The Ricci identity

Ivo Terek

1 Setup

We work on the smooth category, and fix a vector bundle $E \rightarrow M$ equipped with a connection $\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)$, where $\Gamma(E)$ stands for the $C^{\infty}(M)$-module of smooth sections of E. The curvature tensor of ∇ is $R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)$ defined by

$$
\begin{equation*}
R^{\nabla}(X, Y) \psi=\nabla_{X} \nabla_{Y} \psi-\nabla_{Y} \nabla_{X} \psi-\nabla_{[X, Y]} \psi \tag{1.1}
\end{equation*}
$$

Relative to a local trivialization e_{a} for E and local coordinates x^{j} for M, we write
(a) $\nabla_{\partial_{j}} e_{a}=\Gamma_{j a}^{b} e_{b}$
(b) $R\left(\partial_{j}, \partial_{k}\right) e_{a}=R_{j k a}{ }^{b} e_{b}$,
while repeatedly substituting (1.2-a) into (1.1) to compute (1.2-b) yields

$$
\begin{equation*}
R_{j k a}^{b}=\partial_{j} \Gamma_{k a}^{b}-\partial_{k} \Gamma_{j a}^{b}+\Gamma_{k a}^{c} \Gamma_{j c}^{b}-\Gamma_{j a}^{c} \Gamma_{k c}^{b} \tag{1.3}
\end{equation*}
$$

Whenever $\psi \in \Gamma(E)$, we may consider $\nabla \psi$ as a section of $\operatorname{Hom}(T M, E)$. Applying the Leibniz rule for ∇ together with (1.2-a), we have that

$$
\begin{equation*}
\nabla_{\partial_{j}} \psi=\left(\partial_{j} \psi^{b}+\Gamma_{j a}^{b} \psi^{a}\right) e_{b}, \tag{1.4}
\end{equation*}
$$

and this motivates defining

$$
\begin{equation*}
\nabla_{j} \psi^{b}=\partial_{j} \psi^{b}+\Gamma_{j a}^{b} \psi^{a}, \text { so that } \nabla \psi=\nabla_{j} \psi^{b} \mathrm{~d} x^{j} \otimes e_{b} . \tag{1.5}
\end{equation*}
$$

Another notation for $\nabla_{j} \psi^{b}$ is $\psi_{; j}^{b}$, but I prefer the former to the latter as it allows us to think of " $\nabla_{j}=\partial_{j}+\Gamma_{j}$ " as an operator on its own right.

The vector-bundle index a, for concrete choices of E, may actually stand for a collection of indices coming from M. For example, assume that $E=T M^{\otimes 2}$ has a connection induced from some connection in $T M$. If e_{a} is a local frame for $T M$, then $e_{a} \otimes e_{b}$ forms a local trivialization for E, in which case we have that

$$
\begin{align*}
\nabla_{\partial_{j}}\left(e_{a} \otimes e_{b}\right) & =\nabla_{\partial_{j}} e_{a} \otimes e_{b}+e_{a} \otimes \nabla_{\partial_{j}} e_{b} \\
& =\Gamma_{j a}^{c} e_{c} \otimes e_{b}+e_{a} \otimes \Gamma_{j b}^{d} e_{d} \tag{1.6}\\
& =\left(\Gamma_{j a}^{c} \delta_{b}^{d}+\delta_{a}^{c} \Gamma_{j b}^{d}\right) e_{c} \otimes e_{d}
\end{align*}
$$

says that $\Gamma_{j, a b}^{c d}=\Gamma_{j a}^{c} \delta_{b}^{d}+\delta_{a}^{c} \Gamma_{j b}^{d}$, where the underlines on $\Gamma_{j, a b}^{c d}$ are meant to emphasize that $a b$ is a single $T M^{\otimes 2}$-index, as is $c d$. The point of observing this is that it suffices to develop the theory for vector bundles, and then it may be applied to any tensor bundle over M.

2 Second derivatives

When $T M$ is also equipped with a connection ∇°, the bundle $\operatorname{Hom}(T M, E)$ inherits a connection ∇^{\prime} from both ∇ and ∇°. More precisely, if e_{a} is a local trivialization for E and x^{j} are local coordinates for M, then we may write

$$
\begin{equation*}
F=F_{k}^{a} \mathrm{~d} x^{k} \otimes e_{a}, \text { where } F_{k}^{a} \text { is the } a \text {-th component of } F\left(\partial_{k}\right) \tag{2.1}
\end{equation*}
$$

for any section F of $\operatorname{Hom}(T M, E)$. The pair ${ }_{k}^{a}$ is a single upper $\operatorname{Hom}(T M, E)$-index (while ${ }_{a}^{k}$ as in $\mathrm{d} x^{k} \otimes e_{a}$ would be a lower one). By definition of the induced connection on $\operatorname{Hom}(T M, E)$, we have that

$$
\begin{equation*}
\left(\nabla_{X}^{\prime} F\right)(Y)=\nabla_{X}(F(Y))-F\left(\nabla_{X}^{\circ} Y\right) \tag{2.2}
\end{equation*}
$$

Mimicking what was done in (1.4), we set $X=\partial_{j}$ and $Y=\partial_{k}$ on (2.2) and compute

$$
\begin{align*}
\left(\nabla_{\partial_{j}}^{\prime} F\right)\left(\partial_{k}\right) & =\nabla_{\partial_{j}}\left(F\left(\partial_{k}\right)\right)-F\left(\nabla_{\partial_{j}}^{\circ} \partial_{k}\right) \\
& =\nabla_{\partial_{j}}\left(F_{k}^{a} e_{a}\right)-F\left(\Gamma_{j}^{\circ} \partial_{j}\right) \\
& =\left(\partial_{j} F_{k}^{a}\right) e_{a}+F_{k}^{a} \partial_{j} e_{a}-\stackrel{\Gamma}{\Gamma}_{j k}^{\ell} F\left(\partial_{\ell}\right) \tag{2.3}\\
& =\left(\partial_{j} F_{k}^{a}\right) e_{a}+F_{k}^{b} \Gamma_{j b}^{a} e_{a}-\stackrel{\check{\Gamma}}{j k}_{\ell} F_{\ell}^{a} e_{a} \\
& =\left(\partial_{j} F_{k}^{a}+F_{k}^{b} \Gamma_{j b}^{a}-\dot{\Gamma}_{j k}^{\ell} F_{\ell}^{a}\right) e_{a}
\end{align*}
$$

giving us that

$$
\begin{equation*}
\nabla_{j}^{\prime} F_{k}^{a}=\partial_{j} F_{k}^{a}+F_{k}^{b} \Gamma_{j b}^{a}-\stackrel{\circ}{\Gamma}_{j k}^{\ell} F_{\ell}^{a} \tag{2.4}
\end{equation*}
$$

Usually, the left side of the above is written just as $\nabla_{j} F_{k}^{a}$, with the dependence of the right side on the auxiliary connection ∇° being understood. Now, we may take $F=\nabla \psi$ for some section $\psi \in \Gamma(E)$, so that

$$
\begin{equation*}
\nabla_{j} \nabla_{k} \psi^{a}=\partial_{j}\left(\nabla_{k} \psi^{a}\right)+\left(\nabla_{k} \psi^{b}\right) \Gamma_{j b}^{a}-\dot{\Gamma}_{j k}^{\ell}\left(\nabla_{\ell} \psi^{a}\right) \tag{2.5}
\end{equation*}
$$

Substitute (1.5) into the first two terms on the right side of (2.5) to compute

$$
\begin{align*}
\nabla_{j} \nabla_{k} \psi^{a} & =\partial_{j}\left(\partial_{k} \psi^{a}+\Gamma_{k b}^{a} \psi^{b}\right)+\left(\partial_{k} \psi^{b}+\Gamma_{k c}^{b} \psi^{c}\right) \Gamma_{j b}^{a}-\stackrel{\circ}{\Gamma}_{j k}\left(\nabla_{\ell} \psi^{a}\right) \\
& =\partial_{j} \partial_{k} \psi^{a}+\left(\partial_{j} \Gamma_{k b}^{a}\right) \psi^{b}+\Gamma_{k b}^{a} \partial_{j} \psi^{b}+\Gamma_{j b}^{a} \partial_{k} \psi^{b}+\Gamma_{j b}^{a} \Gamma_{k c}^{b} \psi^{c}-\stackrel{\circ}{\Gamma}_{j k}\left(\nabla_{\ell} \psi^{a}\right) \tag{2.6}\\
& =\left(\partial_{j} \partial_{k} \psi^{a}+\Gamma_{k b}^{a} \partial_{j} \psi^{b}+\Gamma_{j b}^{a} \partial_{k} \psi^{b}\right)+\left(\partial_{j} \Gamma_{k b}^{a}\right) \psi^{b}+\Gamma_{j b}^{a} \Gamma_{k c}^{b} \psi^{c}-\stackrel{\grave{\Gamma}}{j k} \ell \ell_{\ell}\left(\nabla_{\ell} \psi^{a}\right) .
\end{align*}
$$

Noting that the first group of three terms in the last line of (2.6) is symmetric in the pair (j, k), we may directly obtain that

$$
\begin{equation*}
\nabla_{j} \nabla_{k} \psi^{a}-\nabla_{k} \nabla_{j} \psi^{a}=\left(\partial_{j} \Gamma_{k b}^{a}-\partial_{k} \Gamma_{j b}^{a}\right) \psi^{b}+\left(\Gamma_{j b}^{a} \Gamma_{k c}^{b}-\Gamma_{k b}^{a} \Gamma_{j c}^{b}\right) \psi^{c}-\tau_{j k}^{\ell} \nabla_{\ell} \psi^{a} \tag{2.7}
\end{equation*}
$$

where $\tau_{j k}^{\ell}$ are the components of the torsion tensor of ∇°, defined by

$$
\begin{equation*}
\tau(X, Y)=\nabla_{X}^{\circ} Y-\nabla_{Y}^{\circ} X-[X, Y] \tag{2.8}
\end{equation*}
$$

If ∇° is torsionfree (i.e., $\tau=0$), substituting (1.3) into (2.7) and renaming $b \leftrightarrow c$, it follows that

$$
\begin{equation*}
\nabla_{j} \nabla_{k} \psi^{a}-\nabla_{k} \nabla_{j} \psi^{a}=R_{j k b}^{a} \psi^{b} \tag{2.9}
\end{equation*}
$$

as required.

3 Application to tensor bundles

In this section, we let ∇ be a torsionfree connection on M, and again denote by ∇ the induced connections on all tensor bundles over M. We also choose the "auxiliary" connection to be $\nabla^{\circ}=\nabla$. Set $E=T M^{\otimes r} \otimes T^{*} M^{\otimes s}$. A r-times contravariant and s-times covariant tensor field on M is a section of E, which may be written relative to a local coordinate system x^{j} for M as

$$
\begin{equation*}
T=T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} \partial_{i_{1}} \otimes \cdots \otimes \partial_{i_{r}} \otimes \mathrm{~d} x^{j_{1}} \otimes \cdots \otimes \mathrm{~d} x^{j_{s}} \tag{3.1}
\end{equation*}
$$

As we are not dealing with metrics and the process of raising/lowering indices, there is no need to stick to the more precise notation $T^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}}$. To apply (2.9), we need an expression for the curvature tensor of the induced connection on E. Such expression, however, will follow from the Leibniz rule combined with relations
(a) $R\left(\partial_{j}, \partial_{k}\right) \partial_{i_{a}}=R_{j k i_{a}}^{p} \partial_{p}$
(b) $R\left(\partial_{j}, \partial_{k}\right) \mathrm{d} x^{j_{b}}=-R_{j k q}{ }^{j_{b}} \mathrm{~d} x^{q}$
from the base cases $(r, s)=(1,0)$ and $(r, s)=(0,1)$. Indeed, we have that

$$
\begin{align*}
R\left(\partial_{j}, \partial_{k}\right) & \left(\partial_{i_{1}} \otimes \cdots \otimes \partial_{i_{r}} \otimes \mathrm{~d} x^{j_{1}} \otimes \cdots \otimes \mathrm{~d} x^{j_{s}}\right)= \\
= & \left(R_{j k i_{1}}{ }^{p_{1}} \partial_{p_{1}}\right) \otimes \cdots \otimes \partial_{i_{r}} \otimes \mathrm{~d} x^{j_{1}} \otimes \cdots \otimes \mathrm{~d} x^{j_{s}} \\
& +\cdots+\partial_{i_{1}} \otimes \cdots \otimes\left(R_{j k i_{r}}^{p_{r}} \partial_{p_{r}}\right) \otimes \mathrm{d} x^{j_{1}} \otimes \cdots \otimes \mathrm{~d} x^{j_{s}} \tag{3.3}\\
& +\partial_{i_{1}} \otimes \cdots \otimes \partial_{i_{r}} \otimes\left(-R_{j k q_{1}}^{j_{1}} \mathrm{~d} x^{q_{1}}\right) \otimes \cdots \otimes \mathrm{d} x^{j_{s}} \\
& +\cdots+\partial_{i_{1}} \otimes \cdots \otimes \partial_{i_{r}} \otimes \cdots \otimes \mathrm{~d} x^{j_{1}} \otimes \cdots \otimes\left(-R_{j k q_{s}}^{j_{s}} \mathrm{~d} x^{q_{s}}\right) .
\end{align*}
$$

With the aid of Kronecker deltas, we may informally rewrite (3.3) as

$$
\begin{align*}
& \frac{R\left(\partial_{j}, \partial_{k}\right)\left(\partial_{i_{1}} \otimes \cdots \otimes \partial_{i_{r}} \otimes \mathrm{~d} x^{j_{1}} \otimes \cdots \otimes \mathrm{~d} x^{j_{s}}\right)}{\partial_{p_{1}} \otimes \cdots \partial_{p_{r}} \otimes \mathrm{~d} x^{q_{1}} \otimes \cdots \otimes \mathrm{~d} x^{q_{s}}}= \tag{3.4}\\
& =\sum_{\ell=1}^{r} R_{j k i_{\ell}}{ }^{p_{\ell}} \delta_{i_{1}}^{p_{1}} \ldots \widehat{\delta_{i_{\ell}}^{p_{\ell}}} \ldots \delta_{i_{r}}^{p_{r}} \delta_{q_{1}}^{j_{1}} \ldots \delta_{q_{s}}^{j_{s}}-\sum_{\ell=1}^{s} R_{j k q_{\ell}}{ }^{{ }^{\ell}} \delta_{i_{1}}^{p_{1}} \ldots \delta_{i_{1}}^{p_{r}} \delta_{q_{1}}^{j_{1}} \ldots \widehat{\delta_{q_{\ell}}^{q_{\ell}}} \ldots \delta_{q_{s}}^{j_{s}} .
\end{align*}
$$

The right side of (3.4) is the curvature term present in the right side of (2.9) for our choice of E (after suitably adjusting dummy indices). Already contracting all the Kronecker deltas possible, we obtain that

$$
\begin{align*}
& \nabla_{j} \nabla_{k} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}-\nabla_{k} \nabla_{j} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}=R_{j k p}{ }^{i_{1}} T_{j_{1} \ldots j_{s}}^{p i_{2} \ldots i_{r}}+\cdots+R_{j k p}{ }^{i_{r}} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{-1} p} \tag{3.5}\\
&-R_{j k j_{1}}^{q} T_{q j_{2} \ldots j_{s}}^{i_{1} \ldots i_{r}}-\cdots-R_{j k j_{s}}{ }^{q} T_{j_{1} \ldots j_{s-1} q}^{i_{1} \ldots . i_{r}} .
\end{align*}
$$

The placement of signs follows (3.2). We list some particular cases of (3.5) below for the reader's convenience:
(i) $\nabla_{k} \nabla_{\ell} T_{i j}-\nabla_{\ell} \nabla_{k} T_{i j}=-R_{k \ell i}{ }^{q} T_{q j}-R_{k \ell j}{ }^{q} T_{i q}$.
(ii) $\nabla_{k} \nabla_{\ell} T_{i}^{r}-\nabla_{\ell} \nabla_{k} T_{i}^{r}=R_{k \ell p}{ }^{r} T_{i}^{p}-R_{k \ell i}{ }^{q} T_{q}^{r}$.
(iii) $\nabla_{\ell} \nabla_{m} T_{i j}^{k}-\nabla_{m} \nabla_{\ell} T_{i j}^{k}=R_{\ell m p}{ }^{k} T_{i j}^{p}-R_{\ell m i}{ }^{q} T_{q j}^{k}-R_{\ell m j}{ }^{q} T_{i q}^{k}$.

4 Geometric consequences

Here, we let $(M, \mathrm{~g})$ be a n-dimensional pseudo-Riemannian manifold, and ∇ be its Levi-Civita connection. One consequence of the Ricci identity (3.5) is that
if $(M, \mathrm{~g})$ has nonzero constant sectional curvature, then M does not admit nontrivial parallel vector fields, or parallel 1-forms.

If X is a parallel vector field on M, then $R_{i j p}{ }^{k} X^{p}=0$ reads $K\left(g_{j p} \delta_{i}^{k}-g_{i p} \delta_{j}^{k}\right) X^{p}=0$, where $K \neq 0$ is the sectional curvature of $(M, \mathrm{~g})$. Evaluating it and cancelling K gives us that $\delta_{i}^{k} X_{j}-\delta_{j}^{k} X_{i}=0$, and making $k=i$ yields $(n-1) X_{i}=0$, so that $X_{i}=0$. The argument for 1 -forms α is dual: $R_{i j k}{ }^{q} \alpha_{q}=0$ reads $K\left(g_{j k} \delta_{i}^{q}-g_{i k} \delta_{j}^{q}\right) \alpha_{q}=0$, and therefore $g_{j k} \alpha_{i}-g_{i k} \alpha_{j}=0$. Contracting against $g^{j k}$ leads to ($\left.\operatorname{dim} M-1\right) \alpha_{i}=0$, and hence $\alpha_{i}=0$.

