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Fix once and for all a real pseudo-Euclidean vector space (V, g) with indefinite
signature, i.e., g is not positive-definite nor negative-negative. This means that if the
signature of g is (i+, i−), we have i+, i− ≥ 1. We’ll also write g = 〈·, ·〉 whenever
convenient. Let C = {x ∈ V \ {0} | 〈x, x〉 = 0} denote the lightcone of (V, g). On
C, define a equivalence relation ∼ by saying that u ∼ v if v = λu for some non-zero
λ ∈ R, and consider the quotient E = C/∼. Equivalently, E is the quotient of C

under the linear action R× � C given by multiplication. Geometrically, E is the set
of all lightrays in (V, g), and it is called the Einstein manifold. This name is a historical
accident, and is unrelated to the notion of an Einstein manifold, where the Ricci tensor
is a constant multiple of the metric. The quotient projection π : C → E defines a
principal R×-bundle. Indeed, the action R× � C is free and the (enriched) action map
C×R× → C× C is closed. Now, given L ∈ E, we may choose a non-zero u ∈ L and
consider the derivative dπu : Tu C = u⊥ → TLE. The vertical spaces are the kernels
ker dπu = Ru, which establishes that TLE ∼= u⊥/Ru = L⊥/L.

These identifications allow us to try and transfer geometric structures from (V, g)
or C to E, but the problem is that the isomorphism TLE ∼= L⊥/L is not natural, and
depends on a choice of non-zero vector u ∈ L. Since the vector u is lightlike, the
scalar product g passes to the quotient TLE ∼= u⊥/Ru as a scalar product gu, and
has signature (p, q), where i+ = p + 1 and i− = q + 1 (indeed, the degenerate met-
ric signature of the lightlike hyperplane u⊥ is (i+ − 1, i− − 1, 1), and modding out
Ru eliminates the degenerate dimension). However, this does not mean we have de-
fined a pseudo-Riemannian metric on E, as we’ll see later that it is impossible to make
consistent choice of u’s for each L unless g has Lorentzian (or anti-Lorentzian) sig-
nature. To understand better what happens, consider a non-zero λ ∈ R, and let’s
show that gλu = λ2gu on TLE. To wit: gu is the only scalar product in TLE for which
(dπu)∗(gu) = g, but if mλ : V → V is the multiplication by λ, we have that π ◦mλ = π,
leading to dπλu ◦mλ = dπu, so that

g = (dπu)
∗(gu) = (dπλu ◦mλ)

∗(gu) = (mλ)
∗(dπλu)

∗(gu) = (dπλu)
∗(λ2gu).

But g = (dπλu)
∗(gλu) as well, and (dπλu)

∗ is injective (because π is a submersion),
and thus gλu = λ2gu, as required. This means that we have defined a field of pointwise
conformal structures (i.e., inner products up to a positive scalar factor in each TLE)
on E, and “smoothness” follows from the fact that π : C → E admits smooth local
sections: if ψ1 and ψ2 are two smooth local sections of π, then we may write ψ2 = λψ1
with some local smooth function λ, and the above says that on their common domain,
the conformal factor λ2 between the local pseudo-Riemannian metrics induced by ψ2
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and ψ2 is smooth. Of course, one may glue local representatives via partitions of unity
to obtain a global representative of the smooth conformal structure C so defined.

Moving on, instead of considering the equivalence relation ∼ previously defined,
one can define on C a second relation ≈ by saying that x ≈ y if y = λx for some
positive λ ∈ R>0. The quotient Ẽ = C/≈ is the set of all lightlike half-lines in (V, g).
Equivalently, Ẽ is the quotient of C under the linear action R>0 � C given by mul-
tiplication. The projection π̃ : C→ Ẽ defines a principal R>0-bundle and everything
claimed for E remains true for Ẽ as well. In particular, the identity map C→ C in-
duces a two-fold covering map Ẽ→ E, which takes a lightlike half-line to the lightray
it spans. With this in place, to understand E it suffices to understand Ẽ, and for this
we’ll take an orthogonal decomposition V = V+ ⊕ V−, where the restriction of g to
V+ is positive-definite and to V− is negative-definite (and hence dim V± = i±). The
obvious map

Ẽ 3 R>0x 7→
(

x+
‖x+‖

,
x−
‖x−‖

)
∈ Sp × Sq

is a diffeomorphism, with inverse

Sp × Sq 3 (u+, u−) 7→ R>0(u+ + u−) ∈ Ẽ,

where Sp is the unit sphere of V+ and Sq is the unit sphere of V− (it is equipped with
the induced negative-definite round metric). Note that here we cannot replace Ẽ with
E, as the tentative map E → Sp × Sq would not be well-defined. However, on the
other direction, the sum map Sp × Sq → V is an isometric immersion, which happens
to take values in C — and composing with π, we obtain a two-fold covering map
Sp × Sq → E. The non-trivial deck transformation (u+, u−) 7→ (−u+,−u−) is an
isometry, so the metric in Sp× Sq passes to the quotient, giving a global representative
of C. Since the sectional curvatures of Sp and Sq are constant and opposites, it follows
that Sp× Sq is conformally flat (and hence the conformal structure C on E is flat). Now,
let’s conclude the discussion with two remarks regarding the Lorentz case.

• The bundle π : C→ E is trivial if and only if g is Lorentzian or anti-Lorentzian.
Say that g is Lorentzian and write, with the above notation, V− = Rw for a unit
timelike vector w ∈ V, so that C3 x 7→ (Rx, 〈x, w〉) ∈ E×R× is a global trivial-
ization of π. Conversely, assume that g is not Lorentzian or anti-Lorentzian, but
that π defines a trivial bundle: since it is a line bundle, it is orientable, meaning
that if we choose a null plane Π ⊆ V, the orientation of C induces an orientation
of the tautological line bundle of the projective line PΠ, which is a contradiction
(the total space of such tautological bundle is a Möbius strip).

• The bundle Sp× Sq → E is trivial if and only if g is Lorentzian or anti-Lorentzian.
This happens since the total space of two-fold covering map over a connected
base space is disconnected if and only if the covering map is a trivial Z2-bundle,
and Sp × Sq is disconnected if and only if p = 0 (g is anti-Lorentzian) or q = 0 (g
is Lorentzian).
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