THE "EINSTEIN MANIFOLD"

Ivo Terek

Fix once and for all a real pseudo-Euclidean vector space (V, g) with indefinite signature, i.e., g is not positive-definite nor negative-negative. This means that if the signature of g is (i_+, i_-) , we have $i_+, i_- \ge 1$. We'll also write $g = \langle \cdot, \cdot \rangle$ whenever convenient. Let $\mathscr{C} = \{x \in V \setminus \{0\} \mid \langle x, x \rangle = 0\}$ denote the lightcone of (V, g). On \mathscr{C} , define a equivalence relation ~ by saying that $u \sim v$ if $v = \lambda u$ for some non-zero $\lambda \in \mathbb{R}$, and consider the quotient $\mathbb{E} = \mathscr{C}/_{\sim}$. Equivalently, \mathbb{E} is the quotient of \mathscr{C} under the linear action $\mathbb{R}^{\times} \circlearrowright \mathscr{C}$ given by multiplication. Geometrically, \mathbb{E} is the set of all lightrays in (V, g), and it is called the *Einstein manifold*. This name is a historical accident, and is unrelated to the notion of an Einstein manifold, where the Ricci tensor is a constant multiple of the metric. The quotient projection $\pi : \mathscr{C} \to \mathbb{E}$ defines a principal \mathbb{R}^{\times} -bundle. Indeed, the action $\mathbb{R}^{\times} \circlearrowright \mathscr{C}$ is free and the (enriched) action map $\mathscr{C} \times \mathbb{R}^{\times} \to \mathscr{C} \times \mathscr{C}$ is closed. Now, given $L \in \mathbb{E}$, we may choose a non-zero $u \in L$ and consider the derivative $d\pi_u : T_u \mathscr{C} = u^{\perp} \to T_L \mathbb{E}$. The vertical spaces are the kernels ker $d\pi_u = \mathbb{R}u$, which establishes that $T_L \mathbb{E} \cong u^{\perp}/\mathbb{R}u = L^{\perp}/L$.

These identifications allow us to try and transfer geometric structures from (V, g) or \mathscr{C} to \mathbb{E} , but the problem is that the isomorphism $T_L\mathbb{E} \cong L^{\perp}/L$ is not natural, and depends on a choice of non-zero vector $u \in L$. Since the vector u is lightlike, the scalar product g passes to the quotient $T_L\mathbb{E} \cong u^{\perp}/\mathbb{R}u$ as a scalar product g_u , and has signature (p,q), where $i_+ = p + 1$ and $i_- = q + 1$ (indeed, the degenerate metric signature of the lightlike hyperplane u^{\perp} is $(i_+ - 1, i_- - 1, 1)$, and modding out $\mathbb{R}u$ eliminates the degenerate dimension). However, this does not mean we have defined a pseudo-Riemannian metric on \mathbb{E} , as we'll see later that it is impossible to make consistent choice of u's for each L unless g has Lorentzian (or anti-Lorentzian) signature. To understand better what happens, consider a non-zero $\lambda \in \mathbb{R}$, and let's show that $g_{\lambda u} = \lambda^2 g_u$ on $T_L\mathbb{E}$. To wit: g_u is the only scalar product in $T_L\mathbb{E}$ for which $(d\pi_u)^*(g_u) = g$, but if $m_{\lambda}: V \to V$ is the multiplication by λ , we have that $\pi \circ m_{\lambda} = \pi$, leading to $d\pi_{\lambda u} \circ m_{\lambda} = d\pi_u$, so that

$$g = (d\pi_u)^*(g_u) = (d\pi_{\lambda u} \circ m_{\lambda})^*(g_u) = (m_{\lambda})^*(d\pi_{\lambda u})^*(g_u) = (d\pi_{\lambda u})^*(\lambda^2 g_u).$$

But $g = (d\pi_{\lambda u})^* (g_{\lambda u})$ as well, and $(d\pi_{\lambda u})^*$ is injective (because π is a submersion), and thus $g_{\lambda u} = \lambda^2 g_u$, as required. This means that we have defined a field of pointwise conformal structures (i.e., inner products up to a positive scalar factor in each $T_L \mathbb{E}$) on \mathbb{E} , and "smoothness" follows from the fact that $\pi : \mathscr{C} \to \mathbb{E}$ admits smooth local sections: if ψ_1 and ψ_2 are two smooth local sections of π , then we may write $\psi_2 = \lambda \psi_1$ with some local smooth function λ , and the above says that on their common domain, the conformal factor λ^2 between the local pseudo-Riemannian metrics induced by ψ_2 and ψ_2 is smooth. Of course, one may glue local representatives via partitions of unity to obtain a global representative of the smooth conformal structure \mathfrak{C} so defined.

Moving on, instead of considering the equivalence relation ~ previously defined, one can define on \mathscr{C} a second relation \approx by saying that $x \approx y$ if $y = \lambda x$ for some positive $\lambda \in \mathbb{R}_{>0}$. The quotient $\widetilde{\mathbb{E}} = \mathscr{C}/_{\approx}$ is the set of all lightlike half-lines in (V, g). Equivalently, $\widetilde{\mathbb{E}}$ is the quotient of \mathscr{C} under the linear action $\mathbb{R}_{>0} \circlearrowright \mathscr{C}$ given by multiplication. The projection $\widetilde{\pi} \colon \mathscr{C} \to \widetilde{\mathbb{E}}$ defines a principal $\mathbb{R}_{>0}$ -bundle and everything claimed for \mathbb{E} remains true for $\widetilde{\mathbb{E}}$ as well. In particular, the identity map $\mathscr{C} \to \mathscr{C}$ induces a two-fold covering map $\widetilde{\mathbb{E}} \to \mathbb{E}$, which takes a lightlike half-line to the lightray it spans. With this in place, to understand \mathbb{E} it suffices to understand $\widetilde{\mathbb{E}}$, and for this we'll take an orthogonal decomposition $V = V_+ \oplus V_-$, where the restriction of g to V_+ is positive-definite and to V_- is negative-definite (and hence dim $V_{\pm} = i_{\pm}$). The obvious map

$$\widetilde{\mathbb{E}} \ni \mathbb{R}_{>0} x \mapsto \left(\frac{x_+}{\|x_+\|}, \frac{x_-}{\|x_-\|}\right) \in \mathbb{S}^p \times \mathbb{S}^q$$

is a diffeomorphism, with inverse

$$\mathbb{S}^p \times \mathbb{S}^q \ni (u_+, u_-) \mapsto \mathbb{R}_{>0}(u_+ + u_-) \in \mathbb{E},$$

where \mathbb{S}^p is the unit sphere of V_+ and \mathbb{S}^q is the unit sphere of V_- (it is equipped with the induced negative-definite round metric). Note that here we cannot replace $\widetilde{\mathbb{E}}$ with \mathbb{E} , as the tentative map $\mathbb{E} \to \mathbb{S}^p \times \mathbb{S}^q$ would not be well-defined. However, on the other direction, the sum map $\mathbb{S}^p \times \mathbb{S}^q \to V$ is an isometric immersion, which happens to take values in \mathscr{C} — and composing with π , we obtain a two-fold covering map $\mathbb{S}^p \times \mathbb{S}^q \to \mathbb{E}$. The non-trivial deck transformation $(u_+, u_-) \mapsto (-u_+, -u_-)$ is an isometry, so the metric in $\mathbb{S}^p \times \mathbb{S}^q$ passes to the quotient, giving a global representative of \mathfrak{C} . Since the sectional curvatures of \mathbb{S}^p and \mathbb{S}^q are constant and opposites, it follows that $\mathbb{S}^p \times \mathbb{S}^q$ is conformally flat (and hence the conformal structure \mathfrak{C} on \mathbb{E} is flat). Now, let's conclude the discussion with two remarks regarding the Lorentz case.

- The bundle π: C → E is trivial if and only if g is Lorentzian or anti-Lorentzian. Say that g is Lorentzian and write, with the above notation, V_− = ℝw for a unit timelike vector w ∈ V, so that C ∋ x ↦ (ℝx, ⟨x, w⟩) ∈ E × ℝ[×] is a global trivialization of π. Conversely, assume that g is not Lorentzian or anti-Lorentzian, but that π defines a trivial bundle: since it is a line bundle, it is orientable, meaning that if we choose a null plane Π ⊆ V, the orientation of C induces an orientation of the tautological line bundle of the projective line PΠ, which is a contradiction (the total space of such tautological bundle is a Möbius strip).
- The bundle S^p × S^q → E is trivial if and only if g is Lorentzian or anti-Lorentzian. This happens since the total space of two-fold covering map over a connected base space is disconnected if and only if the covering map is a trivial Z₂-bundle, and S^p × S^q is disconnected if and only if p = 0 (g is anti-Lorentzian) or q = 0 (g is Lorentzian).