SEMIDIRECT PRODUCTS

Ivo Terek

In this write-up, we'll describe the Lie algebra structure induced on $\mathfrak{g} \times \mathfrak{h}$ by a semidirect product Lie group structure on $G \times H$, by essentially elaborating on some details of the computation outlined in https://math.stackexchange.com/a/3378604/118056. We will start by recalling some relevant definitions.

Definition 1

Let *G* be a Lie group with Lie algebra \mathfrak{g} .

- (i) The **conjugation by** *g* is the map $C_g^G : G \to G$ given by $C_g^G(\hat{g}) = g\hat{g}g^{-1}$.
- (ii) The **adjoint representation of** *G* is the homomorphism $\operatorname{Ad}^G \colon G \to \operatorname{GL}(\mathfrak{g})$ given by $\operatorname{Ad}^G(g) = \operatorname{d}(C_g^G)_e$.
- (iii) The **adjoint representation of** \mathfrak{g} is the homomorphism $\mathrm{ad}^{\mathfrak{g}} \colon \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ given by $\mathrm{ad}^{\mathfrak{g}} = \mathrm{d}(\mathrm{Ad}^G)_{e}$.

Theorem 1

Let G be a Lie group with Lie algebra g. Then the Lie bracket on g satisfies that

$$[X, \hat{X}]_{\mathfrak{g}} = \mathrm{ad}_X \hat{X} \tag{0.1}$$

for all $X, \hat{X} \in \mathfrak{g}$

Definition 2

Let *G* and *H* be Lie groups and $\rho: G \to \operatorname{Aut}(H)$ be a homomorphism. The **semidirect product** $G \ltimes_{\rho} H$ of *G* and *H* under ρ is the manifold $G \times H$ equipped with the product given by

$$(g,h)(\hat{g},\hat{h}) = (g\hat{g},h\rho(g)\hat{h}),$$
 (0.2)

for all $(g, h), (\hat{g}, \hat{h}) \in G \times H$.

Remark. If ρ is understood, we'll write $G \ltimes H$ instead of $G \ltimes_{\rho} H$. Note that the identity element of $G \ltimes H$ is (e_G, e_H) , and that inverses are given by $(g, h)^{-1} = (g^{-1}, \rho(g^{-1})h^{-1})$ for every $(g, h) \in G \ltimes H$. Moreover, note that $\{e_G\} \times H$ is a normal subgroup of $G \ltimes H$ (thus justifying why this notation is used, as opposed to $G \rtimes H$). As we will see in the next computations, it is convenient to regard ρ as a bihomomorphism $\rho: G \times H \to H$.

Last updated: October 30, 2022. terekcouto.1@osu.edu.

Proposition 1

The conjugations in *G*, *H*, and $G \ltimes H$ are related via

$$C_{(g,h)}^{G \ltimes H}(\hat{g}, \hat{h}) = \left(C_{g}^{G}(\hat{g}), C_{h}^{H}(\rho(g)\hat{h}) h \rho(C_{g}^{G}(\hat{g})) h^{-1}\right),$$
(0.3)

for every $(g,h), (\hat{g}, \hat{h}) \in G \ltimes H$.

Proof: Compute:

$$C_{(g,h)}^{G \ltimes H}(\hat{g}, \hat{h}) = (g,h)(\hat{g}, \hat{h})(g,h)^{-1}
= (g\hat{g}, h\rho(g)\hat{h})(g^{-1}, \rho(g^{-1})h^{-1})
= (g\hat{g}g^{-1}, h\rho(g)\hat{h}\rho(g\hat{g})(\rho(g^{-1})h^{-1}))
= (g\hat{g}g^{-1}, h\rho(g)\hat{h}h^{-1}h\rho(g\hat{g}g^{-1})h^{-1})
= (C_g^G(\hat{g}), C_h^H(\rho(g)\hat{h})h\rho(C_g^G(\hat{g}))h^{-1}).$$
(0.4)

Proposition 2

The adjoint representations of G, H, and $G \ltimes H$ are related via

$$\operatorname{Ad}_{(g,h)}^{G\ltimes H}(\hat{Y},\hat{Z}) = \left(\operatorname{Ad}_{g}^{G}(\hat{Y}), \operatorname{Ad}_{h}^{H}(\operatorname{d}(\rho(g,\cdot))_{e_{H}}\hat{Z}) + h\operatorname{d}(\rho(\cdot,h^{-1}))_{e_{G}}\operatorname{Ad}_{g}^{G}(\hat{Y})\right), (0.5)$$

for all $(g,h) \in G \ltimes H$ and $(\hat{Y}, \hat{Z}) \in \mathfrak{g} \times \mathfrak{h}$, where by $h \operatorname{d}(\rho(\cdot, h^{-1}))_{e_G} \operatorname{Ad}_g^G(\hat{Y})$ we understand the result of applying the derivative at e_H of the left translation by $h \in H$ to the element $\operatorname{d}(\rho(\cdot, h^{-1}))_{e_G} \operatorname{Ad}_g^G(\hat{Y}) \in \mathfrak{h}$.

Proof: We freeze (g,h) in (0.3), and differentiate it with respect to (\hat{g}, \hat{h}) at (e_G, e_H) , in the direction of (\hat{Y}, \hat{Z}) . The first component evidently is $\operatorname{Ad}_g^G(\hat{Y})$ and, for the second one, we use the product rule, noting that setting $\hat{g} = e_G$ in $h\rho(C_g^G(\hat{g}))h^{-1}$ yields e_H , and setting $\hat{h} = e_H$ in $C_h^H(\rho(g)\hat{h})$ yields e_G . In other words, we just need to differentiate the expressions $C_h^H(\rho(g)\hat{h})$ and $h\rho(C_g^G(\hat{g}))h^{-1}$ separately. The conclusion follows. \Box

Proposition 3

The adjoint representations of \mathfrak{g} , \mathfrak{h} , and $\mathfrak{g} \ltimes \mathfrak{h}$ (the Lie algebra of $G \ltimes H$) are related via

$$\mathrm{ad}_{(Y,Z)}^{\mathfrak{g} \ltimes \mathfrak{h}}(\hat{Y},\hat{Z}) = \left(\mathrm{ad}_{Y}^{\mathfrak{g}}\hat{Y},\mathrm{ad}_{Z}^{\mathfrak{h}}\hat{Z} + \mathrm{d}\rho_{(e_{G},e_{H})}(Y,\hat{Z}) - \mathrm{d}\rho_{(e_{G},e_{H})}(\hat{Y},Z)\right), \qquad (0.6)$$

for all $(Y, Z), (\hat{Y}, \hat{Z}) \in \mathfrak{g} \ltimes \mathfrak{h}$.

Proof: In a similar fashion to what was done in the previous computation, we freeze (\hat{Y}, \hat{Z}) in (0.5), and differentiate it with respect to (g, h) at (e_G, e_H) , in the direction of (Y, Z). Again, the first component trivially equals $ad_Y^{\mathfrak{g}} \hat{Y}$. There are two terms to be discussed here, both relying on the idea that a full derivative may be written as a sum of partial derivatives and in the product rule.

- Ad^H_h(d(ρ(g, ·))_{e_H} Ẑ). Differentiating this yields two terms. To compute the first, we may set h = e_H and differentiate the remaining expression, d(ρ(g, ·))_{e_H} Ẑ (as Ad^H_{e_H} = Id_b), at g = e_G and in the direction of Y, to obtain dρ_(e_G,e_H)(Y, Ẑ). As for the second term, we may set g = e_G and differentiate the remaining expression at h = e_H in the direction of Z. However, d(ρ(e_G, ·))_{e_H} is already the zero map.
- *h* d(ρ(·, *h*⁻¹))_{e_G}Ad^G_g(Ŷ). Using the product rule together with the same principle as the above point, we see that differentiating this expression yields three terms. To compute the first, setting *g* = *e*_G and the second *h* equal to *e*_H yields zero, as d(ρ(·, *e*_H))_{*e*_G} is already the zero map. For the second term, we set *g* = *e*_G and the first *h* equal to *e*_H, so that differentiating d(ρ(·, *h*⁻¹))_{*e*_G}Ŷ at *h* = *e*_H in the direction of *Z* yields −dρ(*e*_G,*e*_H)(Ŷ, *Z*), in view of the chain rule together with the fact that the derivative of the inversion map *H* ∋ *h* → *h*⁻¹ ∈ *H* at *h* = *e*_H is −Id_b. Lastly, setting *h* = *e*_H to try and differentiate the remaining expression with respect to *g* also gives us zero (again because d(ρ(·, *e*_H))*e*_G is the zero map).

With this in place, the conclusion follows.

Now, Theorem 1 gives us how to compute Lie brackets in $\mathfrak{g} \ltimes \mathfrak{h}$:

Corollary 1

The Lie bracket in $\mathfrak{g} \ltimes \mathfrak{h}$ is given by

$$[(Y,Z),(\hat{Y},\hat{Z})]_{\mathfrak{g}\ltimes\mathfrak{h}} = \left([Y,\hat{Y}]_{\mathfrak{g}}, [Z,\hat{Z}]_{\mathfrak{h}} + Y \cdot \hat{Z} - \hat{Y} \cdot Z \right), \qquad (0.7)$$

for all (Y, Z), $(\hat{Y}, \hat{Z}) \in \mathfrak{g} \ltimes \mathfrak{h}$, where the multiplication \cdot is a shorthand for $d\rho_{(e_{C}, e_{H})}$.

Let's conclude the discussion by noting how (0.7) suggests the definition of a semidirect product of (abstract) Lie algebras. It suffices to remember that the Lie algebra of Aut(*H*) equals the algebra $\mathfrak{der}(\mathfrak{h})$ of derivations of \mathfrak{h} when *H* is connected and simply connected. Replacing $\rho: G \to \operatorname{Aut}(H)$ with its derivative $\rho_*: \mathfrak{g} \to \mathfrak{der}(\mathfrak{h})$, we have:

Definition 3

Let \mathfrak{g} and \mathfrak{h} be Lie algebras, and let $\rho_*: \mathfrak{g} \to \mathfrak{der}(\mathfrak{h})$ be a homomorphism. The **semidirect product** $\mathfrak{g} \ltimes_{\rho_*} \mathfrak{h}$ of \mathfrak{g} and \mathfrak{h} under ρ_* is the vector space $\mathfrak{g} \times \mathfrak{h}$ equipped with the Lie bracket given by

$$(Y, Z), (\hat{Y}, \hat{Z})]_{\mathfrak{g} \ltimes_{\rho_*} \mathfrak{h}} = \left([Y, \hat{Y}]_{\mathfrak{g}}, [Z, \hat{Z}]_{\mathfrak{h}} + \rho_*(Y)(\hat{Z}) - \rho_*(\hat{Y})(Z) \right), \qquad (0.8)$$

for all (Y, Z), $(\hat{Y}, \hat{Z}) \in \mathfrak{g} \ltimes_{\rho_*} \mathfrak{h}$.