THE RICCI IDENTITY

Ivo Terek

1 Setup

We work on the smooth category, and fix a vector bundle $E \to M$ equipped with a connection $\nabla: \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$, where $\Gamma(E)$ stands for the $C^\infty(M)$-module of smooth sections of E. The curvature tensor of ∇ is $R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$ defined by

$$R(X,Y)\psi = \nabla_X \nabla_Y \psi - \nabla_Y \nabla_X \psi - \nabla_{[X,Y]}\psi.$$ (1.1)

Relative to a local trivialization e_a for E and local coordinates x^j for M, we write

$$(a) \quad \nabla_{\partial_j} e_a = \Gamma^b_{ja} e_b$$ (b) $\quad R(\partial_j, \partial_k) e_a = R_{jka}^\ b e_b,$$ (1.2)

while repeatedly substituting (1.2-a) into (1.1) to compute (1.2-b) yields

$$R_{jka}^\ b = \partial_j \Gamma^b_{ka} - \partial_k \Gamma^b_{ja} + \Gamma^c_{ja} \Gamma^b_{kc} - \Gamma^c_{ja} \Gamma^b_{kc}.$$ (1.3)

Whenever $\psi \in \Gamma(E)$, we may consider $\nabla \psi$ as a section of $\text{Hom}(TM, E)$. Applying the Leibniz rule for ∇ together with (1.2-a), we have that

$$\nabla_{\partial_j} \psi = (\partial_j \psi^b + \Gamma^b_{ja} \psi^a) e_b,$$ (1.4)

and this motivates defining

$$\nabla_j \psi^b = (\partial_j \psi^b + \Gamma^b_{ja} \psi^a) e_b,$$ (1.5)

Another notation for $\nabla_j \psi^b$ is ψ^b_j, but I prefer the former to the latter as it allows us to think of “$\nabla_j = \partial_j + \Gamma^j_j$” as an operator on its own right.

The vector-bundle index a, for concrete choices of E, may actually stand for a collection of indices coming from M. For example, assume that $E = TM\otimes^2$ has a connection induced from some connection in TM. If e_a is a local frame for TM, then $e_a \otimes e_b$ forms a local trivialization for E, in which case we have that

$$\nabla_{\partial_i} (e_a \otimes e_b) = \nabla_{\partial_i} e_a \otimes e_b + e_a \otimes \nabla_{\partial_i} e_b$$
$$= \Gamma^c_{ja} e_c \otimes e_b + e_a \otimes \Gamma^d_{jb} e_d$$
$$= (\Gamma^c_{ja} \delta^d_b + \delta^c_a \Gamma^d_{jb}) e_c \otimes e_d$$ (1.6)

says that $\Gamma^c_{ja} \delta^d_b + \delta^c_a \Gamma^d_{jb}$, where the underlines on $\Gamma^c_{ja} \delta^d_b$ are meant to emphasize that ab is a single $TM\otimes^2$-index, as is cd. The point of observing this is that it suffices to develop the theory for vector bundles, and then it may be applied to any tensor bundle over M.
2 Second derivatives

When TM is also equipped with a connection ∇°, the bundle $\text{Hom}(TM, E)$ inherits a connection ∇' from both ∇ and ∇°. More precisely, if e_a is a local trivialization for E and x^j are local coordinates for M, then we may write

$$F = F^a_k \, dx^k \otimes e_a, \quad \text{where } F^a_k \text{ is the } a\text{-th component of } F(\partial_k),$$

(2.1)

for any section F of $\text{Hom}(TM, E)$. The pair a_k is a single upper $\text{Hom}(TM, E)$-index (while k_a as in $dx^k \otimes e_a$ would be a lower one). By definition of the induced connection on $\text{Hom}(TM, E)$, we have that

$$(\nabla'_X F)(Y) = \nabla_X (F(Y)) - F(\nabla'^\circ_X Y)$$

(2.2)

Mimicking what was done in (1.4), we set $X = \partial_j$ and $Y = \partial_k$ on (2.2) and compute

$$(\nabla'_{\partial_j} F)(\partial_k) = \nabla_{\partial_j}(F(\partial_k)) - F(\nabla'_{\partial_j} \partial_k) = \nabla_{\partial_j}(F^a_k e_a) - F(\bar{F}^\ell_k \partial_\ell) = (\partial_j F^a_k) e_a + F^a_k \partial_j e_a - \bar{F}^\ell_k F(\partial_\ell)$$

(2.3)

$$= (\partial_j F^a_k) e_a + F^b_k \bar{\Gamma}^a_{jb} e_a - \bar{F}^\ell_k F^b \partial_\ell e_a$$

$$= (\partial_j F^a_k + F^b_k \bar{\Gamma}^a_{jb} - \bar{F}^\ell_k F^b) e_a,$$

giving us that

$$\nabla'_j F^a_k = \partial_j F^a_k + F^b_k \bar{\Gamma}^a_{jb} - \bar{F}^\ell_k F^b.$$

(2.4)

Usually, the left side of the above is written just as $\nabla'_j F^a_k$, with the dependence of the right side on the auxiliary connection ∇° being understood. Now, we may take $F = \nabla \psi$ for some section $\psi \in \Gamma(E)$, so that

$$\nabla_j \nabla_k \psi^a = (\partial_j \nabla_k \psi^a) + (\nabla_k \psi^b) \bar{\Gamma}^a_{jb} - \bar{F}^\ell_k (\nabla_\ell \psi^a)$$

(2.5)

Substitute (1.5) into the first two terms on the right side of (2.5) to compute

$$\nabla_j \nabla_k \psi^a = (\partial_j \partial_k \psi^a + \Gamma^a_{kb} \psi^b) + (\partial_j \psi^b + \Gamma^b_{kc} \psi^c) \bar{\Gamma}^a_{jb} - \bar{F}^\ell_k (\nabla_\ell \psi^a)$$

$$= \partial_j \partial_k \psi^a + (\partial_j \Gamma^a_{kb}) \psi^b + \Gamma^a_{kb} \partial_k \psi^b + \Gamma^a_{jb} \partial_k \psi^b + \Gamma^a_{jb} \Gamma^b_{kc} \psi^c - \bar{F}^\ell_k (\nabla_\ell \psi^a)$$

(2.6)

Noting that the first group of three terms in the last line of (2.6) is symmetric in the pair (j, k), we may directly obtain that

$$\nabla_j \nabla_k \psi^a - \nabla_k \nabla_j \psi^a = (\partial_j \Gamma^a_{kb} - \partial_k \Gamma^a_{jb}) \psi^b + (\Gamma^a_{jb} \Gamma^b_{kc} - \Gamma^a_{kb} \Gamma^b_{jc}) \psi^c - \tau^\ell_{jk} \nabla_\ell \psi^a,$$

where τ^ℓ_{jk} are the components of the torsion tensor of ∇°, defined by

$$\tau(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y].$$

(2.8)

If ∇° is torsionfree (i.e., $\tau = 0$), substituting (1.3) into (2.7) and renaming $b \leftrightarrow c$, it follows that

$$\nabla_j \nabla_k \psi^a - \nabla_k \nabla_j \psi^a = R^a_{jkb} \psi^b,$$

(2.9)

as required.
3 Application to tensor bundles

In this section, we let \(\nabla \) be a torsionfree connection on \(M \), and again denote by \(\nabla \) the induced connections on all tensor bundles over \(M \). We also choose the "auxiliary" connection to be \(\nabla^o = \nabla \). Set \(E = TM^{\otimes r} \otimes T^* M^{\otimes s} \). A \(r \)-times contravariant and \(s \)-times covariant tensor field on \(M \) is a section of \(E \), which may be written relative to a local coordinate system \(x^i \) for \(M \) as

\[
T = T^{i_1 \ldots i_r}_{j_1 \ldots j_s} \partial_{i_1} \otimes \cdots \otimes \partial_{i_r} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s}. \tag{3.1}
\]

As we are not dealing with metrics and the process of raising/lowering indices, there is no need to stick to the more precise notation \(T_{i_1 \ldots i_r}^{j_1 \ldots j_s} \). To apply (2.9), we need an expression for the curvature tensor of the induced connection on \(E \). Such expression, however, will follow from the Leibniz rule combined with relations

\[
\begin{align*}
(a) \ R(\partial_j, \partial_k) \partial_{i_a} &= R_{jki_a}^p \partial_p \\
(b) \ R(\partial_j, \partial_k) dx^{i_b} &= -R_{jkq}^{i_b} dx^q
\end{align*} \tag{3.2}
\]

from the base cases \((r, s) = (1, 0)\) and \((r, s) = (0, 1)\). Indeed, we have that

\[
R(\partial_j, \partial_k)(\partial_{i_1} \otimes \cdots \otimes \partial_{i_r} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s}) =
\]

\[
= (R_{jki_1}^p \partial_p) \otimes \cdots \otimes \partial_{i_r} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s}
+ \cdots + \partial_{i_1} \otimes \cdots \otimes (R_{jk{i_r}_p}^r \partial_p) \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s}
+ \partial_{i_1} \otimes \cdots \otimes \partial_{i_r} \otimes (-R_{jkq}^{i_r} dx^q_1) \otimes \cdots \otimes dx^{j_s}
+ \cdots + \partial_{i_1} \otimes \cdots \otimes \partial_{i_r} \otimes \cdots \otimes dx^{j_1} \otimes \cdots \otimes (-R_{jkq}^{i_s} dx^q_s).
\tag{3.3}
\]

With the aid of Kronecker deltas, we may informally rewrite (3.3) as

\[
R(\partial_j, \partial_k)(\partial_{i_1} \otimes \cdots \otimes \partial_{i_r} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s})
\]

\[
= \sum_{\ell=1}^r R_{jki_1}^p \delta_{i_1}^{\ell p_1} \cdots \delta_{i_r}^{\ell p_r} \delta_{j_1}^{\ell q_1} \cdots \delta_{j_s}^{\ell q_s} - \sum_{\ell=1}^s R_{jkq}^{i_\ell} \delta_{i_1}^{\ell 1} \cdots \delta_{i_r}^{\ell r} \delta_{j_1}^{\ell q_1} \cdots \delta_{j_s}^{\ell q_s}. \tag{3.4}
\]

The right side of (3.4) is the curvature term present in the right side of (2.9) for our choice of \(E \) (after suitably adjusting dummy indices). Already contracting all the Kronecker deltas possible, we obtain that

\[
\nabla_j \nabla_k T^{i_1 \ldots i_r}_{j_1 \ldots j_s} - \nabla_k \nabla_j T^{i_1 \ldots i_r}_{j_1 \ldots j_s} = R_{jkq}^{i_1} T^{p_2 \ldots i_r}_{j_1 \ldots j_s} + \cdots + R_{jkp}^{i_r} T^{i_1 \ldots i_{r-1}p}_{j_1 \ldots j_s}
- R_{jkq}^{i_1} q T^{i_2 \ldots i_r}_{j_2 \ldots j_s} - \cdots - R_{jkq}^{i_s} T^{i_1 \ldots i_{r-1}q}_{j_1 \ldots j_{s-1}q}. \tag{3.5}
\]

The placement of signs follows (3.2). We list some particular cases of (3.5) below for the reader’s convenience:

(i) \(\nabla_k \nabla_i T_{ij} - \nabla_i \nabla_k T_{ij} = -R_{klq}^{q} T_{ij} - R_{klq}^{q} T_{ij} \).

(ii) \(\nabla_k \nabla_i T_{ij}^p - \nabla_i \nabla_k T_{ij}^p = R_{klp}^{r} T_{ij}^p - R_{klq}^{q} T_{ij}^p. \)

(iii) \(\nabla \nabla_m T_{ij}^k - \nabla_m \nabla \nabla T_{ij}^k = R_{lmp}^{k} T_{ij}^p - R_{lmi}^{q} T_{ij}^q - R_{lmj}^{q} T_{iq}^q. \)
4 Geometric consequences

Here, we let \((M, g)\) be a \(n\)-dimensional pseudo-Riemannian manifold, and \(\nabla\) be its Levi-Civita connection. One consequence of the Ricci identity (3.5) is that

\[
\text{if } (M, g) \text{ has nonzero constant sectional curvature, then } M \text{ does not admit nontrivial parallel vector fields, or parallel 1-forms.} \tag{4.1}
\]

If \(X\) is a parallel vector field on \(M\), then \(R_{ijp}^k X^p = 0\) reads
\[
K^2 \left(g_{jp} \delta_i^k - g_{ip} \delta_j^k \right) X^p = 0,
\]
where \(K \neq 0\) is the sectional curvature of \((M, g)\). Evaluating it and cancelling \(K\) gives us that \(\delta_i^j X_j - \delta_j^i X_i = 0\), and making \(k = i\) yields \((n - 1)X_i = 0\), so that \(X_i = 0\). The argument for 1-forms \(\alpha\) is dual: \(R_{ijk}^q \alpha_q = 0\) reads
\[
K \left(g_{jk} \delta_i^q - g_{ik} \delta_j^q \right) \alpha_q = 0,
\]
and therefore \(g_{jk} \alpha_i - g_{ik} \alpha_j = 0\). Contracting against \(g^{jk}\) leads to \((\dim M - 1) \alpha_i = 0\), and hence \(\alpha_i = 0\).