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EQUIVALENCE RELATIONS, QUOTIENTS, AND
EXAMPLES

Ivo Terek

A quick summary on equivalence relations, quotient sets, basic properties, and
some examples, and constructions.

1 Equivalence relations

Definition 1

Let X be a set. An equivalence relation ∼ on X is a relationa which is:

(i) reflexive, that is, x ∼ x for all x ∈ X.

(ii) symmetric, that is, x ∼ y implies y ∼ x for all x, y ∈ X.

(iii) transitive, that is, x ∼ y and y ∼ z implies x ∼ z for all x, y, z ∈ X.
aA subset ∼ of X× X, where we write x ∼ y to mean (x, y) ∈∼.

Example 1

On the set Z, for each m ∈ Z, say that x ∼ y if m | (x− y). This relation is called
congruence modulo m, and one writes x ≡ y (mod m) or x ≡m y instead of ∼.

Example 2

Let X be the set of students taking a certain math class together, and say that x ∼ y
if x and y got the same score on the final exam.

Example 3 (Equivalence relations given by functions)

Let X and Y be sets and f : X → Y be a function. Say that x ∼ y if f (x) = f (y).
The above example is a particular case of the situation described here, where f is
the function “score on the final exam”.
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Example 4 (A tragic non-example)

Let X be the set of all people on planet Earth, and say that x ∼ y if x loves y. The
fact that ∼ is not symmetric is a huge source of drama and relationship problems.
And the fact that ∼ is not reflexive can be seen as a symptom of a disease called
depression.

Definition 2

Let X be a set equipped with an equivalence relation ∼.

(i) The equivalence class of an element x ∈ X is the set [x]∼
.
= {y ∈ X | x ∼ y}.

(ii) The quotient of X by ∼ is the set X/∼
.
= {[x] | x ∈ X}.

(iii) The map π : X → X/∼ given by π(x) = [x]∼ is called quotient projection.

Remark. Note that, simultaneously, we have [x]∼ ⊆ X and [x]∼ ∈ X/∼.

Example 5

Consider again in Z, congruence modulo m ∈ Z. We have that the congruence
class of each k ∈ Z is simply k + mZ = {k + ma | a ∈ Z}. The quotient set,
denoted by Z/mZ, is the set

Z/mZ = {0 + mZ, 1 + mZ, . . . , (m− 1) + mZ}.

It has m elements.

Proposition 1

Let X be a set equipped with an equivalence relation ∼. Then:

(a) Any two equivalence classes are either equal or disjoint.

(b) The union of all equivalence classes equals X.

In other words, X/∼ is a partition of X.

Proof:

(a) Take x, y ∈ X and consider [x]∼, [y]∼ ∈ X/∼. If [x]∼ ∩ [y]∼ = ∅, there’s nothing
to prove. But if there is z in such intersection, then x ∼ z and y ∼ z together imply
that x ∼ y, meaning that [x]∼ = [y]∼.

(b) For each x ∈ X, we have x ∈ [x]∼.

So, equivalence relations give rise to partitions. The converse holds:
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Proposition 2

Let X be a set and P= (Pα)α∈A be a partition of X. There is a unique equivalence
relation ∼ on X for which for all x ∈ X and α ∈ A, x ∈ Pα if and only if [x]∼ = Pα.
In other words, X/∼ = P.

Proof: Let x ∈ y if there is α ∈ A such that x, y ∈ Pα. This ∼ is reflexive because each
x ∈ X is in some Pα. It is symmetric because x ∼ y says that x and y are in some Pα, so y
and x are in this same Pα, leading to y ∼ x. Finally, it is transitive because if x ∼ y and
y ∈ z, there are α, β ∈ A with x, y ∈ Pα and y, z ∈ Pβ — in particular y ∈ Pα ∩ Pβ 6= ∅
means that Pα = Pβ, so that x, z ∈ Pα leads to x ∼ z. The rest is clear.

Hence, there is a 1-1 correspondence between equivalence relations and partitions
of X. In particular, the partition corresponding to the equivalence relation given in
Example 3 is just the partition of X by inverse images under f of points in Y (called
fibers of f ). We note that if ∼ is any equivalence relation on X, then ∼ arises from
this construction with the quotient projection π playing the role of f . This suggests we
should explore this in more detail.

Definition 3

Let X and Y be sets, and f : X → Y be a function. The set-kernel of f is the set

ker s( f ) = {(x, y) ∈ X× X | f (x) = f (y)};

Proposition 3 (Injectiveness equals trivial kernel — set-version)

Let X and Y be sets, and f : X → Y be a function. Then f is injective if and only if
ker s( f ) = ∆, where ∆ = {(x, x) ∈ X× X | x ∈ X} is the diagonal of X.

Proof: Clearly ∆ ⊆ ker s( f ) in all cases. If f is injective, then (x, y) ∈ ker s( f ) implies
that f (x) = f (y), so x = y and thus ker s( f ) = ∆. Conversely, if such equality holds,
and we take x, y ∈ X with f (x) = f (y), then (x, y) ∈ ∆ gives that x = y.

Theorem 1

Let X be a set equipped with a equivalence relation ∼, Y be a second set, and
f : X → Y. If f is constant along equivalence classes of ∼, there is a unique func-
tion f̃ : X/∼ → Y such that f̃ ◦ π = f , where π is the quotient projection. In
particular, we have the equality Im( f ) = Im( f̃ ) between images.

Proof: Define f̃ ([x]∼)
.
= f (x). This is well-defined as we assume that f is constant

along equivalence classes of∼, and it satisfies f̃ ◦π = f by construction. Such relation
implies that Im( f ) = Im( f̃ ) since π is surjective.

Remark. We say that f has passed to the quotient, and think of f̃ as f itself, not really
as a different function.
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Corollary 1 (First isomorphism theorem)

Let X and Y be sets and f : X → Y be a function. If∼ is defined via f , then there is
a unique injective function f̃ : X/∼ → Y such that f̃ ◦π = f , where π : X → X/ ∼
is the quotient projection. In particular, we have the equality Im( f ) = Im( f̃ )
between images.

Remark. When f is surjective, this establishes that X/∼ is in bijection with Y.

Proof: The function f̃ exists and is unique in view of the previous theorem because f
is constant on the equivalence classes of ∼, by definition of the latter. If we start from
f̃ ([x]∼) = f̃ ([y]∼), then f (x) = f (y), which means that x ∼ y, so [x]∼ = [y]∼. Hence
f̃ is injective.

2 On vector spaces

Let K be a field, V be a K-vector space, and W be a subspace of V. There is no
harm in thinking that K = R is the field of real numbers here, it makes no difference
on what will happen next.

Definition 4

Let’s say that two vectors v, v′ ∈ V are congruent modulo W, written simply as
v ≡ v′ (mod W) or v ≡W v′, if v− v′ ∈W.

Lemma 1

≡W is an equivalence relation.

Proof:

• ≡W is reflexive because for all v ∈ V, v− v = 0 ∈W says that v ≡W v.

• ≡W is symmetric because if v ≡W v′, then v′ − v = −(v − v′) ∈ W says that
v′ ≡W v, as W is closed under taking opposites.

• ≡W is transitive because if v ≡W v′ and v′ ≡W v′′, then

v− v′′ = (v− v′) + (v′ − v′′) ∈W

says that v ≡W v′′, as W is closed under addition.

Note that the equivalence class of v ∈ V is the translate

v + W = {v + w | w ∈W}.

Since we started with a vector space V, it would make sense to ask whether the quo-
tient set V/≡W , simply denoted by V/W, can be made into a vector space.
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Proposition 4

The maps + : V/W ×V/W and · : K×V/W → V/W defined by

(v + W) + (v′ + W)
.
= (v + v′) + W and λ · (v + W)

.
= (λv) + W

are well-defined and turn V/W into a vector space.

Proof: If v1 ≡W v′1 and v2 ≡W v′2, let’s show that (v1 + v2) ≡W (v′1 + v′2). Indeed, we
have that

(v1 + v2)− (v′1 + v′2) = (v1 − v′1) + (v2 − v′2) ∈W

because W is closed under addition. So + is well-defined on V/W. As for scalar
multiplication, keeping the above notation and assumptions, let’s just show that the
equivalence λv1 ≡W λv′1 holds. This happens because

λv1 − λv′1 = λ(v1 − v′1) ∈W,

as W is closed under scalar multiplication. Hence · is well-defined on V/W. As for the
algebraic axioms that + and · must satisfy, they’re all trivial consequences of the fact
that the axioms already hold for the operations on V. For example:

(v + W) + (v′ + W) = (v + v′) + W = (v′ + v) + W = (v′ + W) + (v + W),

so + is commutative on V/W. The zero vector is, obviously, 0 + W.

Remark. V/{0} ∼= V (via v 7→ v + {0}) and V/V = {0 + V}.

Corollary 2

The quotient projection π : V → V/W is a surjective linear map with kernel W.

Proof: By design.

Remark. If one already knows the rank-nullity theorem, applying it to π yields the
dimension relation dim V = dim W + dim(V/W). When the dimensions are finite,
it makes sense to write dim(V/W) = dim V − dim W. If one does not want to as-
sume (for the sake of the presentation) that the rank-nullity theorem holds yet, we’ll
establish it with quotients in what follows.

As a consequence of what we have seen before, abstractly, we have the:

Theorem 2 (First isomorphism theorem)

Let T : V →W be a linear map. Then T passes to the quotient as an injective linear
map T̃ : V/ker T →W, showing that V/ker T ∼= Im(T).
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Corollary 3

Write V = W⊕W ′ for some complementary subspace W ′ to W. Then V/W ∼= W ′.
In particular, dim V = dim W + dim(V/W).

Proof: Since V = W ⊕W ′, we have two projection operators prW : V → W and
prW ′ : V → W ′. Applying the first isomorphism theorem to prW ′ (which is surjec-
tive with kernel W) yields V/W ∼= W ′. The dimension relation follows from the di-
rect sum decomposition, which implies that dim V = dim W + dim W ′, and we use
dim W ′ = dim(V/W).

Remark. Note that prW ′ morally corresponds to π|W ′ . The restriction of a surjective
linear map to any subspace complementary to its kernel is, in fact, an isomorphism.

In practice, it is good to know how to find bases for quotient spaces.

Proposition 5 (Quotient basis algorithm)

Assume that (e1, . . . , en) is a basis for V which is adapted to W, in the sense that
the subcollection (e1, . . . , ek) is a basis for W (in other words, we complete a basis
for W to a basis for V). Then

(ek+1 + W, . . . , en + W)

is a basis for V/W.

Proof: Note that π sends (e1, . . . , ek, ek+1, . . . , en) to

(0 + W, . . . , 0 + W, ek+1 + W, . . . , en + W).

Since π is surjective, the above set spans V/W (even though it is linearly dependent,
as it has zeros, which must be removed). It remains to show that the surviving vectors
(ek+1 +W, . . . , en +W) are linearly independent in V/W. This is done as follows: start
with ak+1, . . . , an ∈ K such that

ak+1(ek+1 + W) + · · ·+ an(en + W) = 0 + W.

The goal is to show that ak+1 = · · · = an = 0. Reorganize this linear combination,
using the definition of quotient operations, as

(ak+1ek+1 + · · ·+ anen) + W = 0 + W,

so that ak+1ek+1 + · · ·+ anen ∈W. This means that there are b1, . . . , bk ∈ K such that

ak+1ek+1 + · · ·+ anen = b1e1 + · · ·+ bkek,

simply because (e1, . . . , ek) is a basis for W. Now linear independence of the original
basis for V together with the relation

−b1e1 − · · · − bkek + ak+1ek+1 + · · ·+ anen = 0

implies that b1 = · · · = bk = ak+1 = · · · = an = 0, as required.
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Remark. The result still holds for infinite bases, with the same argument. Namely,
the procedure for finding a basis for V/W goes as follows: start with a basis for W,
complete it to a basis for V, apply π to everyone. The surviving elements in the quo-
tient will form a basis for it. Alternatively, based on the previous result, one can just
take any basis for a subspace of V complementary to W, and project it using π — the
resulting collection of vectors will necessarily be a basis for V/W.

The next two results are also quick consequences of the first isomorphism theorem:

Theorem 3 (Second isomorphism theorem)

Let W1, W2 ⊆ V be subspaces. Then

W1 + W2

W1

∼=
W2

W1 ∩W2
.

Proof: The linear map W2 → (W1 + W2)/W1 taking w2 7→ w2 + W1 is surjective (take
v + W1 ∈ (W1 + W2)/W1, write v = w1 + w2 with w1 ∈ W1 and w2 ∈ W2, and note
that w2 7→ v + W1) and has kernel W1 ∩W2.

Theorem 4 (Third isomorphism theorem)

Let Z ⊆W ⊆ V be a chain of subspaces. Then

V/Z
W/Z

∼=
V
W

.

Proof: The linear map V/Z → V/W taking v+Z 7→ v+W is well-defined, surjective,
and has kernel W/Z.

2.1 Duals and annihilators

Let V be a vector space. Recall that

V∗ = { f : V → K | f is linear}

is the dual space to V. If (e1, . . . , en) is a basis for V, then the linear functionals
e1, . . . , en : V → K defined by setting ei(ej) = δi

j for all i, j = 1, . . . , n for a basis for
V∗. Now let W be a subspace of V.

Definition 5

The annihilator (or polar space) of W, denoted either by Ann(W) or W◦, is de-
fined by W◦ = { f ∈ V∗ | f [W] = 0}. In other words, f ∈ W◦ if and only if
f (w) = 0 for all w ∈W.
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Clearly W◦ is a subspace of V∗. To understand it better, let’s start with some geo-
metric intuition. There is a natural evaluation pairing V∗ × V 3 ( f , v) 7→ f (v) ∈ K.
Symmetry doesn’t quite make sense, but people usually think of this as an “inner prod-
uct” taking elements from different spaces, and even write f (v) as 〈 f , v〉 (this is partic-
ularly common in quantum mechanics). The point is that W◦ is what the “orthogonal
complement” of W is supposed to be. But talking about “orthogonal complements”
doesn’t really make sense, as V is not actually equipped with an inner product. So W◦

pays the price for our little transgression and is exiled to V∗ — it cannot naturally live
in V without a metric. It has properties similar to orthogonal complements.

Proposition 6

(a) dim W∗ + dim W◦ = dim V∗ (when dim V < ∞, we can drop the duals).

(b) (W1 + W2)
◦ = W◦1 ∩W◦2 .

(c) (W1 ∩W2)
◦ = W◦1 + W◦2 .

Proof:

(a) The map V∗ → W∗ given by f 7→ f |W is linear, surjective (why?), and has kernel
W◦. By the rank-nullity theorem, we have dim V∗ = dim W◦ + dim W∗.

(b) If f annihilates both W1 and W2, and hence sums of elements in W1 and W2, so
this shows that W◦1 ∩W◦2 ⊆ (W1 + W2)

◦. Conversely, use that taking ◦ reverses
inclusions (why?), so W1 ⊆ W1 + W2 implies that (W1 + W2)

◦ ⊆ W◦1 , similarly for
W2, so we may take the intersection to obtain (W1 +W2)

◦ ⊆W◦1 ∩W◦2 , as required.

(c) Exercise.

Corollary 4

W∗ ∼= V∗/W◦.

With this in place, let’s see how to find bases for annihilators (at least in the finite-
dimensional case).

Proposition 7

Assume that (e1, . . . , en) is a basis for V which is adapted to W, in the sense that the
subcollection (e1, . . . , ek) is a basis for W (in other words, we complete a basis for
W to a basis for V). If (e1, . . . , en) denotes the dual basis in V∗, then (ek+1, . . . , en)
is a basis for W◦.
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Proof: If i = k + 1, . . . , n, since ei(ej) = 0 for j = 1, . . . k, and those span W, it follows
that ei annihilates W. In other words, ek+1, . . . , en ∈ W◦. They are linearly indepen-
dent, because they are part of a larger basis. To see that they actually span W◦, one
can either argue that the dimension of W◦ is equal to n− k (so a maximal linearly in-
dependent set is a basis) or, directly take f ∈ V∗, write it as f = ∑n

i=1 fiei (with the
coefficients f1, . . . , fn ∈ K), and use that f ∈ W◦ if and only if f1 = · · · = fk = 0, so f
is indeed a linear combination of the remaining functionals ek+1, . . . , en.

3 On groups

Let G be a group and H be a subgroup of G. We write e for the identity element1.

Definition 6

Let’s say that two elements g, g′ ∈ G are congruent modulo H, written simply as
g ≡ g′ (mod H) or g ≡H g′, if (g′)−1g ∈ H.

Lemma 2

≡H is an equivalence relation.

Proof:

• ≡H is reflexive because for all g ∈ G, g−1g = e ∈ H says that g ≡H g.

• ≡H is symmetric because if g ≡H g′, then g−1g′ = ((g′)−1g)−1 ∈ H says that
g′ ≡H g, as H is closed under taking inverses.

• ≡H is transitive because if g ≡H g′ and g′ ≡H g′′, then

(g′′)−1g = (g′′)−1g′(g′)−1g ∈ H

says that g ≡H g′′, as H is closed under multiplication.

Note that the equivalence class of g ∈ G is the translate (in the group setting, called
a coset)

gH = {gh | h ∈ H}.
Since we started with a group G, it would make sense to ask whether the quotient set
G/≡H , simply denoted by G/H, can be made into a group. Unlike what happened
with vector spaces, this is not guaranteed, and we need a stronger assumption on the
subgroup H.

1The letter e is from German, einselement.
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Definition 7

A subgroup H of G is called normal in G — this is written H � G — if for all g ∈ G
and h ∈ H, we have ghg−1 ∈ H.

Remark. If G is abelian, then every subgroup is normal. In particular, this applies
when we have a vector space V considered as an abelian group with addition of vec-
tors — vector subspaces are additive subgroups, and thus normal. There are non-
abelian groups whose subgroups are all normal. These are called Hamiltonian groups
(the name is unrelated to Hamiltonian dynamics and symplectic geometry). Here’s
one example: Q8 = {1,±i,±j,±k}, with operations summarized by i2 = j2 = k2 = −1
and ij = k, jk = i and ki = j.

Proposition 8

If H � G, then · : G/H × G/H → G/H given by

(gH) · (g′H)
.
= (gg′)H

is well-defined and turns G/H into a group.

Proof: Exercise/maybe later. Note that the identity of G/H is eH and that inverses
are given by (gH)−1 = g−1H.

Remark. Many properties for G pass to G/H. For example, if G is abelian, so will be
G/H. Also note that G/{e} ∼= G (via g 7→ g{e}) and G/G = {eG}.

Replacing linear maps with group homomorphisms, we can mimic much of what
was done before.

Corollary 5

The quotient projection π : G → G/H is a surjective group homomorphism with
kernel H.

Theorem 5 (First isomorphism theorem)

Let ϕ : G → H be a group homomorphism. Then ϕ passes to the quotient as an
injective group homomorphism ϕ̃ : G/ker ϕ→ H, so that G/ker ϕ ∼= Im(ϕ).

To proceed, recall that given two subsets A, B ⊆ G, we may consider the set of all
products, AB = {ab | a ∈ A, b ∈ B}. When we take A and B to be subgroups of G,
AB might still not be a subgroup! However, AB is a subgroup of G if A and B are both
subgroups and at least one of them is normal in G.
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Theorem 6 (Second isomorphism theorem)

Let H1, H2 � G be normal subgroups. Then

H1H2

H1

∼=
H2

H1 ∩ H2
.

Proof: The homomorphism H2 → (H1H2)/H1 taking h2 7→ h2H1 is surjective (take
gH1 ∈ (H1H2)/H1, write g = h′2h′1 with h′1 ∈ H1 and h′2 ∈ H2 — we’re using normality
to write the product in the reverse order with possibly different elements — and note
that h′2 7→ gH1) and has kernel H1 ∩ H2.

Theorem 7 (Third isomorphism theorem)

Let K � H � G be a chain of normal subgroups with K � G as wella. Then

G/K
H/K

∼=
G
H

.

aK � H and H � G do not necessarily imply K � G, so this has to be explictly assumed. Example?

Proof: The homomorphism G/K → G/H taking gK 7→ gH is well-defined, surjective,
and has kernel H/K.

3.1 The commutant subgroup

Let G be a group. The commutator of two elements a, b ∈ G is defined to be the
element [a, b] .

= aba−1b−1 ∈ G. The reason for the name commutator is obvious: the
commutator equals e if and only if ab = ba. So this is measuring how far a and b
are from commuting. If G is abelian, all the commutators are trivial, so this would be
uninteresting. The set {[a, b] | a, b ∈ G} of commutators is not a subgroup of G. But
we write [G, G] for the subgroup generated by such set. We call [G, G] the commutant
subgroup of G. Explictly, elements of [G, G] are finite strings

a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · akbka−1
k b−1

k

of commutators. To see that [G, G] � G, it suffices to check that conjugating a single
commutator yields a commutator.

Exercise 1

Show that for all g, a, b ∈ G, we have g[a, b]g−1 = [gag−1, gbg−1].

So, it makes sense to consider the quotient G/[G, G].
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Proposition 9 (Abelianization of G)

The quotient G/[G, G] is always abelian.

Proof: Let a[G, G], b[G, G] ∈ G/[G, G]. Then

(a[G, G])(b[G, G])(a[G, G])−1(b[G, G])−1 = (aba−1b−1)[G, G] = e[G, G],

where the very last equal sign uses aba−1b−1 ∈ [G, G], implies that

(a[G, G])(b[G, G]) = (b[G, G])(a[G, G]),

as required.
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