Time evolution of Riemannian objects and the Einstein-Hilbert functional

Ivo Terek

Fix a smooth manifold M. Let's start recalling one general fact about connections:
Proposition. Let $E \rightarrow M$ be a vector bundle equipped with an affine connection ∇^{*}, and A be a $\operatorname{End}(E)$-valued 1-form. Set $\nabla \doteq \nabla^{*}+A$. Then:
(a) ∇ is also an affine connection on E and, conversely, every affine connection on E is of this form, for some A.
(b) the relation between the curvature tensors of ∇^{*} and ∇ (as in the above item) is

$$
R^{\nabla}=R^{\nabla^{*}}+\mathrm{d}^{\nabla^{*}} A+\frac{1}{2}[A, A],
$$

where $\mathrm{d}^{\nabla^{*}}$ is the covariant exterior derivative acting on bundle-valued forms, induced by ∇^{*}, and $[\cdot, \cdot]$ is the "wedge product" on $\operatorname{End}(E)$-valued forms induced by the commutator of bundle morphisms as underlying operation.
(c) When $E=T M$, the relation between the torsion tensors is

$$
\tau^{\nabla}(\boldsymbol{X}, \boldsymbol{Y})=\tau^{\nabla^{*}}(\boldsymbol{X}, \boldsymbol{Y})+A_{\boldsymbol{X}} \boldsymbol{Y}-A_{\boldsymbol{Y}} \boldsymbol{X},
$$

and if g is a pseudo-Riemannian metric on M, then we have

$$
\left(\nabla_{\boldsymbol{X}} \mathrm{g}\right)(\boldsymbol{Y}, \boldsymbol{Z})=\left(\nabla_{\boldsymbol{X}}^{*} \mathrm{~g}\right)(\boldsymbol{Y}, \boldsymbol{Z})+\mathrm{g}\left(A_{\boldsymbol{X}} \boldsymbol{Y}, \boldsymbol{Z}\right)+\mathrm{g}\left(\boldsymbol{Y}, A_{\boldsymbol{X}} \mathbf{Z}\right)
$$

for all $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \in \mathfrak{X}(M)$.
Remark. Item (c) says that adding a symmetric A to the connection ∇^{*} does not affect its torsion, and thus the only way to make ∇ torsion-free is by choosing $A=-\tau^{\nabla^{*}} / 2$ (plus something symmetric). Moreover, if ∇^{*} parallelizes g , then ∇ will parallelize g as well if and only if A_{X} is g -skew-adjoint for all $\boldsymbol{X} \in \mathfrak{X}(M)$.
Proof: For now, an exercise.
Now, let g be a curve of pseudo-Riemannian metrics on M. The velocity vectors $\dot{\mathrm{g}}$ of this curve are all symmetric (0,2)-tensor fields. For each instant of time, the corresponding g has a Levi-Civita connection ∇, and the velocity $\dot{\nabla}$ of this curve of connections consists of symmetric (1,2)-tensor fields (this is exactly what $\dot{\tau}=0$ means, where τ is the torsion of g). The metric compatibility of the Levi-Civita connections, in turn, is slightly less straightforward to translate into a property of $\dot{\nabla}$.

Lemma. $\left(\nabla_{X} \dot{\mathrm{~g}}\right)(\boldsymbol{Y}, \boldsymbol{Z})=\mathrm{g}\left(\dot{\nabla}_{X} \boldsymbol{Y}, \boldsymbol{Z}\right)+\mathrm{g}\left(\boldsymbol{X}, \dot{\nabla}_{X} \boldsymbol{Z}\right)$.
Proof: Apply dot on both sides of $\boldsymbol{X g}(\boldsymbol{Y}, \boldsymbol{Z})=\mathrm{g}\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}, \boldsymbol{Z}\right)+\mathrm{g}\left(\boldsymbol{Y}, \nabla_{X} \boldsymbol{Z}\right)$ to get that

$$
\boldsymbol{X} \dot{\mathrm{g}}(\boldsymbol{Y}, \mathbf{Z})=\dot{\mathrm{g}}\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}, \boldsymbol{Z}\right)+\dot{\mathrm{g}}\left(\boldsymbol{Y}, \nabla_{\boldsymbol{X}} \mathbf{Z}\right)+\mathrm{g}\left(\dot{\nabla}_{\boldsymbol{X}} \boldsymbol{Y}, \boldsymbol{Z}\right)+\mathrm{g}\left(\boldsymbol{Y}, \dot{\nabla}_{\boldsymbol{X}} \boldsymbol{Z}\right)
$$

Now use that $\boldsymbol{X} \dot{\mathrm{g}}(\boldsymbol{Y}, \mathbf{Z})=\left(\nabla_{\boldsymbol{X}} \dot{\mathrm{g}}\right)(\boldsymbol{Y}, \mathbf{Z})+\dot{\mathrm{g}}\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}, \mathbf{Z}\right)+\dot{\mathrm{g}}\left(\boldsymbol{Y}, \nabla_{X} \mathbf{Z}\right)$ and cancel everything possible with $\dot{\mathrm{g}}$.

With this in place, we can actually compute what $\dot{\nabla}$ is.
Proposition. $2 \mathrm{~g}\left(\dot{\nabla}_{\boldsymbol{X}} \boldsymbol{Y}, \mathbf{Z}\right)=\left(\nabla_{\boldsymbol{X}} \dot{\mathrm{g}}\right)(\boldsymbol{Y}, \mathbf{Z})+\left(\nabla_{\boldsymbol{Y}} \dot{\mathrm{g}}\right)(\boldsymbol{X}, \boldsymbol{Z})-\left(\nabla_{\boldsymbol{Z}} \dot{\mathrm{g}}\right)(\boldsymbol{X}, \boldsymbol{Y})$.
Proof: Apply dot on both sides of the Koszul formula

$$
2 \mathrm{~g}\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}, \boldsymbol{Z}\right)=\left(\mathscr{L}_{\boldsymbol{Y}} \mathrm{g}\right)(\boldsymbol{X}, \boldsymbol{Z})+\mathrm{d}\left(\boldsymbol{Y}_{b}\right)(\boldsymbol{X}, \mathbf{Z})
$$

to get

$$
2 \dot{\mathrm{~g}}\left(\nabla_{X} \boldsymbol{Y}, \mathbf{Z}\right)+2 \mathrm{~g}\left(\dot{\nabla}_{X} \boldsymbol{Y}, \boldsymbol{Z}\right)=\left(\mathscr{L}_{\boldsymbol{Y}} \dot{\mathrm{g}}\right)(\boldsymbol{X}, \mathbf{Z})+\mathrm{d}\left(\boldsymbol{Y}_{\dot{b}}\right)(\boldsymbol{X}, \mathbf{Z})
$$

where $\boldsymbol{Y}_{b}=\mathrm{g}(\boldsymbol{Y}, \cdot)$ and $\boldsymbol{Y}_{\dot{b}}=\dot{\mathrm{g}}(\boldsymbol{Y}, \cdot)$. A short computation expanding the definitions on the right side and using symmetry of $\dot{\nabla}$ to gather terms, together with the previous lemma, leads to the result.

Next stop, curvature. Each Levi-Civita connection ∇ has its own curvature tensor R, and what is the velocity \dot{R} of the curve of curvature tensors? For this, it helps to recall that the space of linear connections is an affine space, with translation vector space consisting of type (1,2)-tensor fields. This means that if we fix a "reference" connection ∇^{*} (which may be arbitrary, and even one connection in the curve ∇), we may write $\nabla=\nabla^{*}+A$, where A is a curve of type (1,2)-tensor fields with $\dot{A}=\dot{\nabla}$.

Proposition. $\dot{R}=d^{\nabla} \dot{\nabla}$.
Proof: Apply dot on both sides of curvature relation

$$
R=R^{*}+\mathrm{d}^{\nabla^{*}} A+\frac{1}{2}[A, A]
$$

bearing in mind that $[A, \dot{\nabla}]=[\dot{\nabla}, A]$, to obtain $\dot{R}=\mathrm{d}^{\nabla} \dot{\nabla}+[A, \dot{\nabla}]=\mathrm{d}^{\nabla} \dot{\nabla}$. The last equality follows from a straightforward computation.

For the Ricci curvature, a general lemma comes in handy:
Lemma. If S is a $\operatorname{End}(T M)$-valued 1-form and $\operatorname{tr}_{1}^{1}$ stands for the trace taken relative to the first upper and lower indices of S (relative to some coordinate system - this is invariant), then

$$
\operatorname{tr}\left(\boldsymbol{X} \mapsto\left(\mathrm{d}^{\nabla} S\right)(\boldsymbol{X}, \boldsymbol{Y}) \mathbf{Z}\right)=\operatorname{div}(S)(\boldsymbol{Y}, \boldsymbol{Z})-\left(\nabla_{\boldsymbol{Y}} \operatorname{tr}_{1}^{1}(S)\right) \mathbf{Z}
$$

Note that $\operatorname{tr}_{1}^{1}(S)$ is a bona fide 1-form on M.

Proof: By definition of $\mathrm{d}^{\nabla} S$, the components of such trace evaluated at $\left(\partial_{j}, \partial_{k}\right)$ are just given by $\left(\mathrm{d}^{\nabla} S\right)_{i j k}^{i}=S_{j k ; i}^{i}-S_{i k ; j}^{i}=\operatorname{div}(S)_{j k}-\operatorname{tr}_{1}^{1}(S)_{k ; j}$, as required.

Corollary. Ric $=\operatorname{div}(\dot{\nabla})-\nabla \operatorname{tr}_{1}^{1}(\dot{\nabla})$.
Proof: The previous lemma applies to the expression $\dot{R}=\mathrm{d}^{\nabla} \dot{\nabla}$, as time derivative commutes with traces.

As for the scalar curvature, the expression $s=\operatorname{tr}_{\mathrm{g}}$ Ric is slightly more complicated to deal with, as the time-dependence appears both on g and Ric. One convenient notation device to proceed will be to consider the fiber metric $\langle\cdot, \cdot\rangle$ induced by g on tensor bundles over $T M$. In particular, if h is any type (0,2)-tensor field on M, we have that $\langle\mathrm{g}, h\rangle=\operatorname{tr}_{\mathrm{g}} h$.

Lemma. Let S be an $\operatorname{End}(T M)$-valued 1 -form, and α be a 1 -form on M. If $\operatorname{tr}_{1,2}$ stands for the g-trace on the lower two indices of S (relative to the vector field arguments - so that $\operatorname{tr}_{1,2}(S)$ is a vector field on M), then:
(i) $\langle\mathrm{g}, \operatorname{div}(S)\rangle=\operatorname{div}\left(\operatorname{tr}_{1,2}(S)\right)$.
(ii) $\langle\mathrm{g}, \nabla \alpha\rangle=\operatorname{div}\left(\alpha^{\sharp}\right)$.

Proof: Locally:
(i) $\langle\mathrm{g}, \operatorname{div}(S)\rangle=g^{i j} S_{i j ; k}^{k}=\left(g^{i j} S_{i j}^{k}\right)_{; k}=\operatorname{tr}_{1,2}(S)^{k} ; k=\operatorname{div}\left(\operatorname{tr}_{1,2}(S)\right)$.
(ii) $\langle\mathrm{g}, \nabla \alpha\rangle=g^{i j} \alpha_{i ; j}=\left(g^{i j} \alpha_{i}\right)_{; j}=\alpha_{; j}^{j}=\operatorname{div}\left(\alpha^{\sharp}\right)$.

Proposition. $\dot{\mathrm{s}}=-\langle\dot{\mathrm{g}}, \operatorname{Ric}\rangle+\operatorname{div}\left(\operatorname{tr}_{1,2} \dot{\nabla}\right)-\operatorname{div}\left(\left(\operatorname{tr}_{1}^{1}(\dot{\nabla})^{\sharp}\right)\right.$
Proof: Apply dot on both sides of $s=\langle\mathrm{g}$, Ric \rangle to get

$$
\begin{aligned}
\dot{\mathrm{s}} & =-\langle\dot{\mathrm{g}}, \operatorname{Ric}\rangle+\langle\mathrm{g}, \operatorname{Ric}\rangle \\
& =-\langle\dot{\mathrm{g}}, \operatorname{Ric}\rangle+\left\langle\mathrm{g}, \operatorname{div}(\dot{\nabla})-\nabla \operatorname{tr}_{1}^{1}(\dot{\nabla})\right\rangle \\
& =-\langle\dot{\mathrm{g}}, \operatorname{Ric}\rangle+\operatorname{div}\left(\operatorname{tr}_{1,2} \dot{\nabla}\right)-\operatorname{div}\left(\left(\operatorname{tr}_{1}^{1}(\dot{\nabla})^{\sharp}\right) .\right.
\end{aligned}
$$

Remark. The negative sign in $\langle\dot{g}$, Ric \rangle requires an explanation. Very briefly, it is because the time-dependence of $\langle\mathrm{g}, \mathrm{Ric}\rangle$ appears not only on g and Ric, but also on $\langle\cdot, \cdot\rangle$ itself, so that the formula for the derivative $\mathrm{d} \iota_{A}(H)=-A^{-1} H A^{-1}$ of the inversion map ι on any Lie group (here taken to be $\operatorname{GL}(n, \mathbb{R})$, once we pass to coordinates) applies.

To apply what was established so far in a more interesting situation, we will also need to know the time evolution of the volume forms v_{g}.

Proposition. $\left(v_{\mathrm{g}}\right)^{\cdot}=\frac{\operatorname{tr}_{\mathrm{g}} \dot{\mathrm{g}}}{2} v_{\mathrm{g}}$
Proof: A local computation, using that $\mathrm{d}(\operatorname{det})_{A}(H)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} H\right)$, for all matrices $A \in \operatorname{GL}(n, \mathbb{R})$ and $H \in \mathfrak{g l}(n, \mathbb{R})$, together with the chain rule. We have that

$$
\left(|\operatorname{detg}|^{1 / 2}\right)^{\cdot}=\frac{1}{2|\operatorname{detg}|^{1 / 2}}|\operatorname{det} g| \operatorname{tr}\left(\mathrm{g}^{-1} \dot{\mathrm{~g}}\right)=\frac{\operatorname{tr}_{\mathrm{g}} \dot{\mathrm{~g}}}{2}|\operatorname{det} \mathrm{~g}|^{1 / 2},
$$

and the result follows from multiplying both sides by $\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}$ (and bringing it inside the time derivative on the left side).

The Einstein-Hilbert functional

Assume that M is compact. For each pseudo-Riemannian metric g on M, write

$$
\mathscr{E}[\mathrm{g}] \doteq \int_{M} \mathrm{~s}[\mathrm{~g}] v_{\mathrm{g}}
$$

where $\mathrm{s}[\mathrm{g}]$ stands for the scalar curvature of g . This functional \mathscr{E} defined above is called the Einstein-Hilbert functional on M. If $\phi: M \rightarrow M$ is any diffeomorphism, it holds that $\mathscr{E}\left[\phi^{*} \mathrm{~g}\right]=\mathscr{E}[\mathrm{g}]$, so that \mathscr{E} may be thought of as being defined on the moduli space of pseudo-Riemannian metrics on M. Let's compute the first variation of \mathscr{E}, by letting g depend on time and applying what was done in the previous section. We now go back to writing s for $\mathrm{s}[\mathrm{g}]$.

$$
\begin{aligned}
\mathrm{d} \mathscr{C}_{\mathrm{g}}(\dot{\mathrm{~g}}) & =\int_{M}\left(\dot{\mathrm{~s}} v_{\mathrm{g}}+\mathrm{s}\left(v_{\mathrm{g}}\right)^{\cdot}\right) \\
& =\int_{M}\left(-\langle\dot{\mathrm{g}}, \operatorname{Ric}\rangle+\operatorname{div}\left(\operatorname{tr}_{1,2}(\dot{\nabla})-\operatorname{tr}_{1}^{1}(\dot{\nabla})^{\sharp}\right)+\frac{\mathrm{s}}{2}\langle\dot{\mathrm{~g}}, \mathrm{~g}\rangle\right) v_{\mathrm{g}} \\
& =-\int_{M}\left\langle\dot{\mathrm{~g}}, \operatorname{Ric}-\frac{\mathrm{s}}{2} \mathrm{~g}\right\rangle v_{\mathrm{g}},
\end{aligned}
$$

where in the last step we have used Stokes' theorem to get rid of the divergence terms. This means that g is a critical point of \mathscr{E} if and only if

$$
\operatorname{Ric}-\frac{\mathrm{sg}}{2}=0
$$

which is equivalent to Ric $=0$, provided that $n=\operatorname{dim} M>2$.
The situation becomes more interesting if we consider restrictions of \mathscr{E}. To motivate one such restriction, note that \mathscr{E} is not scale-invariant. For instance, take a constant $\lambda>0$ and consider the metric $\lambda \mathrm{g}$. The Levi-Civita connection remains unchanged under homotheties, and hence so does the type $(1,3)$ curvature tensor, as well as the Ricci tensor, leading to $s[\lambda g]=\lambda^{-1} s[g]$. A coordinate computation also shows that the relation between volume forms is $v_{\lambda \mathrm{g}}=\lambda^{n / 2} v_{\mathrm{g}}$. Thus

$$
\mathscr{E}[\lambda \mathrm{g}]=\int_{M} \mathrm{~s}[\lambda \mathrm{~g}] v_{\lambda \mathrm{g}}=\int_{M} \lambda^{-1} \mathrm{~s}[\mathrm{~g}] \lambda^{n / 2} v_{\mathrm{g}}=\lambda^{(n-2) / 2} \mathscr{E}[\mathrm{~g}]
$$

How does one rescale \mathscr{E} to a new functional, say, $\hat{\mathscr{E}}$, which is scale-invariant? The idea is to use the volume functional, obviously defined by

$$
\mathscr{V}[\mathrm{g}]=\int_{M} v_{\mathrm{g}} .
$$

Just like \mathscr{E}, \mathscr{V} is a Riemannian functional, in the sense that if $\phi: M \rightarrow M$ is a diffeomorphism, then $\mathscr{V}\left[\phi_{ \pm}^{*} \mathrm{~g}\right]=\mathscr{V}[\mathrm{g}]$. However, it is now easy to see that $\mathscr{V}[\lambda \mathrm{g}]=\lambda^{n / 2} \mathscr{V}[\mathrm{~g}]$ for all $\lambda>0$. Write $\hat{\mathscr{E}}[\mathrm{g}]=\mathscr{E}[\mathrm{g}] / \mathscr{V}[\mathrm{g}]^{p}$, where the power p is to be found. We have that

$$
\hat{\mathscr{E}}[\lambda \mathrm{g}]=\hat{\mathscr{E}}[\mathrm{g}] \Longrightarrow \frac{\mathscr{E}[\lambda \mathrm{g}]}{\mathscr{V}[\lambda \mathrm{g}]^{p}}=\frac{\mathscr{E}[\mathrm{g}]}{\mathscr{V}[\mathrm{g}]^{p}} \Longrightarrow \frac{\lambda^{(n-2) / 2} \mathscr{E}[\mathrm{~g}]}{\lambda^{n p / 2 \mathscr{V}}[\mathrm{~g}]^{p}}=\frac{\mathscr{E}[\mathrm{g}]}{\mathscr{V}[g]^{p}}
$$

Arbitrariety of g allows us to cancel \mathscr{E} and \mathscr{V} everywhere, and use $\lambda^{0}=1$ to conclude that

$$
\frac{n-2}{2}=\frac{n p}{2} \Longrightarrow p=\frac{n-2}{n}
$$

In short, we conclude that the following are equivalent:
(i) g is a critical point of the functional $\hat{\mathscr{E}}$ given by $\hat{\mathscr{E}}[\mathrm{g}]=\frac{\mathscr{E}[\mathrm{g}]}{\mathscr{V}[\mathrm{g}]^{(n-2) / n}}$;
(ii) g is a critical point of the restriction of the functional \mathscr{E} to the space of metrics for which $\mathscr{V}[\mathrm{g}]$ is a constant (which, without loss of generality, we'll take to be 1).

Option (ii) is more fruitful to pursue, as we have one last technique up our sleeve: Lagrange multipliers. Since we clearly have that

$$
\mathrm{d} \mathscr{V}_{\mathrm{g}}(\dot{\mathrm{~g}})=\frac{1}{2} \int_{M}\langle\dot{\mathrm{~g}}, \mathrm{~g}\rangle v_{\mathrm{g}}
$$

we conclude that critical points of \mathscr{E} subject to $\mathscr{V}[g]=1$ must satisfy

$$
\int_{M}\left\langle\dot{\mathrm{~g}},-\operatorname{Ric}+\frac{\mathrm{s}}{2} \mathrm{~g}-\lambda \mathrm{g}\right\rangle v_{\mathrm{g}}=0, \quad \text { for all } \dot{\mathrm{g}},
$$

where $\lambda \in \mathbb{R}$ is a Lagrange multiplier. However, the condition

$$
-\operatorname{Ric}+\frac{\mathrm{s}}{2} \mathrm{~g}-\lambda \mathrm{g}=0
$$

is equivalent to g being an Einstein metric. We have proved the:
Theorem. The critical points of the Einstein-Hilbert functional on a compact manifold are Ricci-flat metrics. When restricting this functional to the space of unit volume metrics, the critical points are Einstein metrics.

