The "Einstein MANifold"

Ivo Terek

Fix once and for all a real pseudo-Euclidean vector space ($V, \mathrm{~g}$) with indefinite signature, i.e., g is not positive-definite nor negative-negative. This means that if the signature of g is $\left(i_{+}, i_{-}\right)$, we have $i_{+}, i_{-} \geq 1$. We'll also write $\mathrm{g}=\langle\cdot, \cdot\rangle$ whenever convenient. Let $\mathscr{C}=\{x \in V \backslash\{0\} \mid\langle x, x\rangle=0\}$ denote the lightcone of $(V, \mathrm{~g})$. On \mathscr{C}, define a equivalence relation \sim by saying that $u \sim v$ if $v=\lambda u$ for some non-zero $\lambda \in \mathbb{R}$, and consider the quotient $\mathbb{E}=\mathscr{C} / \sim$. Equivalently, \mathbb{E} is the quotient of \mathscr{C} under the linear action $\mathbb{R}^{\times} \circlearrowright \mathscr{C}$ given by multiplication. Geometrically, \mathbb{E} is the set of all lightrays in $(V, \mathrm{~g})$, and it is called the Einstein manifold. This name is a historical accident, and is unrelated to the notion of an Einstein manifold, where the Ricci tensor is a constant multiple of the metric. The quotient projection $\pi: \mathscr{C} \rightarrow \mathbb{E}$ defines a principal \mathbb{R}^{\times}-bundle. Indeed, the action $\mathbb{R}^{\times} \circlearrowright \mathscr{C}$ is free and the (enriched) action map $\mathscr{C} \times \mathbb{R}^{\times} \rightarrow \mathscr{C} \times \mathscr{C}$ is closed. Now, given $L \in \mathbb{E}$, we may choose a non-zero $u \in L$ and consider the derivative $\mathrm{d} \pi_{u}: T_{u} \mathscr{C}=u^{\perp} \rightarrow T_{L} \mathbb{E}$. The vertical spaces are the kernels $\operatorname{ker} \mathrm{d} \pi_{u}=\mathbb{R} u$, which establishes that $T_{L} \mathbb{E} \cong u^{\perp} / \mathbb{R} u=L^{\perp} / L$.

These identifications allow us to try and transfer geometric structures from $(V, \mathrm{~g})$ or \mathscr{C} to \mathbb{E}, but the problem is that the isomorphism $T_{L} \mathbb{E} \cong L^{\perp} / L$ is not natural, and depends on a choice of non-zero vector $u \in L$. Since the vector u is lightlike, the scalar product g passes to the quotient $T_{L} \mathbb{E} \cong u^{\perp} / \mathbb{R} u$ as a scalar product $g u$, and has signature (p, q), where $i_{+}=p+1$ and $i_{-}=q+1$ (indeed, the degenerate metric signature of the lightlike hyperplane u^{\perp} is $\left(i_{+}-1, i_{-}-1,1\right)$, and modding out $\mathbb{R} u$ eliminates the degenerate dimension). However, this does not mean we have defined a pseudo-Riemannian metric on \mathbb{E}, as we'll see later that it is impossible to make consistent choice of u 's for each L unless g has Lorentzian (or anti-Lorentzian) signature. To understand better what happens, consider a non-zero $\lambda \in \mathbb{R}$, and let's show that $\mathrm{g}_{\lambda u}=\lambda^{2} \mathrm{~g}_{u}$ on $T_{L} \mathbb{E}$. To wit: g_{u} is the only scalar product in $T_{L} \mathbb{E}$ for which $\left(\mathrm{d} \pi_{u}\right)^{*}\left(\mathrm{~g}_{u}\right)=\mathrm{g}$, but if $m_{\lambda}: V \rightarrow V$ is the multiplication by λ, we have that $\pi \circ m_{\lambda}=\pi$, leading to $\mathrm{d} \pi_{\lambda u} \circ m_{\lambda}=\mathrm{d} \pi_{u}$, so that

$$
\mathrm{g}=\left(\mathrm{d} \pi_{u}\right)^{*}\left(\mathrm{~g}_{u}\right)=\left(\mathrm{d} \pi_{\lambda u} \circ m_{\lambda}\right)^{*}\left(\mathrm{~g}_{u}\right)=\left(m_{\lambda}\right)^{*}\left(\mathrm{~d} \pi_{\lambda u}\right)^{*}\left(\mathrm{~g}_{u}\right)=\left(\mathrm{d} \pi_{\lambda u}\right)^{*}\left(\lambda^{2} \mathrm{~g}_{u}\right) .
$$

But $\mathrm{g}=\left(\mathrm{d} \pi_{\lambda u}\right)^{*}\left(\mathrm{~g}_{\lambda u}\right)$ as well, and $\left(\mathrm{d} \pi_{\lambda u}\right)^{*}$ is injective (because π is a submersion), and thus $\mathrm{g}_{\lambda u}=\lambda^{2} \mathrm{~g}_{u}$, as required. This means that we have defined a field of pointwise conformal structures (i.e., inner products up to a positive scalar factor in each $T_{L} \mathbb{E}$) on \mathbb{E}, and "smoothness" follows from the fact that $\pi: \mathscr{C} \rightarrow \mathbb{E}$ admits smooth local sections: if ψ_{1} and ψ_{2} are two smooth local sections of π, then we may write $\psi_{2}=\lambda \psi_{1}$ with some local smooth function λ, and the above says that on their common domain, the conformal factor λ^{2} between the local pseudo-Riemannian metrics induced by ψ_{2}
and ψ_{2} is smooth. Of course, one may glue local representatives via partitions of unity to obtain a global representative of the smooth conformal structure \mathfrak{C} so defined.

Moving on, instead of considering the equivalence relation \sim previously defined, one can define on \mathscr{C} a second relation \approx by saying that $x \approx y$ if $y=\lambda x$ for some positive $\lambda \in \mathbb{R}_{>0}$. The quotient $\widetilde{\mathbb{E}}=\mathscr{C} / \approx$ is the set of all lightlike half-lines in $(V, \mathrm{~g})$. Equivalently, \mathbb{E} is the quotient of \mathscr{C} under the linear action $\mathbb{R}_{>0} \circlearrowright \mathscr{C}$ given by multiplication. The projection $\widetilde{\pi}: \mathscr{C} \rightarrow \widetilde{\mathbb{E}}$ defines a principal $\mathbb{R}_{>0}$-bundle and everything claimed for \mathbb{E} remains true for $\widetilde{\mathbb{E}}$ as well. In particular, the identity map $\mathscr{C} \rightarrow \mathscr{C}$ induces a two-fold covering map $\widetilde{\mathbb{E}} \rightarrow \mathbb{E}$, which takes a lightlike half-line to the lightray it spans. With this in place, to understand \mathbb{E} it suffices to understand $\widetilde{\mathbb{E}}$, and for this we'll take an orthogonal decomposition $V=V_{+} \oplus V_{-}$, where the restriction of g to V_{+}is positive-definite and to V_{-}is negative-definite (and hence $\operatorname{dim} V_{ \pm}=i_{ \pm}$). The obvious map

$$
\widetilde{\mathbb{E}} \ni \mathbb{R}_{>0} x \mapsto\left(\frac{x_{+}}{\left\|x_{+}\right\|}, \frac{x_{-}}{\left\|x_{-}\right\|}\right) \in \mathbb{S}^{p} \times \mathbb{S}^{q}
$$

is a diffeomorphism, with inverse

$$
\mathbb{S}^{p} \times \mathbb{S}^{q} \ni\left(u_{+}, u_{-}\right) \mapsto \mathbb{R}_{>0}\left(u_{+}+u_{-}\right) \in \widetilde{\mathbb{E}}
$$

where \mathbb{S}^{p} is the unit sphere of V_{+}and \mathbb{S}^{q} is the unit sphere of V_{-}(it is equipped with the induced negative-definite round metric). Note that here we cannot replace $\widetilde{\mathbb{E}}$ with \mathbb{E}, as the tentative map $\mathbb{E} \rightarrow \mathbb{S}^{p} \times \mathbb{S}^{q}$ would not be well-defined. However, on the other direction, the sum map $\mathbb{S}^{p} \times \mathbb{S}^{q} \rightarrow V$ is an isometric immersion, which happens to take values in \mathscr{C} - and composing with π, we obtain a two-fold covering map $\mathbb{S}^{p} \times \mathbb{S}^{q} \rightarrow \mathbb{E}$. The non-trivial deck transformation $\left(u_{+}, u_{-}\right) \mapsto\left(-u_{+},-u_{-}\right)$is an isometry, so the metric in $\mathbb{S}^{p} \times \mathbb{S}^{q}$ passes to the quotient, giving a global representative of \mathfrak{C}. Since the sectional curvatures of \mathbb{S}^{p} and \mathbb{S}^{q} are constant and opposites, it follows that $\mathbb{S}^{p} \times \mathbb{S}^{q}$ is conformally flat (and hence the conformal structure \mathfrak{C} on \mathbb{E} is flat). Now, let's conclude the discussion with two remarks regarding the Lorentz case.

- The bundle $\pi: \mathscr{C} \rightarrow \mathbb{E}$ is trivial if and only if g is Lorentzian or anti-Lorentzian. Say that g is Lorentzian and write, with the above notation, $V_{-}=\mathbb{R} w$ for a unit timelike vector $w \in V$, so that $\mathscr{C} \ni x \mapsto(\mathbb{R} x,\langle x, w\rangle) \in \mathbb{E} \times \mathbb{R}^{\times}$is a global trivialization of π. Conversely, assume that g is not Lorentzian or anti-Lorentzian, but that π defines a trivial bundle: since it is a line bundle, it is orientable, meaning that if we choose a null plane $\Pi \subseteq V$, the orientation of \mathscr{C} induces an orientation of the tautological line bundle of the projective line $Р \Pi$, which is a contradiction (the total space of such tautological bundle is a Möbius strip).
- The bundle $\mathbb{S}^{p} \times \mathbb{S}^{q} \rightarrow \mathbb{E}$ is trivial if and only if g is Lorentzian or anti-Lorentzian. This happens since the total space of two-fold covering map over a connected base space is disconnected if and only if the covering map is a trivial \mathbb{Z}_{2}-bundle, and $\mathbb{S}^{p} \times \mathbb{S}^{q}$ is disconnected if and only if $p=0$ (g is anti-Lorentzian) or $q=0(\mathrm{~g}$ is Lorentzian).

