bases, with the same argument. Namely, the procedure for finding a basis for V / W goes as follows: start with a basis for W, complete it to a basis for V, apply π to everyone. The surviving elements in the quotient will form a basis for it. Alternatively, based on the previous result, one can just take any basis for a subspace of V complementary to W, and project it using π - the resulting collection of vectors will necessarily be a basis for V / W.

The next two results are also quick consequences of the first isomorphism theorem:
Theorem 3 (Second isomorphism theorem)
Let $W_{1}, W_{2} \subseteq V$ be subspaces. Then

$$
\frac{W_{1}+W_{2}}{W_{1}} \cong \frac{W_{2}}{W_{1} \cap W_{2}}
$$

Proof: The linear map $W_{2} \rightarrow\left(W_{1}+W_{2}\right) / W_{1}$ taking $w_{2} \mapsto w_{2}+W_{1}$ is surjective (take $v+W_{1} \in\left(W_{1}+W_{2}\right) / W_{1}$, write $v=w_{1}+w_{2}$ with $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$, and note that $\left.w_{2} \mapsto v+W_{1}\right)$ and has kernel $W_{1} \cap W_{2}$.

Theorem 4 (Third isomorphism theorem)
Let $Z \subseteq W \subseteq V$ be a chain of subspaces. Then

$$
\frac{V / Z}{W / Z} \cong \frac{V}{W}
$$

Proof: The linear map $V / Z \rightarrow V / W$ taking $v+Z \mapsto v+W$ is well-defined, surjective, and has kernel W / Z.

2.1 Duals and annihilators

Let V be a vector space. Recall that

$$
V^{*}=\{f: V \rightarrow \mathbb{K} \mid f \text { is linear }\}
$$

is the dual space to V. If $\left(e_{1}, \ldots, e_{n}\right)$ is a basis for V, then the linear functionals $e^{1}, \ldots, e^{n}: V \rightarrow \mathbb{K}$ defined by setting $e^{i}\left(e_{j}\right)=\delta_{j}^{i}$ for all $i, j=1, \ldots, n$ for a basis for V^{*}. Now let W be a subspace of V.

Definition 5

The annihilator (or polar space) of W, denoted either by $\operatorname{Ann}(W)$ or W°, is defined by $W^{\circ}=\left\{f \in V^{*} \mid f[W]=0\right\}$. In other words, $f \in W^{\circ}$ if and only if $f(w)=0$ for all $w \in W$.

Clearly W° is a subspace of V^{*}. To understand it better, let's start with some geometric intuition. There is a natural evaluation pairing $V^{*} \times V \ni(f, v) \mapsto f(v) \in \mathbb{K}$. Symmetry doesn't quite make sense, but people usually think of this as an "inner product" taking elements from different spaces, and even write $f(v)$ as $\langle f, v\rangle$ (this is particularly common in quantum mechanics). The point is that W° is what the "orthogonal complement" of W is supposed to be. But talking about "orthogonal complements" doesn't really make sense, as V is not actually equipped with an inner product. So W° pays the price for our little transgression and is exiled to V^{*} - it cannot naturally live in V without a metric. It has properties similar to orthogonal complements.

Proposition 6

(a) $\operatorname{dim} W^{*}+\operatorname{dim} W^{\circ}=\operatorname{dim} V^{*}$ (when $\operatorname{dim} V<\infty$, we can drop the duals).
(b) $\left(W_{1}+W_{2}\right)^{\circ}=W_{1}^{\circ} \cap W_{2}^{\circ}$.
(c) $\left(W_{1} \cap W_{2}\right)^{\circ}=W_{1}^{\circ}+W_{2}^{\circ}$.

Proof:

(a) The map $V^{*} \rightarrow W^{*}$ given by $\left.f \mapsto f\right|_{W}$ is linear, surjective (why?), and has kernel W°. By the rank-nullity theorem, we have $\operatorname{dim} V^{*}=\operatorname{dim} W^{\circ}+\operatorname{dim} W^{*}$.
(b) If f annihilates both W_{1} and W_{2}, and hence sums of elements in W_{1} and W_{2}, so this shows that $W_{1}^{\circ} \cap W_{2}^{\circ} \subseteq\left(W_{1}+W_{2}\right)^{\circ}$. Conversely, use that taking ${ }^{\circ}$ reverses inclusions (why?), so $W_{1} \subseteq W_{1}+W_{2}$ implies that $\left(W_{1}+W_{2}\right)^{\circ} \subseteq W_{1}^{\circ}$, similarly for W_{2}, so we may take the intersection to obtain $\left(W_{1}+W_{2}\right)^{\circ} \subseteq W_{1}^{\circ} \cap W_{2}^{\circ}$, as required.
(c) Exercise.

Corollary 4

$$
W^{*} \cong V^{*} / W^{\circ}
$$

With this in place, let's see how to find bases for annihilators (at least in the finitedimensional case).

Proposition 7

Assume that $\left(e_{1}, \ldots, e_{n}\right)$ is a basis for V which is adapted to W, in the sense that the subcollection $\left(e_{1}, \ldots, e_{k}\right)$ is a basis for W (in other words, we complete a basis for W to a basis for V). If $\left(e^{1}, \ldots, e^{n}\right)$ denotes the dual basis in V^{*}, then $\left(e^{k+1}, \ldots, e^{n}\right)$ is a basis for W°.

Proof: If $i=k+1, \ldots, n$, since $e^{i}\left(e_{j}\right)=0$ for $j=1, \ldots k$, and those span W, it follows that e^{i} annihilates W. In other words, $e^{k+1}, \ldots, e^{n} \in W^{0}$. They are linearly independent, because they are part of a larger basis. To see that they actually span W°, one can either argue that the dimension of W° is equal to $n-k$ (so a maximal linearly independent set is a basis) or, directly take $f \in V^{*}$, write it as $f=\sum_{i=1}^{n} f_{i} e^{i}$ (with the coefficients $f_{1}, \ldots, f_{n} \in \mathbb{K}$), and use that $f \in W^{\circ}$ if and only if $f_{1}=\cdots=f_{k}=0$, so f is indeed a linear combination of the remaining functionals e^{k+1}, \ldots, e^{n}.

3 On groups

Let G be a group and H be a subgroup of G. We write e for the identity element ${ }^{1}$.

Definition 6

Let's say that two elements $g, g^{\prime} \in G$ are congruent modulo H, written simply as $g \equiv g^{\prime}(\bmod H)$ or $g \equiv_{H} g^{\prime}$, if $\left(g^{\prime}\right)^{-1} g \in H$.

Lemma 2

\equiv_{H} is an equivalence relation.

Proof:

- \equiv_{H} is reflexive because for all $g \in G, g^{-1} g=e \in H$ says that $g \equiv_{H} g$.
- \equiv_{H} is symmetric because if $g \equiv_{H} g^{\prime}$, then $g^{-1} g^{\prime}=\left(\left(g^{\prime}\right)^{-1} g\right)^{-1} \in H$ says that $g^{\prime} \equiv_{H} g$, as H is closed under taking inverses.
- \equiv_{H} is transitive because if $g \equiv_{H} g^{\prime}$ and $g^{\prime} \equiv_{H} g^{\prime \prime}$, then

$$
\left(g^{\prime \prime}\right)^{-1} g=\left(g^{\prime \prime}\right)^{-1} g^{\prime}\left(g^{\prime}\right)^{-1} g \in H
$$

says that $g \equiv_{H} g^{\prime \prime}$, as H is closed under multiplication.

Note that the equivalence class of $g \in G$ is the translate (in the group setting, called a coset)

$$
g H=\{g h \mid h \in H\} .
$$

Since we started with a group G, it would make sense to ask whether the quotient set G / \equiv_{H}, simply denoted by G / H, can be made into a group. Unlike what happened with vector spaces, this is not guaranteed, and we need a stronger assumption on the subgroup H.

[^0]
Definition 7

A subgroup H of G is called normal in \mathbf{G} - this is written $H \triangleleft G$ - if for all $g \in G$ and $h \in H$, we have $g h g^{-1} \in H$.

Remark. If G is abelian, then every subgroup is normal. In particular, this applies when we have a vector space V considered as an abelian group with addition of vectors - vector subspaces are additive subgroups, and thus normal. There are nonabelian groups whose subgroups are all normal. These are called Hamiltonian groups (the name is unrelated to Hamiltonian dynamics and symplectic geometry). Here's one example: $Q_{8}=\{1, \pm \mathrm{i}, \pm \mathrm{j}, \pm \mathrm{k}\}$, with operations summarized by $\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1$ and $\mathrm{ij}=\mathrm{k}, \mathrm{jk}=\mathrm{i}$ and $\mathrm{ki}=\mathrm{j}$.

Proposition 8

If $H \triangleleft G$, then $\cdot: G / H \times G / H \rightarrow G / H$ given by

$$
(g H) \cdot\left(g^{\prime} H\right) \doteq\left(g g^{\prime}\right) H
$$

is well-defined and turns G / H into a group.

Proof: Exercise/maybe later. Note that the identity of G / H is $e H$ and that inverses are given by $(\mathrm{gH})^{-1}=g^{-1} \mathrm{H}$.

Remark. Many properties for G pass to G / H. For example, if G is abelian, so will be G / H. Also note that $G /\{e\} \cong G($ via $g \mapsto g\{e\})$ and $G / G=\{e G\}$.

Replacing linear maps with group homomorphisms, we can mimic much of what was done before.

Corollary 5

The quotient projection $\pi: G \rightarrow G / H$ is a surjective group homomorphism with kernel H.

Theorem 5 (First isomorphism theorem)

Let $\varphi: G \rightarrow H$ be a group homomorphism. Then φ passes to the quotient as an injective group homomorphism $\widetilde{\varphi}: G / \operatorname{ker} \varphi \rightarrow H$, so that $G / \operatorname{ker} \varphi \cong \operatorname{Im}(\varphi)$.

To proceed, recall that given two subsets $A, B \subseteq G$, we may consider the set of all products, $A B=\{a b \mid a \in A, b \in B\}$. When we take A and B to be subgroups of G, $A B$ might still not be a subgroup! However, $A B$ is a subgroup of G if A and B are both subgroups and at least one of them is normal in G.

Theorem 6 (Second isomorphism theorem)
Let $H_{1}, H_{2} \triangleleft G$ be normal subgroups. Then

$$
\frac{H_{1} H_{2}}{H_{1}} \cong \frac{H_{2}}{H_{1} \cap H_{2}} .
$$

Proof: The homomorphism $H_{2} \rightarrow\left(H_{1} H_{2}\right) / H_{1}$ taking $h_{2} \mapsto h_{2} H_{1}$ is surjective (take $g H_{1} \in\left(H_{1} H_{2}\right) / H_{1}$, write $g=h_{2}^{\prime} h_{1}^{\prime}$ with $h_{1}^{\prime} \in H_{1}$ and $h_{2}^{\prime} \in H_{2}$ - we're using normality to write the product in the reverse order with possibly different elements - and note that $h_{2}^{\prime} \mapsto g H_{1}$) and has kernel $H_{1} \cap H_{2}$.

Theorem 7 (Third isomorphism theorem)
Let $K \triangleleft H \triangleleft G$ be a chain of normal subgroups with $K \triangleleft G$ as well ${ }^{a}$. Then

$$
\frac{G / K}{H / K} \cong \frac{G}{H} .
$$

${ }^{a} K \triangleleft H$ and $H \triangleleft G$ do not necessarily imply $K \triangleleft G$, so this has to be explictly assumed. Example?

Proof: The homomorphism $G / K \rightarrow G / H$ taking $g K \mapsto g H$ is well-defined, surjective, and has kernel H / K.

3.1 The commutant subgroup

Let G be a group. The commutator of two elements $a, b \in G$ is defined to be the element $[a, b] \doteq a b a^{-1} b^{-1} \in G$. The reason for the name commutator is obvious: the commutator equals e if and only if $a b=b a$. So this is measuring how far a and b are from commuting. If G is abelian, all the commutators are trivial, so this would be uninteresting. The set $\{[a, b] \mid a, b \in G\}$ of commutators is not a subgroup of G. But we write $[G, G]$ for the subgroup generated by such set. We call $[G, G]$ the commutant subgroup of G. Explictly, elements of $[G, G]$ are finite strings

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{k} b_{k} a_{k}^{-1} b_{k}^{-1}
$$

of commutators. To see that $[G, G] \triangleleft G$, it suffices to check that conjugating a single commutator yields a commutator.

Exercise 1

Show that for all $g, a, b \in G$, we have $g[a, b] g^{-1}=\left[g a g^{-1}, g b g^{-1}\right]$.

So, it makes sense to consider the quotient $G /[G, G]$.

Proposition 9 (Abelianization of G)
The quotient $G /[G, G]$ is always abelian.

Proof: Let $a[G, G], b[G, G] \in G /[G, G]$. Then

$$
(a[G, G])(b[G, G])(a[G, G])^{-1}(b[G, G])^{-1}=\left(a b a^{-1} b^{-1}\right)[G, G]=e[G, G],
$$

where the very last equal sign uses $a b a^{-1} b^{-1} \in[G, G]$, implies that

$$
(a[G, G])(b[G, G])=(b[G, G])(a[G, G])
$$

as required.

[^0]: ${ }^{1}$ The letter e is from German, einselement.

