# ON TOTAL SPACES OF TAUTOLOGICAL LINE BUNDLES 

Ivo Terek

## 1 The tautological line bundle $E_{1} \rightarrow \mathrm{P} V$

### 1.1 Setup, trivializations, and transition mappings

Given any $(n+1)$-dimensional vector space $V$ over a field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$, one may form the tautological line bundle over the projective space PV , which assigns to each point $L \in \mathrm{PV}$ the one-dimensional vector space $L$ itself. In other words, the fiber over $L$ is $L$. Writing $E_{1}$ for the total space of such a bundle, we have that

$$
\begin{equation*}
E_{1}=\bigsqcup_{L \in \mathrm{P} V} L=\bigcup_{L \in \mathrm{P} V}(\{L\} \times L)=\{(L, v) \in \mathrm{P} V \times V \mid v \in L\} \tag{1.1}
\end{equation*}
$$

Write $\pi: E_{1} \rightarrow \mathrm{PV}$ for the projection given by $\pi(L, v)=L$. For every linear functional $f \in V^{*} \backslash\{0\}$, we may construct a local trivialization $\chi_{f}$ for $E_{1}$ by noting that

$$
\begin{equation*}
\text { the set } U_{f}=\{L \in \mathrm{P} V \mid f[L]=\mathbb{R}\} \text { is open in } \mathrm{P} V \text {, } \tag{1.2}
\end{equation*}
$$

by definition of quotient topology, and defining

$$
\begin{equation*}
\chi_{f}: \pi^{-1}\left[U_{f}\right] \rightarrow U_{f} \times \mathbb{R} \text { by } \chi_{f}(L, v)=(L, f(v)), \tag{1.3}
\end{equation*}
$$

whose inverse is the mapping

$$
\begin{align*}
& \chi_{f}^{-1}: U_{f} \times \mathbb{R} \rightarrow \pi^{-1}\left[U_{f}\right] \text { defined by } \chi_{f}^{-1}(L, \lambda)=(L, \lambda x / f(x)) \text {, }  \tag{1.4}\\
& \text { where a nonzero element } x \in L \backslash\{0\} \text { (so } L=\mathbb{K} x) \text { is chosen at will. }
\end{align*}
$$

To see that the choice of $x$ in (1.4) does not matter, observe that replacing $x$ with any multiple $\mu x, \mu \in \mathbb{K} \backslash\{0\}$, it follows that $\lambda(\mu x) / f(\mu x)=\lambda \mu x /(\mu f(x))=\lambda x / f(x)$, by linearity of $f$.

Each restriction $\{L\} \times L \ni(L, v) \mapsto f(v) \in \mathbb{R}$ of $\chi_{f}$ in (1.3) is a linear isomorphism due to $L \in U_{f}$, and so $\left\{\left(U_{f}, \chi_{f}\right)\right\}_{f \in V^{*} \backslash\{0\}}$ is an atlas of trivializations for $E_{1}$. We proceed to describe its transition functions. To do so, we consider a second linear functional $h \in V^{*} \backslash\{0\}$ such that $U_{f} \cap U_{h} \neq \varnothing$, as well as the composition

$$
\begin{equation*}
\chi_{f} \circ \chi_{h}^{-1}:\left(U_{f} \cap U_{h}\right) \times \mathbb{R} \rightarrow\left(U_{f} \cap U_{h}\right) \times \mathbb{R}, \tag{1.5}
\end{equation*}
$$

Last updated: December 20, 2022. Email: terekcouto.1@osu.edu.
easily computed - by (1.4) - as

$$
\begin{equation*}
\left(\chi_{f} \circ \chi_{h}^{-1}\right)(L, \lambda)=\chi_{f}\left(L, \frac{\lambda x}{h(x)}\right)=\left(L, f\left(\frac{\lambda x}{h(x)}\right)\right)=\left(L, \frac{f(x)}{h(x)} \lambda\right) . \tag{1.6}
\end{equation*}
$$

The ratio $f(x) / h(x)$, however, does not depend on the choice of $x \in L \backslash\{0\}$, but instead only on the line $L$ itself. Therefore the transition functions

$$
\begin{equation*}
g_{f h}: U_{f} \cap U_{h} \rightarrow \mathrm{GL}_{1}(\mathbb{K})=\mathbb{K}^{\times} \text {are given by } g_{f h}(L)=f(x) / h(x), \tag{1.7}
\end{equation*}
$$

$$
\text { where a nonzero element } x \in L \backslash\{0\} \text { (so } L=\mathbb{K} x \text { ) is chosen at will. }
$$

### 1.2 Manifold-charts for $E_{1}$

Now, we recall that for any smooth vector bundle $E \rightarrow M$, charts for $E$ can be built from charts for $M$ together with trivializations for $E$. The situation for the tautological line bundle $E_{1} \rightarrow \mathrm{P} V$ considered here is particularly nice, as $\mathrm{P} V$ admits an atlas $\left\{\left(U_{f}, \varphi_{f}\right)\right\}_{f \in V^{*} \backslash\{0\}}$ whose domains are the same sets $U_{f}$ defined in (1.2). Namely, we have that
each $\varphi_{f}: U_{f} \rightarrow f^{-1}(1)$ is given by $\varphi_{f}(L)=x / f(x)$, where a nonzero element $x \in L \backslash\{0\}$ (so $L=\mathbb{K} x$ ) is chosen at will.

See Figure 1 for a geometric interpretation.


Figure 1: Hyperplane-valued coordinate charts for $\mathrm{P} V$.
The corresponding charts for $E_{1}$ will be given by the compositions


More precisely, we have that
$\psi_{f}: \pi^{-1}\left[U_{f}\right] \rightarrow f^{-1}(1) \times \mathbb{R}$ is given by $\psi_{f}(L, v)=(x / f(x), f(v))$, where a nonzero element $x \in L \backslash\{0\}$ (so $L=\mathbb{K} x$ ) is chosen at will.

We may again consider a second linear functional $h \in V^{*} \backslash\{0\}$ such that $U_{f} \cap U_{h} \neq \varnothing$, and directly compute the chart transitions

$$
\begin{equation*}
\psi_{f} \circ \psi_{h}^{-1}: \psi_{h}\left[\pi^{-1}\left[U_{f}\right] \cap \pi^{-1}\left[U_{h}\right]\right] \rightarrow \psi_{f}\left[\pi^{-1}\left[U_{f}\right] \cap \pi^{-1}\left[U_{h}\right]\right] . \tag{1.11}
\end{equation*}
$$

Before doing so, observe that $\psi_{f}\left[\pi^{-1}\left[U_{f}\right] \cap \pi^{-1}\left[U_{h}\right]\right]=\left(f^{-1}(1) \backslash \operatorname{ker} h\right) \times \mathbb{R}-$ and similarly for $\psi_{h}\left[\pi^{-1}\left[U_{f}\right] \cap \pi^{-1}\left[U_{h}\right]\right]=\left(h^{-1}(1) \backslash \operatorname{ker} f\right) \times \mathbb{R}$ - are disconnected. For instance,

> the connected components of $f^{-1}(1) \backslash$ ker $h$ are the two intersections $f^{-1}(1) \cap h^{-1}(0, \infty)$ and $f^{-1}(1) \cap h^{-1}(-\infty, 0)$.

With this in place, we compute $\psi_{f} \circ \psi_{h}^{-1}:\left(h^{-1}(1) \backslash \operatorname{ker} f\right) \times \mathbb{R} \rightarrow\left(f^{-1}(1) \backslash \operatorname{ker} h\right) \times \mathbb{R}$ as

$$
\begin{align*}
\psi_{f} \circ \psi_{h}^{-1}(u, \lambda) & =\left(\left(\varphi_{f} \times \operatorname{Id}_{\mathbb{R}}\right) \circ \chi_{f}\right) \circ\left(\left(\varphi_{h} \times \operatorname{Id}_{\mathbb{R}}\right) \circ \chi_{h}\right)^{-1}(u, \lambda) \\
& =\left(\varphi_{f} \times \operatorname{Id}_{\mathbb{R}}\right) \circ \chi_{f} \circ \chi_{h}^{-1} \circ\left(\varphi_{h} \times \operatorname{Id}_{\mathbb{R}}\right)^{-1}(u, \lambda) \\
& =\left(\varphi_{f} \times \operatorname{Id}_{\mathbb{R}}\right) \circ\left(\chi_{f} \circ \chi_{h}^{-1}\right) \circ\left(\varphi_{h}^{-1} \times \operatorname{Id}_{\mathbb{R}}\right)(u, \lambda) \\
& =\left(\varphi_{f} \times \operatorname{Id}_{\mathbb{R}}\right) \circ\left(\chi_{f} \circ \chi_{h}^{-1}\right)(\mathbb{K} u, \lambda)  \tag{1.13}\\
& \stackrel{(*)}{=}\left(\varphi_{f} \times \operatorname{Id}_{\mathbb{R}}\right)(\mathbb{K} u, \lambda f(u)) \\
& =\left(\frac{u}{f(u)}, \lambda f(u)\right)
\end{align*}
$$

where on $(*)$ we use (1.6) with $x=u$ together with $h(u)=1$. Writing $F=\psi_{f} \circ \psi_{h}^{-1}$ for simplicity, we have that $\mathrm{d} F_{(u, \lambda)}: \operatorname{ker} h \times \mathbb{R} \rightarrow \operatorname{ker} f \times \mathbb{R}$ is given by

$$
\begin{equation*}
\mathrm{d} F_{(u, \lambda)}(w, \xi)=\left(\frac{f(u) w-f(w) u}{f(u)^{2}}, \xi f(u)+\lambda f(w)\right) \tag{1.14}
\end{equation*}
$$

At this point, it makes no sense to ask ourselves whether $F$ is orientation-preserving or orientation-reversing, as our charts for $P V$ are not valued in $\mathbb{R}^{n}$.

### 1.3 Intrinsic orientability?

Provided $V$ itself is real and oriented, there is a way to assign orientations for $\operatorname{ker} f$ and $\operatorname{ker} h$, and thus proceed with the discussion. To do it, fix a volume form $\Omega \in\left[V^{*}\right]^{\wedge(n+1)} \backslash\{0\}$, and consider a basis $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ for ker $f$. The linear functional $\Omega\left(v_{1}, \ldots, v_{n}, \cdot\right): V \rightarrow \mathbb{R}$ vanishes on $\operatorname{ker} f$, and therefore induces a nonzero due to linear independence of $\mathcal{B}$ - functional $\Omega_{\mathcal{B}}: V / \operatorname{ker} f \rightarrow \mathbb{R}$, as does $f$ itself, say $\widetilde{f}: V / \operatorname{ker} f \rightarrow \mathbb{R}$. As $V / \operatorname{ker} f$ is one-dimensional, we have that $\Omega_{\mathcal{B}}=\alpha \widetilde{f}$ for some scalar $\alpha \in \mathbb{R} \backslash\{0\}$. We will say that $\mathcal{B}$ is positive or negative according to whether $\alpha$ is positive or negative, respectively. Observe that while $\operatorname{ker} f=\operatorname{ker}(\lambda f)$ for every $\lambda \in \mathbb{R} \backslash\{0\}$, the orientation will change if $\lambda<0$, so that the choice of "gauge" functional realizing a hyperplane as its kernel does matter.

One strategy would be to assume from here on that $\mathbb{K}=\mathbb{R}$ and that a volume form $\Omega$ for $V$ is fixed, and verify whether $\mathrm{d} F_{(u, \lambda)}$ takes positive bases for $\operatorname{ker} h \times \mathbb{R}$ onto positive bases for $\operatorname{ker} f \times \mathbb{R}$, but this sounds very unpleasant to do.

### 1.4 Coordinate computations

We assume that $V=\mathbb{R}^{n+1}$ and write $\mathbb{R P}^{n}=\mathrm{P}\left(\mathbb{R}^{n+1}\right)$. Instead of considering the full atlases $\left\{\left(U_{f}, \chi_{f}\right)\right\}_{f \in V^{*} \backslash\{0\}}$ and $\left\{\left(U_{\varphi}, \varphi_{f}\right)\right\}_{f \in V^{*} \backslash\{0\}}$ of trivializations for $E_{1}$ and charts for $\mathbb{R P}^{n}$, respectively, we let $f$ range over the set $\left\{\pi_{0}, \ldots, \pi_{n}\right\}$ of coordinate projections $\pi_{j}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, and write simply $U_{j}=U_{\pi_{j}}$ and $\chi_{j}=\chi_{\pi_{j}}$, for $0 \leq j \leq n$. In particular, deleting the $j$-th coordinate describes an (affine) isomorphism between each hyperplane $\pi_{j}^{-1}(1)$ and $\mathbb{R}^{n}$.

Whenever $x=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \backslash\{0\}$, we will write $\left[x_{0}: \cdots: x_{n}\right]=\mathbb{R} x \in \mathbb{R P}^{n}$ for the so-called homogeneous coordinates of $\mathbb{R} x$. With this notation in place, the domains $U_{j}$ - see (1.2) - become

$$
\begin{equation*}
U_{i}=\left\{\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{R P}^{n} \mid x_{i} \neq 0\right\}, \quad 0 \leq i \leq n \tag{1.15}
\end{equation*}
$$

while the charts (1.8) now read

$$
\begin{equation*}
\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}, \quad \varphi_{i}\left(\left[x_{0}: \cdots: x_{n}\right]\right)=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right) . \tag{1.16}
\end{equation*}
$$

The trivializations $\chi_{i}$ for $E_{1}-c f$. (1.3) - are given by

$$
\begin{equation*}
\chi_{i}: \pi^{-1}\left[U_{i}\right] \rightarrow U_{i} \times \mathbb{R}, \quad \chi_{i}\left(\left[x_{0}: \cdots: x_{n}\right],\left(v_{0}, \ldots, v_{n}\right)\right)=\left(\left[x_{0}: \cdots: x_{n}\right], v_{i}\right), \tag{1.17}
\end{equation*}
$$

with transition maps $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathrm{GL}_{1}(\mathbb{R})=\mathbb{R}^{\times}$given by

$$
\begin{equation*}
g_{i j}\left(\left[x_{0}: \cdots: x_{n}\right]\right)=\frac{x_{i}}{x_{j}} \tag{1.18}
\end{equation*}
$$

according to (1.7). The manifold-charts for $E_{1}$, defined in (1.10), simply reduce to the mappings $\psi_{i}: \pi^{-1}\left[U_{i}\right] \rightarrow \mathbb{R}^{n+1}$, given by

$$
\begin{equation*}
\psi_{i}\left(\left[x_{0}: \cdots: x_{n}\right],\left(v_{0}, \ldots, v_{n}\right)\right)=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}, v_{i}\right) . \tag{1.19}
\end{equation*}
$$

Finally, to describe the transition maps computed in (1.13), for $i<j$, start noting that

$$
\begin{equation*}
\varphi_{j}\left[U_{i} \cap U_{j}\right]=\mathbb{R}_{t_{i} \neq 0}^{n} \quad \text { and } \quad \varphi_{i}\left[U_{i} \cap U_{j}\right]=\mathbb{R}_{t_{j-1} \neq 0}^{n} \tag{1.20}
\end{equation*}
$$

are disconnected (compare it with (1.12)) so that $\psi_{i} \circ \psi_{j}^{-1}: \mathbb{R}_{t_{i} \neq 0}^{n} \times \mathbb{R} \rightarrow \mathbb{R}_{t_{j-1} \neq 0}^{n} \times \mathbb{R}$ is given by

$$
\begin{align*}
\left(\psi_{i} \circ \psi_{j}^{-1}\right) & \left(t_{1}, \ldots, t_{n}, s\right)= \\
& =\psi_{i}\left(\left[t_{1}: \cdots: t_{j-1}: 1: t_{j}: \cdots: t_{n}\right],\left(t_{1} s, \ldots, t_{j-1} s, s, t_{j} s, \ldots, t_{n} s\right)\right)  \tag{1.21}\\
& =\left(\frac{t_{1}}{t_{i}}, \ldots, \frac{t_{i-1}}{t_{i}}, \frac{t_{i+1}}{t_{i}}, \ldots, \frac{t_{j-1}}{t_{i}}, \frac{1}{t_{i}}, \frac{t_{j}}{t_{i}}, \ldots, \frac{t_{n}}{t_{i}}, t_{i} s\right)
\end{align*}
$$

The Jacobian matrix of $\psi_{i} \circ \psi_{j}^{-1}$ is best described in particular cases.

In $\mathbb{R P}^{1}, \psi_{0} \circ \psi_{1}^{-1}(t, s)=(1 / t, t s)$ has

$$
\mathrm{d}\left(\psi_{0} \circ \psi_{1}^{-1}\right)(t, s)=\left[\begin{array}{cc}
-1 / t^{2} & 0  \tag{1.22}\\
s & t
\end{array}\right], \quad \operatorname{det} \mathrm{d}\left(\psi_{0} \circ \psi_{1}^{-1}\right)(t, s)=-\frac{1}{t}
$$

In $\mathbb{R} P^{2}$, we have

$$
\begin{align*}
& \psi_{0} \circ \psi_{1}^{-1}\left(t_{1}, t_{2}, s\right)=\left(\frac{1}{t_{1}}, \frac{t_{2}}{t_{1}}, t_{1} s\right) \\
& \psi_{0} \circ \psi_{2}^{-1}\left(t_{1}, t_{2}, s\right)=\left(\frac{t_{2}}{t_{1}}, \frac{1}{t_{1}}, t_{1} s\right)  \tag{1.23}\\
& \psi_{1} \circ \psi_{2}^{-1}\left(t_{1}, t_{2}, s\right)=\left(\frac{t_{1}}{t_{2}}, \frac{1}{t_{2}}, t_{2} s\right)
\end{align*}
$$

with Jacobians

$$
\left[\begin{array}{ccc}
-1 / t_{1}^{2} & 0 & 0  \tag{1.24}\\
-t_{2} / t_{1}^{2} & 1 / t_{1} & 0 \\
s & 0 & t_{1}
\end{array}\right], \quad\left[\begin{array}{ccc}
-t_{2} / t_{1}^{2} & 1 / t_{1} & 0 \\
-1 / t_{1}^{2} & 0 & 0 \\
s & 0 & t_{1}
\end{array}\right],\left[\begin{array}{ccc}
1 / t_{2} & -t_{1} / t_{2}^{2} & 0 \\
0 & -1 / t_{2}^{2} & 0 \\
0 & s & t_{2}
\end{array}\right] .
$$

The Jacobian determinant of the single transition mapping listed for $\mathbb{R P}^{1}$ changes sign on its domain $\mathbb{R}^{\times} \times \mathbb{R}$, while the three Jacobian determinants listed for $\mathbb{R}^{2}$ are all negative. This seems to suggest that whether the total space of $E_{1} \rightarrow \mathbb{R} P^{n}$ is an orientable manifold or not depends on the parity of $n$.

## 2 The line bundles $E_{d}$

Still with the setup of the previous section, and noting that tensor products of onedimensional vector spaces are again one-dimensional, the following generalization becomes natural: let $d>0$ and assign to each point $L \in \mathrm{PV}$, the tensor power line $L^{\otimes d}$. Write $E_{d}$ for the total space of such a bundle, so that

$$
\begin{equation*}
E_{d}=\bigsqcup_{L \in \mathrm{P} V} L^{\otimes d}=\bigcup_{L \in \mathrm{P} V}\{L\} \times L^{\otimes d}=\left\{(L, \Theta) \in \mathrm{P} V \times V^{\otimes d} \mid \Theta \in L^{\otimes d}\right\} \tag{2.1}
\end{equation*}
$$

and $\pi: E_{d} \rightarrow \mathrm{P} V$ for the projection given by $\pi(L, \Theta)=L$. Clearly $E_{d}=\left(E_{1}\right)^{\otimes d}$, so the structure of $E_{d}$ is derived from the one in $E_{1}$. Similarly, one may define $E_{-1}$ by assigning to each point $L \in \mathrm{P} V$ the dual line $L^{*}$, thus making sense of $E_{d}$ for $d<0$. Namely, the fiber of $E_{d}$ over $L$ when $d<0$ is simply $\left[L^{*}\right]^{\otimes|d|}$. When $d=0$, we obtain the trivial line bundle $\mathrm{P} V \times \mathbb{R} \rightarrow \mathrm{P} V$ as $L^{\otimes 0}=\mathbb{R}$ by default.

For $d>0$ and $L \in \mathrm{P} V$, note that if $x \in L \backslash\{0\}$, then $x^{\otimes d} \in L^{\otimes d} \backslash\{0\}$, so we may consider $d$ th tensor power $f^{\otimes d}$ of any linear functional $f \in V^{*} \backslash\{0\}$ with $f[L]=\mathbb{R}$, characterized by $f^{\otimes d}\left(x^{\otimes d}\right)=f(x)^{d}$, inducing an isomorphism between $L^{\otimes d}$ and $\mathbb{R}$.

When $d<0$, replace $L$ with $L^{*}$ and switch the roles of $f$ and $x$ in the previous paragraph, regarding $x$ as an element of $L^{* *}$ instead.

With the setup of the previous section, it now follows that the transition maps $g_{f h}: U_{f} \cap U_{h} \rightarrow \mathrm{GL}_{1}(\mathbb{R})=\mathbb{R}^{\times}$are given by

$$
\begin{equation*}
g_{f h}(L)=\frac{f^{\otimes d}\left(x^{\otimes d}\right)}{h^{\otimes d}\left(x^{\otimes d}\right)}=\frac{f(x)^{d}}{h(x)^{d}}=\left(\frac{f(x)}{h(x)}\right)^{d}, \tag{2.2}
\end{equation*}
$$

where $x \in L \backslash\{0\}$ is chosen at will, as usual.
As a toy problem, we consider $E_{d} \rightarrow \mathbb{R P}^{1}$. When is the manifold $E_{d}$ orientable? Does the answer depend on $d$ ? Mimicking what was done in (1.13) and incorporating $d$ th powers on (1.18), we have that

$$
\begin{equation*}
\psi_{0} \circ \psi_{1}^{-1}(t, s)=\psi_{0}\left([t: 1],(t s, s)^{\otimes d}\right)=\left(\frac{1}{t^{\prime}} t^{d} s\right) \tag{2.3}
\end{equation*}
$$

so that

$$
\mathrm{d}\left(\psi_{0} \circ \psi_{1}^{-1}\right)(t, s)=\left[\begin{array}{cc}
-1 / t^{2} & 0  \tag{2.4}\\
d t^{d-1} s & t^{d}
\end{array}\right]
$$

has determinant equal to $-t^{d-2}$. So, whenever $d$ is even, the sign of such determinant is constant (so that $E_{d}$ is orientable), but changes signs when $d$ is odd (so that $E_{d}$ is non-orientable).

## 3 And on Grassmannians?

Consider instead the Grassmannian manifold of $k$-dimensional subspaces of $V$, $\operatorname{Gr}_{k}(V)$. There is a tautological vector bundle of rank $k$ over $E_{1} \rightarrow \operatorname{Gr}_{k}(V)$, whose fiber over a point $W \in \operatorname{Gr}_{k}(V)$ is $W$ itself. If $d \in \mathbb{Z}$, one may again consider $E_{d} \rightarrow \operatorname{Gr}_{k}(V)$ by assigning to $W$ the vector space $W^{\otimes d}$ (where for $d<0$ we understand that $W$ is replaced with $W^{*}$ and $d$ with $-d$ ). What can be said about the total space of such a bundle?

