SEMIDIRECT PRODUCTS

Ivo Terek

In this write-up, we'll describe the Lie algebra structure induced on $\mathfrak{g} \times \mathfrak{h}$ by a semidirect product Lie group structure on $G \times H$, by essentially elaborating on some details of the computation outlined in https://math.stackexchange.com/a/3378604/ 118056. We will start by recalling some relevant definitions.

Definition 1

Let G be a Lie group with Lie algebra \mathfrak{g}.
(i) The conjugation by g is the map $C_{g}^{G}: G \rightarrow G$ given by $C_{g}^{G}(\hat{g})=g \hat{g} g^{-1}$.
(ii) The adjoint representation of G is the homomorphism $A d^{G}: G \rightarrow G L(\mathfrak{g})$ given by $\operatorname{Ad}^{G}(g)=\mathrm{d}\left(\mathrm{C}_{g}^{G}\right)_{e}$.
(iii) The adjoint representation of \mathfrak{g} is the homomorphism ad ${ }^{\mathfrak{g}}: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ given by ad ${ }^{\mathfrak{g}}=\mathrm{d}\left(\operatorname{Ad}^{G}\right)_{e}$.

Theorem 1

Let G be a Lie group with Lie algebra \mathfrak{g}. Then the Lie bracket on \mathfrak{g} satisfies that

$$
\begin{equation*}
[X, \hat{X}]_{\mathfrak{g}}=\operatorname{ad}_{X} \hat{X} \tag{0.1}
\end{equation*}
$$

for all $X, \hat{X} \in \mathfrak{g}$

Definition 2

Let G and H be Lie groups and $\rho: G \rightarrow \operatorname{Aut}(H)$ be a homomorphism. The semidirect product $G \ltimes_{\rho} H$ of G and H under ρ is the manifold $G \times H$ equipped with the product given by

$$
\begin{equation*}
(g, h)(\hat{g}, \hat{h})=(g \hat{g}, h \rho(g) \hat{h}) \tag{0.2}
\end{equation*}
$$

for all $(g, h),(\hat{g}, \hat{h}) \in G \times H$.
Remark. If ρ is understood, we'll write $G \ltimes H$ instead of $G \ltimes_{\rho} H$. Note that the identity element of $G \ltimes H$ is $\left(e_{G}, e_{H}\right)$, and that inverses are given by $(g, h)^{-1}=\left(g^{-1}, \rho\left(g^{-1}\right) h^{-1}\right)$ for every $(g, h) \in G \ltimes H$. Moreover, note that $\left\{e_{G}\right\} \times H$ is a normal subgroup of $G \ltimes H$ (thus justifying why this notation is used, as opposed to $G \rtimes H$). As we will see in the next computations, it is convenient to regard ρ as a bihomomorphism $\rho: G \times H \rightarrow H$.

Last updated: October 30, 2022. terekcouto. 1@osu. edu.

Proposition 1

The conjugations in G, H, and $G \ltimes H$ are related via

$$
\begin{equation*}
\mathrm{C}_{(g, h)}^{G \ltimes H}(\hat{g}, \hat{h})=\left(\mathrm{C}_{g}^{G}(\hat{g}), \mathrm{C}_{h}^{H}(\rho(g) \hat{h}) h \rho\left(\mathrm{C}_{g}^{G}(\hat{g})\right) h^{-1}\right), \tag{0.3}
\end{equation*}
$$

for every $(g, h),(\hat{g}, \hat{h}) \in G \ltimes H$.

Proof: Compute:

$$
\begin{align*}
\mathrm{C}_{(g, h)}^{G \ltimes H}(\hat{g}, \hat{h}) & =(g, h)(\hat{g}, \hat{h})(g, h)^{-1} \\
& =(g \hat{g}, h \rho(g) \hat{h})\left(g^{-1}, \rho\left(g^{-1}\right) h^{-1}\right) \\
& =\left(g \hat{g} g^{-1}, h \rho(g) \hat{h} \rho(g \hat{g})\left(\rho\left(g^{-1}\right) h^{-1}\right)\right) \tag{0.4}\\
& =\left(g \hat{g} g^{-1}, h \rho(g) \hat{h} h^{-1} h \rho\left(g \hat{g} g^{-1}\right) h^{-1}\right) \\
& =\left(\mathrm{C}_{g}^{G}(\hat{g}), \mathrm{C}_{h}^{H}(\rho(g) \hat{h}) h \rho\left(\mathrm{C}_{g}^{G}(\hat{g})\right) h^{-1}\right) .
\end{align*}
$$

Proposition 2

The adjoint representations of G, H, and $G \ltimes H$ are related via

$$
\begin{equation*}
\operatorname{Ad}_{(g, h)}^{G \ltimes H}(\hat{Y}, \hat{Z})=\left(\operatorname{Ad}_{g}^{G}(\hat{Y}), \operatorname{Ad}_{h}^{H}\left(\mathrm{~d}(\rho(g, \cdot))_{e_{H}} \hat{Z}\right)+h \mathrm{~d}\left(\rho\left(\cdot, h^{-1}\right)\right)_{e_{G}} \operatorname{Ad}_{g}^{G}(\hat{Y})\right), \tag{0.5}
\end{equation*}
$$

for all $(g, h) \in G \ltimes H$ and $(\hat{Y}, \hat{Z}) \in \mathfrak{g} \times \mathfrak{h}$, where by $h \mathrm{~d}\left(\rho\left(\cdot, h^{-1}\right)\right)_{e_{G}} \operatorname{Ad}_{g}^{G}(\hat{Y})$ we understand the result of applying the derivative at e_{H} of the left translation by $h \in H$ to the element $\mathrm{d}\left(\rho\left(\cdot, h^{-1}\right)\right)_{e_{G}} \operatorname{Ad}_{g}^{G}(\hat{Y}) \in \mathfrak{h}$.

Proof: We freeze (g, h) in (0.3), and differentiate it with respect to (\hat{g}, \hat{h}) at $\left(e_{G}, e_{H}\right)$, in the direction of (\hat{Y}, \hat{Z}). The first component evidently is $\operatorname{Ad}_{g}^{G}(\hat{Y})$ and, for the second one, we use the product rule, noting that setting $\hat{g}=e_{G}$ in $h \rho\left(\mathrm{C}_{g}^{G}(\hat{g})\right) h^{-1}$ yields e_{H}, and setting $\hat{h}=e_{H}$ in $C_{h}^{H}(\rho(g) \hat{h})$ yields e_{G}. In other words, we just need to differentiate the expressions $\mathrm{C}_{h}^{H}(\rho(g) \hat{h})$ and $h \rho\left(\mathrm{C}_{g}^{G}(\hat{g})\right) h^{-1}$ separately. The conclusion follows.

Proposition 3

The adjoint representations of $\mathfrak{g}, \mathfrak{h}$, and $\mathfrak{g} \ltimes \mathfrak{h}$ (the Lie algebra of $G \ltimes H$) are related via

$$
\begin{equation*}
\operatorname{ad}_{(Y, Z)}^{\mathfrak{q} \propto \mathfrak{h}}(\hat{Y}, \hat{Z})=\left(\operatorname{ad}_{Y}^{\mathfrak{g}} \hat{Y}, \operatorname{ad}_{Z}^{\mathfrak{h}} \hat{Z}+\operatorname{d} \rho_{\left(e_{G}, e_{H}\right)}(Y, \hat{Z})-\mathrm{d} \rho_{\left(e_{G}, e_{H}\right)}(\hat{Y}, Z)\right), \tag{0.6}
\end{equation*}
$$

for all $(Y, Z),(\hat{Y}, \hat{Z}) \in \mathfrak{g} \ltimes \mathfrak{h}$.

Proof: In a similar fashion to what was done in the previous computation, we freeze (\hat{Y}, \hat{Z}) in (0.5), and differentiate it with respect to (g, h) at $\left(e_{G}, e_{H}\right)$, in the direction of (Y, Z). Again, the first component trivially equals ad ${ }_{Y}^{\mathfrak{g}} \hat{Y}$. There are two terms to be discussed here, both relying on the idea that a full derivative may be written as a sum of partial derivatives and in the product rule.

- $\operatorname{Ad}_{h}^{H}\left(\mathrm{~d}(\rho(g, \cdot))_{e_{H}} \hat{Z}\right)$. Differentiating this yields two terms. To compute the first, we may set $h=e_{H}$ and differentiate the remaining expression, $\mathrm{d}(\rho(g, \cdot))_{e_{H}} \hat{Z}$ (as $\left.\operatorname{Ad}_{e_{H}}^{H}=\operatorname{Id}_{\mathfrak{h}}\right)$, at $g=e_{G}$ and in the direction of Y, to obtain $\mathrm{d} \rho_{\left(e_{G}, e_{H}\right)}(Y, \hat{Z})$. As for the second term, we may set $g=e_{G}$ and differentiate the remaining expression at $h=e_{H}$ in the direction of Z. However, $\mathrm{d}\left(\rho\left(e_{G}, \cdot\right)\right)_{e_{H}}$ is already the zero map.
- $h \mathrm{~d}\left(\rho\left(\cdot, h^{-1}\right)\right)_{e_{G}} \operatorname{Ad}_{g}^{G}(\hat{Y})$. Using the product rule together with the same principle as the above point, we see that differentiating this expression yields three terms. To compute the first, setting $g=e_{G}$ and the second h equal to e_{H} yields zero, as $\mathrm{d}\left(\rho\left(\cdot, e_{H}\right)\right)_{e_{G}}$ is already the zero map. For the second term, we set $g=e_{G}$ and the first h equal to e_{H}, so that differentiating $\mathrm{d}\left(\rho\left(\cdot, h^{-1}\right)\right)_{e_{G}} \hat{Y}$ at $h=e_{H}$ in the direction of Z yields $-\mathrm{d} \rho_{\left(e_{G}, e_{H}\right)}(\hat{Y}, Z)$, in view of the chain rule together with the fact that the derivative of the inversion map $H \ni h \mapsto h^{-1} \in H$ at $h=e_{H}$ is $-\mathrm{Id}_{\mathfrak{h}}$. Lastly, setting $h=e_{H}$ to try and differentiate the remaining expression with respect to g also gives us zero (again because $\mathrm{d}\left(\rho\left(\cdot, e_{H}\right)\right)_{e_{G}}$ is the zero map).

With this in place, the conclusion follows.
Now, Theorem 1 gives us how to compute Lie brackets in $\mathfrak{g} \ltimes \mathfrak{h}$:

Corollary 1

The Lie bracket in $\mathfrak{g} \ltimes \mathfrak{h}$ is given by

$$
\begin{equation*}
[(Y, Z),(\hat{Y}, \hat{Z})]_{\mathfrak{g} \times \mathfrak{h}}=\left([Y, \hat{Y}]_{\mathfrak{g}},[Z, \hat{Z}]_{\mathfrak{h}}+Y \cdot \hat{Z}-\hat{Y} \cdot Z\right) \tag{0.7}
\end{equation*}
$$

for all $(Y, Z),(\hat{Y}, \hat{Z}) \in \mathfrak{g} \ltimes \mathfrak{h}$, where the multiplication \cdot is a shorthand for $\mathrm{d} \rho_{\left(e_{G}, e_{H}\right)}$.
Let's conclude the discussion by noting how (0.7) suggests the definition of a semidirect product of (abstract) Lie algebras. It suffices to remember that the Lie algebra of $\operatorname{Aut}(H)$ equals the algebra $\mathfrak{d e r}(\mathfrak{h})$ of derivations of \mathfrak{h} when H is connected and simply connected. Replacing $\rho: G \rightarrow \operatorname{Aut}(H)$ with its derivative $\rho_{*}: \mathfrak{g} \rightarrow \mathfrak{d e r}(\mathfrak{h})$, we have:

Definition 3

Let \mathfrak{g} and \mathfrak{h} be Lie algebras, and let $\rho_{*}: \mathfrak{g} \rightarrow \mathfrak{d e r}(\mathfrak{h})$ be a homomorphism. The semidirect product $\mathfrak{g} \ltimes_{\rho_{*}} \mathfrak{h}$ of \mathfrak{g} and \mathfrak{h} under ρ_{*} is the vector space $\mathfrak{g} \times \mathfrak{h}$ equipped with the Lie bracket given by

$$
\begin{equation*}
[(Y, Z),(\hat{Y}, \hat{Z})]_{\mathfrak{g} \propto_{\rho_{*} \mathfrak{h}}}=\left([Y, \hat{Y}]_{\mathfrak{g}},[Z, \hat{Z}]_{\mathfrak{h}}+\rho_{*}(Y)(\hat{Z})-\rho_{*}(\hat{Y})(Z)\right) \tag{0.8}
\end{equation*}
$$

for all $(Y, Z),(\hat{Y}, \hat{Z}) \in \mathfrak{g} \ltimes \rho_{*} \mathfrak{h}$.

