VARIATIONS OF VOLUME

Ivo Terek

1 Setup

Let $(M, \mathrm{~g})$ be a Riemannian manifold, and $\iota: \Sigma \hookrightarrow M$ be an embedded submanifold. We will often write $\langle\cdot, \cdot\rangle$ instead of g and identify $\iota(\Sigma)$ with Σ, as it is usual practice. We write ∇ and ∇^{Σ} for the Levi-Civita connections of $(M, \mathrm{~g})$ and $\left(\Sigma, \iota^{*} \mathrm{~g}\right)$. We have

$$
\begin{array}{ll}
\text { (a) } \nabla_{X} Y=\nabla_{X}^{\Sigma} Y+\mathrm{II}(X, Y), \quad \text { (b) } \nabla_{X}^{M} \xi=-A_{\xi}(X)+\nabla_{X}^{\perp} \xi, ~ \tag{1.1}
\end{array}
$$

for all $X, Y \in \Gamma(T \Sigma)$ and $\xi \in \Gamma\left(T \Sigma^{\perp}\right)$, where II denotes the second fundamental form of Σ in $(M, \mathrm{~g}), A_{\xi}$ is the shape operator associated with ξ, and ∇^{\perp} is the normal connection of Σ. Shape operators are related to the second fundamental form via the relations

$$
\begin{equation*}
\langle\operatorname{II}(X, Y), \xi\rangle=\left\langle A_{\tilde{\xi}}(X), Y\right\rangle . \tag{1.2}
\end{equation*}
$$

The mean curvature vector $\boldsymbol{H}_{\Sigma} \in \Gamma\left(T \Sigma^{\perp}\right)$ is the g-trace of II, and may be computed as

$$
\begin{equation*}
\boldsymbol{H}_{\Sigma}=g^{i j} \Pi\left(\partial_{i}, \partial_{j}\right)=\sum_{i=1}^{k} \mathrm{II}\left(E_{i}, E_{i}\right) \tag{1.3}
\end{equation*}
$$

where $k=\operatorname{dim} \Sigma$ and $\left(x^{1}, \ldots, x^{k}\right)$ are local coordinates on Σ, or $\left(E_{1}, \ldots, E_{k}\right)$ is a local orthonormal frame tangent to Σ. When not working with orthonormal frames, we use Einstein's summation convention ${ }^{1}$.

With the aid of a metric, one may compute the divergence of vector fields and tensor fields, in general. In our setup, we have a divergence operator divg associated with $(M, \mathrm{~g})$, and $\operatorname{div}_{l^{*} \mathrm{~g}}$ associated with $\left(\Sigma, \iota^{*} \mathrm{~g}\right)$. The latter has an obvious extension to vector fields that are tangent to M along Σ (as opposed to acting just on vector fields that are tangent to Σ).

Definition 1. The tangential divergence $\operatorname{div}_{\Sigma}: \Gamma\left(\left.T M\right|_{\Sigma}\right) \rightarrow C^{\infty}(\Sigma)$ is defined by

$$
\begin{equation*}
\operatorname{div}_{\Sigma}(X)=\operatorname{tr}_{l^{*} \mathrm{~g}}\left((Y, Z) \mapsto\left\langle\nabla_{Y} X, Z\right\rangle\right)=g^{i j}\left\langle\nabla_{\partial_{i}} X, \partial_{j}\right\rangle=\sum_{i=1}^{k}\left\langle\nabla_{E_{i}} X, E_{i}\right\rangle \tag{1.4}
\end{equation*}
$$

where $\left(x^{1}, \ldots, x^{k}\right)$ are local coordinates on Σ, or $\left(E_{1}, \ldots, E_{k}\right)$ is a local orthonormal frame tangent to Σ.

[^0]For any vector field X tangent to M along Σ, we write $X=X^{\top}+X^{\perp}$ according to the direct sum decomposition $\left.T M\right|_{\Sigma}=T \Sigma \oplus T \Sigma^{\perp}$. Here is what we need to know about this tangential divergence operator:
Proposition 2 (Main properties of $\operatorname{div}_{\Sigma}$).
(a) $\operatorname{div}_{\Sigma}(f X)=X^{\top}(f)+f \operatorname{div}_{\Sigma}(X)$, for all $X \in \Gamma\left(\left.T M\right|_{\Sigma}\right)$ and $f \in C^{\infty}(\Sigma)$.
(b) $\operatorname{div}_{\Sigma}(X)=\operatorname{div}_{l^{*} g}(X)$, for all $X \in \Gamma(T \Sigma)$.
(c) $\operatorname{div}_{\Sigma}(X)=\operatorname{div}_{\Sigma}\left(X^{\top}\right)-\left\langle\boldsymbol{H}_{\Sigma}, X\right\rangle$, for all $X \in \Gamma\left(\left.T M\right|_{\Sigma}\right)$.

Remark. In particular, the Laplacian $\triangle_{\Sigma} f$ of a smooth function $f: \Sigma \rightarrow \mathbb{R}$ (defined as $\operatorname{div}_{l^{*} \mathrm{~g}}\left(\nabla^{\Sigma} f\right)$), may be computed as $\operatorname{div}_{\Sigma}\left(\nabla^{\Sigma} f\right)$.
Proof: Noting that $X^{\top}=g^{i j}\left\langle X, \partial_{i}\right\rangle \partial_{j}$ whenever $\left(x^{1}, \ldots, x^{k}\right)$ is a local coordinate system for Σ, we directly compute

$$
\begin{align*}
\operatorname{div}_{\Sigma}(f X) & =g^{i j}\left\langle\nabla_{\partial_{i}}(f X), \partial_{j}\right\rangle=g^{i j}\left\langle\left(\partial_{i} f\right) X+f \nabla_{\partial_{i}} X, \partial_{j}\right\rangle \tag{1.5}\\
& =g^{i j}\left\langle X, \partial_{j}\right\rangle \partial_{i} f+f g^{i j}\left\langle\nabla_{\partial_{i}} X, \partial_{j}\right\rangle=X^{\top}(f)+f \operatorname{div}_{\Sigma}(X) .
\end{align*}
$$

This proves (a). For (b), use (1.1-a): note that $\left\langle\nabla_{\partial_{i}} X, \partial_{j}\right\rangle=\left\langle\nabla_{\partial_{i}}^{\Sigma} X, \partial_{j}\right\rangle$ and apply $g^{i j}$. Finally, as $\operatorname{div}_{\Sigma}$ is additive, it suffices to again use (1.1-a) to obtain

$$
\begin{align*}
\operatorname{div}_{\Sigma}\left(X^{\perp}\right) & =g^{i j}\left\langle\nabla_{\partial_{i}}\left(X^{\perp}\right), \partial_{j}\right\rangle=-g^{i j}\left\langle X^{\perp}, \nabla_{\partial_{i}} \partial_{j}\right\rangle \\
& =-g^{i j}\left\langle X^{\perp}, \mathrm{II}\left(\partial_{i}, \partial_{j}\right)\right\rangle=-\left\langle X^{\perp}, H_{\Sigma}\right\rangle \tag{1.6}\\
& =-\left\langle X, H_{\Sigma}\right\rangle,
\end{align*}
$$

as required.
In a similar manner to what was done for $\operatorname{div}_{\Sigma}$, we may also consider a "partial" Ricci tensor, acting on vector fields tangent to M along Σ. Our sign convention for the Riemann curvature tensor is $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$.
Definition 3. The tangential Ricci tensor $\operatorname{Ric}_{\Sigma}^{\top}: \Gamma\left(\left.T M\right|_{\Sigma}\right) \times \Gamma\left(\left.T M\right|_{\Sigma}\right) \rightarrow C^{\infty}(\Sigma)$ is defined by

$$
\begin{equation*}
\operatorname{Ric}_{\Sigma}^{\top}(Y, Z)=\operatorname{tr}_{l^{*} \mathrm{~g}} R(\cdot, Y, Z, \cdot)=g^{i j} R\left(\partial_{i}, Y, Z, \partial_{j}\right)=\sum_{i=1}^{k} R\left(E_{i}, Y, Z, E_{i}\right) \tag{1.7}
\end{equation*}
$$

for all vector fields Y and Z tangent to M along Σ, where $\left(x^{1}, \ldots, x^{k}\right)$ are local coordinates on Σ, or $\left(E_{1}, \ldots, E_{k}\right)$ is a local orthonormal frame tangent to Σ.
Remark. When Y and Z above happen to be tangent to $\Sigma, \operatorname{Ric}_{\Sigma}^{\top}(Y, Z)$ still does not agree with the Ricci tensor of Σ itself evaluated at Y and Z. This is only guaranteed to happen when Σ is totally geodesic in $(M, \mathrm{~g})$, that is, when $\mathrm{II}=0$. In addition, when Σ is a 2-sided hypersurface ${ }^{2}$ in M and v is a unit normal field along Σ, we have the relation $\operatorname{Ric}_{\Sigma}^{\top}(Y, Z)=\operatorname{Ric}(Y, Z)-R(v, Y, Z, v)$, and hence $\operatorname{Ric}_{\Sigma}^{\top}(v, \cdot)=\operatorname{Ric}(v, \cdot)$.

[^1]
2 Variation formulas and examples

Let $(M, \mathrm{~g})$ be a Riemannian manifold, and Σ be an embedded submanifold, possibly with boundary. The volume of Σ is defined by

$$
\begin{equation*}
\operatorname{vol}(\Sigma)=\int_{\Sigma} 1 \mathrm{~d} \mu_{\Sigma} \tag{2.1}
\end{equation*}
$$

where $\mathrm{d} \mu_{\Sigma}$ stands for the volume form ${ }^{3}$ of the induced metric on Σ. When $\operatorname{dim} \Sigma$ equals 1 or 2, "volume" means arclength or area, respectively. To understand variations of this volume functional, we will need to consider variations of submanifolds:

Definition 4. A variation of Σ in M is a smooth map $F: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow M$ such that $F(x, 0)=x$ for every $x \in \Sigma$. Then:
(a) F is compactly supported if there is a compact subset $K \subseteq \Sigma$ such that $F(x, t)=x$ for all $(x, t) \in(\Sigma \backslash K) \times(-\varepsilon, \varepsilon)$.
(b) F is boundary-fixing if $F(x, t)=x$ for all $(x, t) \in \partial \Sigma \times(-\varepsilon, \varepsilon)$.
(c) For each fixed $t \in(-\varepsilon, \varepsilon)$, the t-stage of the variation is $\Sigma_{t}=F(\Sigma, t)$ (in other words, Σ_{t} is defined as the image of Σ under the partial map $F_{t}=F(\cdot, t): \Sigma \rightarrow M$. In particular, $\Sigma_{0}=\Sigma$.
(d) The variational vector field V of F is defined as $V=V_{0}$, where in general we define V_{t}, for $t \in(-\varepsilon, \varepsilon)$, by

$$
\begin{equation*}
V_{t}(x)=\frac{\mathrm{d}}{\mathrm{~d} t} F(x, t) \in T_{F(x, t)} M \tag{2.2}
\end{equation*}
$$

for every $x \in \Sigma$.
(e) F is a normal variation of Σ if $V_{t}(x) \in\left[T_{F(x, t)} \Sigma_{t}\right]^{\perp}$ for all $(x, t) \in \Sigma \times(-\varepsilon, \varepsilon)$.

When F is not explicitly needed, one calls $\left\{\Sigma_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ a variation of Σ instead.
Remark. When F is either boundary-fixing, or compactly supported with Σ noncompact, we necessarily have $\left.V\right|_{\partial \Sigma}=0$.

Given any variation $F: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow M$ of Σ has been fixed, local coordinates $\left(x^{1}, \ldots, x^{k}\right)$ on an open subset $U \subseteq \Sigma$ induce, for each $t \in(-\varepsilon, \varepsilon)$, local coordinates $\left(x_{t}^{1}, \ldots, x_{t}^{k}\right)$ on the open subset $U_{t}=F(U, t)$ of Σ_{t} via the composition $x_{t}^{i}=x^{i} \circ\left(F_{t}\right)^{-1}$. Namely, as $F(\cdot, 0)=\operatorname{Id}_{\Sigma}$ is a diffeomorphism, so is $F_{t}=F(\cdot, t): \Sigma \rightarrow \Sigma_{t}$ for t small enough, so that $\left(F_{t}\right)^{-1}$ makes sense. Such coordinates satisfy the relations

$$
\begin{equation*}
\mathrm{d} F_{(x, t)}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{x}\right)=\left.\frac{\partial}{\partial x_{t}^{i}}\right|_{F(x, t)} \quad \text { and } \quad \mathrm{d} F_{(x, t)}\left(\left.\frac{\partial}{\partial t}\right|_{t}\right)=V_{t}(x) \tag{2.3}
\end{equation*}
$$

for all $(x, t) \in \Sigma \times(-\varepsilon, \varepsilon)$. In particular, the Lie bracket $\left[V_{t}, \partial / \partial x_{t}^{i}\right]$ makes sense and vanishes due to naturality of the Lie bracket, as $\partial / \partial x^{i}$ and $\partial / \partial t$ commute as vector

[^2]fields on $\Sigma \times(-\varepsilon, \varepsilon)$. When doing coordinate computations, we will always assume that the coordinates on each stage Σ_{t} are related to coordinates on Σ via the above construction. For economy of notation, we will also write ${ }^{4} \partial_{i, t}$ for $\partial / \partial x_{t}^{i}$.

Each Σ_{t} has its own volume form $\mathrm{d} \mu_{\Sigma_{t}}$, so we may write $\left(F_{t}\right)^{*}\left(\mathrm{~d} \mu_{\Sigma_{t}}\right)=v(t) \mathrm{d} \mu_{\Sigma}$, for a suitable smooth function $v(t): \Sigma \rightarrow \mathbb{R}$, with $v(0)=1$. Smoothness of F also ensures smoothness of $v(t)(x)$ in the variable t. Noting that

$$
\begin{equation*}
\operatorname{vol}\left(\Sigma_{t}\right)=\int_{\Sigma_{t}} \mathrm{~d} \mu_{\Sigma_{t}}=\int_{F_{t}(\Sigma)} \mathrm{d} \mu_{\Sigma_{t}}=\int_{\Sigma}\left(F_{t}\right)^{*} \mathrm{~d} \mu_{\Sigma_{t}}=\int_{\Sigma} v(t) \mathrm{d} \mu_{\Sigma} \tag{2.4}
\end{equation*}
$$

we are justified in calling v the volumetric density of the variation F.
Proposition 5. For any variation $\left\{\Sigma_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ of Σ, the first and second derivatives of the volumetric density v are given by:
(a) $\frac{\mathrm{d} v}{\mathrm{~d} t}(t)=\operatorname{div}_{\Sigma_{t}}\left(V_{t}\right) v(t)$
and, assuming that the variation is normal,
(b) $\frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}(t)=\left(\left\|\nabla^{\perp} V_{t}\right\|^{2}-\operatorname{Ric}_{\Sigma_{t}}^{\top}\left(V_{t}, V_{t}\right)-\left\|A_{V_{t}}\right\|^{2}-\left\langle\boldsymbol{H}_{\Sigma_{t}}, \nabla_{V_{t}} V_{t}\right\rangle+\left\langle\boldsymbol{H}_{\Sigma_{t}}, V_{t}\right\rangle^{2}\right) v(t)$

Proof: The first step is to describe $v(t)$ in coordinates. By evaluating both sides of $\left(F_{t}\right)^{*} \mathrm{~d} \mu_{\Sigma_{t}}=v(t) \mathrm{d} \mu_{\Sigma}$ at the coordinate vector fields $\left(\partial_{1}, \ldots, \partial_{k}\right)$ and using (2.3), we see that $\sqrt{\operatorname{det} g(t)}=v(t) \sqrt{\operatorname{det} g(0)}$, where $g(t)=\left[g_{i j}(t)\right]_{i, j=1}^{k}$ is the matrix of components $g_{i j}(t)=\left\langle\partial_{i, t}, \partial_{j, t}\right\rangle$. Differentiating and applying Jacobi's formula ${ }^{5}$, we have

$$
\begin{align*}
\frac{\mathrm{d} v}{\mathrm{~d} t}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\sqrt{\operatorname{det} g(t)}}{\sqrt{\operatorname{det} g(0)}} \\
& =\frac{1}{\sqrt{\operatorname{det} g(0)}} \frac{1}{2}(\operatorname{det} g(t))^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{det} g(t) \tag{2.5}\\
& =\frac{1}{\sqrt{\operatorname{det} g(0)}} \frac{1}{2}(\operatorname{det} g(t))^{-1 / 2} \operatorname{det} g(t) \operatorname{tr}\left(g(t)^{-1} \frac{\mathrm{~d} g}{\mathrm{~d} t}(t)\right) \\
& =\frac{1}{2} \operatorname{tr}\left(g(t)^{-1} \frac{\mathrm{~d} g}{\mathrm{~d} t}(t)\right) v(t) .
\end{align*}
$$

However, we may compute this trace as

$$
\begin{align*}
\operatorname{tr}\left(g(t)^{-1} \frac{\mathrm{~d} g}{\mathrm{~d} t}(t)\right) & =g^{i j}(t) \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\partial_{i, t}, \partial_{j, t}\right\rangle \\
& =g^{i j}(t)\left\langle\nabla_{V_{t}} \partial_{i, t} \partial_{j, t}\right\rangle+g^{i j}(t)\left\langle\partial_{i, t}, \nabla_{V_{t}} \partial_{j, t}\right\rangle \\
& =2 g^{i j}\left\langle\nabla_{V_{t}} \partial_{i, t}, \partial_{j, t}\right\rangle \tag{2.6}\\
& =2 g^{i j}\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle \\
& =2 \operatorname{div}_{\Sigma_{t}}\left(V_{t}\right),
\end{align*}
$$

[^3]and (a) follows. Differentiating (a) and reusing it leads to
\[

$$
\begin{equation*}
\frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}(t)=\left(\frac{\mathrm{d}}{\mathrm{~d} t}\left(\operatorname{div}_{\Sigma_{t}}\left(V_{t}\right)\right)+\left(\operatorname{div}_{\Sigma_{t}}\left(V_{t}\right)\right)^{2}\right) v(t) \tag{2.7}
\end{equation*}
$$

\]

and so it remains to compute the t-derivative of $\operatorname{div}_{\Sigma_{t}}\left(V_{t}\right)$. From here on we assume that, for each t, V_{t} is normal to Σ_{t}. Starting from

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{div}_{\Sigma_{t}}\left(V_{t}\right)=\left(\frac{\mathrm{d}}{\mathrm{~d} t} g^{i j}(t)\right)\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle+g^{i j}(t) \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\nabla_{\partial_{\mathrm{i}, t}} V_{t}, \partial_{j, t}\right\rangle \tag{2.8}
\end{equation*}
$$

we will compute each term in the right side separately. As

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} g_{k \ell}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\partial_{k, t}, \partial_{\ell, t}\right\rangle \\
& =\left\langle\nabla_{V_{t}} \partial_{k, t}, \partial_{\ell, t}\right\rangle+\left\langle\partial_{k, t}, \nabla_{V_{t}} \partial_{\ell, t}\right\rangle \\
& =\left\langle\nabla_{\partial_{k, t}} V_{t}, \partial_{\ell, t}\right\rangle+\left\langle\partial_{k, t}, \nabla_{\partial_{\ell, t}} V_{t}\right\rangle \tag{2.9}\\
& =-\left\langle A_{V_{t}}\left(\partial_{k, t}\right), \partial_{\ell, t}\right\rangle-\left\langle\partial_{k, t}, A_{V_{t}}\left(\partial_{\ell, t}\right)\right\rangle \\
& =-2\left\langle A_{V_{t}}\left(\partial_{k, t}\right), \partial_{\ell, t}\right\rangle,
\end{align*}
$$

it follows that

$$
\begin{align*}
\left(\frac{\mathrm{d}}{\mathrm{~d} t} g^{i j}(t)\right)\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle & =-g^{i k}(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t} g_{k \ell}(t)\right) g^{\ell j}(t)\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle \\
& =2 g^{i k}(t)\left\langle A_{V_{t}}\left(\partial_{k, t}\right), \partial_{\ell, t}\right\rangle g^{\ell j}(t)\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle \tag{2.10}\\
& =-2 g^{i k}(t) g^{\ell j}(t)\left\langle A_{V_{t}}\left(\partial_{k, t}\right), \partial_{\ell, t}\right\rangle\left\langle A_{V_{t}}\left(\partial_{i, t}\right), \partial_{j, t}\right\rangle \\
& =-2\left\|A_{V_{t}}\right\|^{2} .
\end{align*}
$$

In addition, observe that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle & =\left\langle\nabla_{V_{t}} \nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle+\left\langle\nabla_{\partial_{i, t}} V_{t}, \nabla_{V_{t}} \partial_{j, t}\right\rangle \tag{2.11}\\
& =R\left(V_{t}, \partial_{i, t}, V_{t}, \partial_{j, t}\right)+\left\langle\nabla_{\partial_{i, t}} \nabla_{V_{t}} V_{t}, \partial_{j, t}\right\rangle+\left\langle\nabla_{\partial_{i, t}} V_{t}, \nabla_{\partial_{j, t}} V_{t}\right\rangle
\end{align*}
$$

and thus

$$
\begin{equation*}
g^{i j}(t) \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\nabla_{\partial_{i, t}} V_{t}, \partial_{j, t}\right\rangle=-\operatorname{Ric}_{\Sigma}^{\top}\left(V_{t}, V_{t}\right)+\operatorname{div}_{\Sigma_{t}}\left(\nabla_{V_{t}} V_{t}\right)+\left\|A_{V_{t}}\right\|^{2}+\left\|\nabla^{\perp} V_{t}\right\|^{2} \tag{2.12}
\end{equation*}
$$

Here, we have used self-adjointness of $A_{V_{t}}$ to conclude that $\left\|A_{V_{t}}^{2}\right\|=\left\|A_{V_{t}}\right\|^{2}$, as well as the Pythagorean relation $\left\|\nabla V_{t}\right\|^{2}=\left\|A_{V_{t}}\right\|^{2}+\left\|\nabla^{\perp} V_{t}\right\|^{2}$. Finally, as $\left\langle A_{V_{t}}(\cdot), V_{t}\right\rangle=0$ implies that ${ }^{6}\left\langle\nabla_{V_{t}} V_{t}, Z_{t}\right\rangle=0$ whenever $Z_{t} \in \Gamma\left(T \Sigma_{t}\right)$, we have that

$$
\begin{align*}
\operatorname{div}_{\Sigma_{t}}\left(\nabla_{V_{t}} V_{t}\right) & =g^{i j}(t)\left\langle\nabla_{\partial_{i, t}} \nabla_{V_{t}} V_{t}, \partial_{j, t}\right\rangle \\
& =g^{i j}(t) \partial_{i, t}\left\langle\nabla_{V_{t}} V_{t}, \partial_{j, t}\right\rangle-g^{i j}(t)\left\langle\nabla_{V_{t}} V_{t}, \nabla_{\partial_{i, t}} \partial_{j, t}\right\rangle \tag{2.13}\\
& =0-g^{i j}(t)\left\langle\nabla_{V_{t}} V_{t}, \mathrm{II}\left(\partial_{i, t}, \partial_{j, t}\right)\right\rangle \\
& =-\left\langle\nabla_{V_{t}} V_{t}, H_{\Sigma_{t}}\right\rangle .
\end{align*}
$$

Putting (2.10), (2.12), (2.13), and Proposition 2 together, (b) follows from (2.7).

[^4]Corollary 6. For any compactly-supported variation $\left\{\Sigma_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ of Σ, we have:
(a) $\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{vol}\left(\Sigma_{t}\right)=\int_{\Sigma_{t}} \operatorname{div}_{\Sigma_{t}}\left(V_{t}\right) \mathrm{d} \mu_{\Sigma_{t}}$
and, assuming that the variation is normal,
(b) $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \operatorname{vol}\left(\Sigma_{t}\right)=\int_{\Sigma_{t}}\left\|\nabla^{\perp} V_{t}\right\|^{2}-\operatorname{Ric}_{\Sigma_{t}}^{\top}\left(V_{t}, V_{t}\right)-\left\|A_{V_{t}}\right\|^{2}-\left\langle\boldsymbol{H}_{\Sigma_{t}}, \nabla_{V_{t}} V_{t}\right\rangle+\left\langle\boldsymbol{H}_{\Sigma_{t}}, V_{t}\right\rangle^{2} \mathrm{~d} \mu_{\Sigma_{t}}$

Proof: As the variation has compact support, we may differentiate (2.4) under the integral sign and apply Proposition 5. The original definition of $v(t)$ allows us to rewrite the resulting quantities as integrals over Σ_{t} (as opposed to integrals over Σ).

Definition 7. An embedded submanifold Σ of $(M, \mathrm{~g})$ is called minimal if

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{vol}\left(\Sigma_{t}\right)=0 \tag{2.14}
\end{equation*}
$$

for every compactly supported and boundary-fixing variations $\left\{\Sigma_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ of Σ.
Example 8. No closed submanifold of Euclidean space \mathbb{R}^{n} is minimal. More precisely, if $\Sigma \subseteq \mathbb{R}^{n}$ is k-dimensional and closed, consider the compactly supported variation $\{(1+t) \Sigma\}_{t \in(-\varepsilon, \varepsilon)}$ and note that

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{vol}((1+t) \Sigma)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}(1+t)^{k} \operatorname{vol}(\Sigma)=k \operatorname{vol}(\Sigma)>0, \tag{2.15}
\end{equation*}
$$

as a consequence of the general relation $\operatorname{vol}(\lambda \Sigma)=\lambda^{k} \operatorname{vol}(\Sigma)$, valid for $\lambda \in(0, \infty)$.
Example 9. A k-dimensional submanifold Σ of Euclidean space \mathbb{R}^{n} is minimal if and only if all coordinate projections $\left.x^{r}\right|_{\Sigma}: \Sigma \rightarrow \mathbb{R}$ are harmonic functions. Abbreviating $\left.x^{r}\right|_{\Sigma}$ simply to x^{r}, assume that Σ is minimal, and let $\eta \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Sigma)$ be arbitrary. Writing $\left(e_{1}, \ldots, e_{n}\right)$ for the canonical basis of \mathbb{R}^{n+1} and regarding all such vectors as constant fields on \mathbb{R}^{n}, we have that

$$
\begin{align*}
\operatorname{div}_{\Sigma}\left(\eta e_{r}\right) & =g^{i j}\left\langle\nabla_{\partial_{i}}\left(\eta e_{r}\right), \partial_{j}\right\rangle=g^{i j}\left\langle\left(\partial_{i} \eta\right) e_{r}, \partial_{j}\right\rangle \\
& =g^{i j}\left\langle e_{r}, \partial_{j}\right\rangle \partial_{i} \eta=e_{r}^{\top}(\eta) \tag{2.16}\\
& =\left\langle e_{r}^{\top}, \nabla^{\Sigma} \eta\right\rangle=\left\langle\nabla^{\Sigma} x^{r}, \nabla^{\Sigma} \eta\right\rangle,
\end{align*}
$$

where $\nabla^{\Sigma} f \in \Gamma(T \Sigma)$ denotes the gradient field of any smooth function $f \in C^{\infty}(\Sigma)$, and we use that the gradient $\nabla^{\Sigma} x^{r}$ is obtained by projecting onto $T \Sigma$ the full gradient $\nabla x^{r}=e_{r}$. In addition, Proposition 2 together of the definition of Laplacian \triangle_{Σ} gives us that $\operatorname{div}_{\Sigma}\left(\eta \nabla^{\Sigma} x^{r}\right)=\left\langle\nabla^{\Sigma} \eta, \nabla^{\Sigma} x^{r}\right\rangle+\eta \triangle_{\Sigma} x^{r}$. Applying the first variation formula for both fields ηe_{r} and $\eta \nabla^{\Sigma} x^{r}$ gives us that

$$
\begin{equation*}
\int_{\Sigma}\left\langle\nabla^{\Sigma} x^{r}, \nabla^{\Sigma} \eta\right\rangle \mathrm{d} \mu_{\Sigma}=0 \quad \text { and } \quad \int_{\Sigma}\left\langle\nabla^{\Sigma} \eta, \nabla^{\Sigma} x^{r}\right\rangle+\eta \triangle_{\Sigma} x^{r} \mathrm{~d} \mu_{\Sigma}=0 \tag{2.17}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\int_{\Sigma} \eta \triangle_{\Sigma} x^{r} \mathrm{~d} \mu_{\Sigma}=0 \tag{2.18}
\end{equation*}
$$

Arbitrariety of η now implies that $\triangle_{\Sigma} x^{r}=0$, as required. Conversely, assume that $V \in \Gamma\left(\left.T M\right|_{\Sigma}\right)$ is compactly supported with $\left.V\right|_{\partial \Sigma}=0$, and written as $V=\sum_{r=1}^{n} V^{r} e_{r}$. Then $V^{r} \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Sigma)$ for all $r=1, \ldots, n$, and thus (2.16) for $\eta=V^{r}$ yields

$$
\begin{align*}
\int_{\Sigma} \operatorname{div}_{\Sigma}(V) \mathrm{d} \mu_{\Sigma} & =\int_{\Sigma} \operatorname{div}_{\Sigma}\left(\sum_{r=1}^{n} V^{r} e_{r}\right) \mathrm{d} \mu_{\Sigma} \\
& =\sum_{r=1}^{n} \int_{\Sigma} \operatorname{div}_{\Sigma}\left(V^{r} e_{r}\right) \mathrm{d} \mu_{\Sigma} \tag{2.19}\\
& =\sum_{r=1}^{n} \int_{\Sigma}\left\langle\nabla^{\Sigma} V^{r}, \nabla^{\Sigma} x^{r}\right\rangle \mathrm{d} \mu_{\Sigma} \\
& =-\sum_{r=1}^{n} \int_{\Sigma} V^{r} \triangle_{\Sigma} x^{r} \mathrm{~d} \mu_{\Sigma}=0,
\end{align*}
$$

as required. As one consequence of this equivalence, it now follows that if Σ is minimal, then it is contained in the convex hull of its boundary, which is defined as the intersection

$$
\begin{equation*}
\operatorname{Conv}(\partial \Sigma)=\bigcap\left\{H \mid H \text { is a half-space in } \mathbb{R}^{n} \text { with } \partial \Sigma \subseteq H\right\} . \tag{2.20}
\end{equation*}
$$

Indeed, let H be a half-space of \mathbb{R}^{n}, written as $H=\left\{x \in \mathbb{R}^{n} \mid \varphi(x) \leq b\right\}$ for suitable $\varphi \in\left(\mathbb{R}^{n}\right)^{*}$ and $b \in \mathbb{R}$. Since all the coordinate functions are harmonic on Σ, so is the restriction $\left.\varphi\right|_{\Sigma}$. By the maximum principle for harmonic functions, there is $x_{0} \in \partial \Sigma$ for which $\left.\varphi\right|_{\Sigma}\left(x_{0}\right)$ is maximum. Now, it follows that if $\partial \Sigma \subseteq H$, then $\Sigma \subseteq H$ as well: let $x \in \Sigma$, and estimate $\varphi(x) \leq \varphi\left(x_{0}\right) \leq b$, so that $x \in H$. This proves that $\Sigma \subseteq \operatorname{Conv}(\partial \Sigma)$.

Example 10. We may generalize the first part of Example 9, considering now submanifolds of the sphere \mathbb{S}^{n} and of hyperbolic space \mathbb{H}^{n}. To treat them simultaneously, fix a parameter $c \in\{1,-1\}$ and consider in \mathbb{R}^{n+1} the scalar product

$$
\begin{equation*}
\langle v, w\rangle_{c}=v^{1} w^{1}+\ldots+v^{n} w^{n}+c v^{n+1} w^{n+1}, \tag{2.21}
\end{equation*}
$$

for all $v=\left(v^{1}, \ldots, v^{n+1}\right)$ and $w=\left(w^{1}, \ldots, w^{n+1}\right)$ in \mathbb{R}^{n+1}. When $c=1$ we have classical Euclidean space, and when $c=-1$ we have Minkowski space. This means that the space form

$$
\begin{equation*}
\mathbb{M}^{n}(c)=\left\{p \in \mathbb{R}^{n+1} \mid\langle p, p\rangle_{c}=c\right\} \tag{2.22}
\end{equation*}
$$

is the sphere for $c=1$, and hyperbolic space for $c=-1$. We claim that a submanifold $\Sigma \subseteq \mathbb{M}^{n}(c)$ is minimal if and only if all coordinate functions $x^{r}: \Sigma \rightarrow \mathbb{R}$ satisfy the eigenvalue equation $\triangle_{\Sigma} x^{r}+c k x^{r}=0$, where $k=\operatorname{dim} \Sigma$.

All formulas seen so far remain valid when the ambient manifold $(M, \mathrm{~g})$ is pseudoRiemannian and with indefinite metric signature, provided that squared norms are suitably interpreted (e.g., $\|A\|^{2}=\langle A, A\rangle$, which may now vanish even when $A \neq 0$).

The difficulty now is that the canonical basis $\left(e_{1}, \ldots, e_{n+1}\right)$ of \mathbb{R}^{n+1} is not in general tangent to $\mathbb{M}^{n}(c)$. Denoting by P the position vector field of $\mathbb{M}^{n}(c)$ in \mathbb{R}^{n+1} (i.e., given
by $P(x)=x \in T_{x}\left(\mathbb{R}^{n+1}\right)$, for every $\left.x \in \mathbb{M}^{n}(c)\right)$, we consider the orthogonal projections $\widetilde{e}_{r}(x)=e_{r}-c\left\langle e_{r}, P\right\rangle P$, that is, $\widetilde{e}_{r}(x)=e_{r}-c x^{r} P$. The Levi-Civita connection ∇ of $\mathbb{M}^{n}(c)$ is given by $\nabla_{X} Y=\mathrm{d} Y(X)-c\langle\mathrm{~d} Y(X), P\rangle P$, and thus

$$
\begin{align*}
\nabla_{X} \widetilde{e}_{j} & =\mathrm{d} \widetilde{e}_{j}(X)-c\left\langle\mathrm{~d} \widetilde{e}_{j}(X), P\right\rangle P \\
& =-c \mathrm{~d} x^{r}(X) P-c x^{r} X-c\left\langle-c \mathrm{~d} x^{r}(X) P-c x^{r} X, P\right\rangle P \tag{2.23}\\
& =-c \mathrm{~d} x^{r}(X) P-c x^{r} X+c \mathrm{~d} x^{r}(X) P+0 \\
& =-c x^{r} X .
\end{align*}
$$

Repeating (2.16) with \widetilde{e}_{r} instead of e_{r} and (2.23) instead of $\nabla_{X} e_{j}=0$ leads to

$$
\begin{equation*}
\operatorname{div}_{\Sigma}\left(\eta \widetilde{e}_{r}\right)=\left\langle\nabla^{\Sigma} x^{r}, \nabla^{\Sigma} \eta\right\rangle-c k \eta x^{r}, \tag{2.24}
\end{equation*}
$$

for all $\eta \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Sigma)$. This means that, if Σ is minimal, (2.17) now reads

$$
\begin{equation*}
\int_{\Sigma}\left\langle\nabla^{\Sigma} x^{r}, \nabla^{\Sigma} \eta\right\rangle-c k \eta x^{r} \mathrm{~d} \mu_{\Sigma}=0 \quad \text { and } \quad \int_{\Sigma}\left\langle\nabla^{\Sigma} \eta, \nabla^{\Sigma} x^{r}\right\rangle+\eta \triangle_{\Sigma} x^{r} \mathrm{~d} \mu_{\Sigma}=0, \tag{2.25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{\Sigma} \eta\left(\triangle_{\Sigma} x^{r}+c k x^{r}\right) \mathrm{d} \mu_{\Sigma}=0 \tag{2.26}
\end{equation*}
$$

and thus $\triangle_{\Sigma} x^{r}+c k x^{r}=0$ by arbitrariety of η. Conversely, if $\triangle_{\Sigma} x^{r}+c k x^{r}=0$ holds for $r=1, \ldots, n+1$, then Σ must be minimal: (2.19) boils down to

$$
\begin{equation*}
\int_{\Sigma} \operatorname{div}_{\Sigma}(V) \mathrm{d} \mu_{\Sigma}=-\sum_{r=1}^{n+1} \int_{\Sigma} V^{r}\left(\triangle_{\Sigma} x^{r}+c k x^{r}\right) \mathrm{d} \mu_{\Sigma}=0 \tag{2.27}
\end{equation*}
$$

for every compactly supported $V \in \Gamma\left(\left.T M\right|_{\Sigma}\right)$.
Remark. The above example is easily modified to provide the obvious analogous conclusions for other indefinite signature space forms, such as the de Sitter space $\mathrm{S}_{1}^{n}=\left\{p \in \mathbb{R}^{n+1} \mid\langle p, p\rangle_{-1}=1\right\}$, etc. (here, it becomes $\triangle_{\Sigma} x^{r}+k x^{r}=0$, just as in the sphere S^{n}).

Due to the general relation

$$
\begin{equation*}
\int_{\Sigma} \operatorname{div}_{\Sigma} V \mathrm{~d} \mu_{\Sigma}=-\int_{\Sigma}\left\langle\boldsymbol{H}_{\Sigma}, V\right\rangle \mathrm{d} \mu_{\Sigma}+\int_{\partial \Sigma}\langle V, N\rangle \mathrm{d} \mu_{\partial \Sigma} \tag{2.28}
\end{equation*}
$$

valid as a consequence of the divergence theorem (with N being the unit outward conormal to $\partial \Sigma$ along Σ), we see that:
(i) Σ is minimal if and only if $^{7} \boldsymbol{H}_{\Sigma}=0$.
(ii) purely tangential compactly supported variations produce no variation.

With item (i) in mind, the next example should not be surprising:

[^5]Example 11. Consider again the space forms $\mathbb{M}^{n}(c)$ from Example 10, and also set $\mathbb{M}^{n}(0)=\mathbb{R}^{n}$ so we can discuss all three of $\mathbb{R}^{n}, \mathbb{S}^{n}$, and \mathbb{H}^{n} together. Letting Σ be a submanifold of $\mathbb{M}^{n}(c)$ and writing P for the position vector field of Σ, we claim that $\triangle_{\Sigma} P+c k P=H_{\Sigma}$ (this is usually written just as $\triangle_{\Sigma} x+c k x=H_{\Sigma}$), where the Laplacian $\triangle_{\Sigma} P$ is defined componentwise.

To see this, we will repeatedly use the following general fact: whenever $(M, \mathrm{~g})$ is a pseudo-Riemannian manifold and N is a nondegenerate submanifold of M, the formula $\left(\operatorname{Hess}_{M} f\right)(X, Y)=\left(\operatorname{Hess}_{N}\left(\left.f\right|_{N}\right)\right)(X, Y)-\mathrm{d} f(\operatorname{II}(X, Y))$ holds for $X, Y \in \Gamma(T N)$, with II denoting the second fundamental form of N in M.

The second fundamental form of $\mathbb{M}^{n}(c)$ in \mathbb{R}^{n+1} (set to zero when $c=0$) is given by $(X, Y) \mapsto c\langle\mathrm{~d} Y(X), P\rangle P=-c\langle X, Y\rangle P$ (as seen by differentiating $\langle Y, P\rangle=0$ in the direction of X), so that $\left(\operatorname{Hess}_{\mathbb{M}^{n}(c)} x^{r}\right)(X, Y)=\mathrm{d} x^{r}(-c\langle X, Y\rangle P)=-c x^{r}\langle X, Y\rangle$, and thus

$$
\begin{equation*}
\left(\operatorname{Hess}_{\Sigma} x^{r}\right)=-c x^{r}\langle X, Y\rangle+\mathrm{d} x^{r}(\operatorname{II}(X, Y)) \tag{2.29}
\end{equation*}
$$

for all $X, Y \in \Gamma(T \Sigma)$, with II denoting the second fundamental form of Σ in $\mathbb{M}^{n}(c)$. Hence

$$
\begin{align*}
\triangle_{\Sigma} x^{r} & =g^{i j}\left(\operatorname{Hess}_{\Sigma} x^{r}\right)\left(\partial_{i}, \partial_{j}\right) \\
& =g^{i j}\left(-c x^{r} g_{i j}+\mathrm{d} x^{r}\left(\operatorname{II}\left(\partial_{i}, \partial_{j}\right)\right)\right. \tag{2.30}\\
& =-c k x^{r}+\mathrm{d} x^{r}\left(\boldsymbol{H}_{\Sigma}\right)
\end{align*}
$$

leading to $\triangle_{\Sigma} x^{r}+c k x^{r}=\mathrm{d} x^{r}\left(\boldsymbol{H}_{\Sigma}\right)$, as required.
Item (ii) is the reason we have focused on normal variations in the previous result. Observe that evaluating item (b) of Corollary 6 at $t=0$ yields that the second derivative of $\operatorname{vol}\left(\Sigma_{t}\right)$ at $t=0$ equals

$$
\begin{equation*}
\int_{\Sigma}\left\|\nabla^{\perp} V\right\|^{2}-\operatorname{Ric}_{\Sigma}^{\top}(V, V)-\left\|A_{V}\right\|^{2}-\left\langle\boldsymbol{H}_{\Sigma},\left.\nabla_{V_{t}} V_{t}\right|_{t=0}\right\rangle+\left\langle\boldsymbol{H}_{\Sigma}, V\right\rangle^{2} \mathrm{~d} \mu_{\Sigma} \tag{2.31}
\end{equation*}
$$

However, the term $\left.\nabla_{V_{t}} V_{t}\right|_{t=0}$ depends not only on the vector field V, but also on the variation F itself. In general, the value $\left(\nabla_{X} Y\right)_{p}$ depends on X_{p} and on the values of Y along a small piece of the integral curve of X passing through p, and this means that $\nabla_{V} V$ is not even well-defined in our setting. More precisely, evaluating $\nabla_{V_{t}} V_{t}$ at $t=0$ does define a vector field tangent to M along Σ, but also eliminates transverse information that V by itself cannot recover.

This issue dissapears in the case where Σ is minimal, as (2.31) gets simplified to

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} \operatorname{vol}\left(\Sigma_{t}\right)=\int_{\Sigma}\left\|\nabla^{\perp} V\right\|^{2}-\operatorname{Ric}_{\Sigma}^{\top}(V, V)-\left\|A_{V}\right\|^{2} \mathrm{~d} \mu_{\Sigma} \tag{2.32}
\end{equation*}
$$

The right side of (2.32) depends only on V and not on the variation itself. For this reason, it is usually denoted by $I_{\Sigma}(V, V)$, and I_{Σ} is called the index form of Σ. This motivates the following definition:
Definition 12. A minimal submanifold Σ of $(M, \mathrm{~g})$ is stable if

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} \operatorname{vol}\left(\Sigma_{t}\right) \geq 0 \tag{2.33}
\end{equation*}
$$

for every boundary-fixing normal variation $\left\{\Sigma_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ of Σ or, equivalently, if

$$
\begin{equation*}
\int_{\Sigma}\left\|\nabla^{\perp} V\right\|^{2} \mathrm{~d} \mu_{\Sigma} \geq \int_{\Sigma} \operatorname{Ric}_{\Sigma}^{\top}(V, V)+\left\|A_{V}\right\|^{2} \mathrm{~d} \mu_{\Sigma} \tag{2.34}
\end{equation*}
$$

for every $V \in \Gamma\left(T \Sigma^{\perp}\right)$ with $\left.V\right|_{\partial \Sigma}=0$.

3 The hypersurface case and the Gauss formula

Let $(M, \mathrm{~g})$ be a Riemannian manifold, and assume this time that $\iota: \Sigma \hookrightarrow M$ is an embedded 2 -sided hypersurface in M, with a fixed choice of a unit normal field $v \in \Gamma\left(T \Sigma^{\perp}\right)$. Writing A for the shape operator associated with v, we have the Gauss formula ${ }^{8}$

$$
\begin{equation*}
R^{\Sigma}(X, Y, Z, W)=R(X, Y, Z, W)+\langle A Y, Z\rangle\langle A X, W\rangle-\langle A X, Z\rangle\langle A Y, W\rangle \tag{3.1}
\end{equation*}
$$

valid for all $X, Y, Z, W \in \Gamma(T \Sigma)$. Writing the mean curvature vector as $^{9} \boldsymbol{H}=H \nu$ and $\left(\iota^{*} \mathrm{~g}\right)$-tracing in the variables X and W yields

$$
\begin{equation*}
\operatorname{Ric}^{\Sigma}(Y, Z)=\operatorname{Ric}_{\Sigma}^{\top}(Y, Z)+H\langle A Y, Z\rangle-\langle A Y, A Z\rangle \tag{3.2}
\end{equation*}
$$

which, rewritten without $\operatorname{Ric}_{\Sigma}^{\top}$, reads

$$
\begin{equation*}
\operatorname{Ric}^{\Sigma}(Y, Z)=\operatorname{Ric}(Y, Z)-\operatorname{Ric}(v, v)+H\langle A Y, Z\rangle-\langle A Y, A Z\rangle \tag{3.3}
\end{equation*}
$$

Taking the $\left(\iota^{*} \mathrm{~g}\right)$-trace yet again, we obtain

$$
\begin{equation*}
\mathrm{s}^{\Sigma}=\mathrm{s}^{M}-2 \operatorname{Ric}(v, v)+H^{2}-\|A\|^{2}, \tag{3.4}
\end{equation*}
$$

where s^{M} and s^{Σ} are the scalar curvatures of $(M, \mathrm{~g})$ and $\left(\Sigma, \iota^{*} \mathrm{~g}\right)$, respectively. Here, $\left\|A^{2}\right\|=\|A\|^{2}$ by self-adjointess of A. Note also that $\|A\|^{2}=\|\mathrm{II}\|^{2}$ vanishes if and only if Σ is totally geodesic in $(M, \mathrm{~g})$. A convenient rearrangement of (3.4) is

$$
\begin{equation*}
\operatorname{Ric}(v, v)=\frac{1}{2}\left(\mathrm{~s}^{M}-\mathrm{s}^{\Sigma}+H^{2}-\|A\|^{2}\right) . \tag{3.5}
\end{equation*}
$$

Now, every $V \in \Gamma\left(T \Sigma^{\perp}\right)$ may be written as $V=\eta v$ for some $\eta \in C^{\infty}(\Sigma)$, with $\left.V\right|_{\partial \Sigma}=0$ if and only if $\left.\eta\right|_{\partial \Sigma}=0$, and V compactly supported if and only if η is. As $\nabla^{\perp} v=0$ (since differentiating $\langle v, v\rangle=1$ in the direction of X leads to $\left\langle\nabla \frac{\perp}{X} v, v\right\rangle=0$ and thus $\nabla \frac{1}{X} v=0$), we have that $\left\|\nabla^{\perp} V\right\|^{2}=\left\|\nabla^{\perp}(\eta v)\right\|^{2}=\|\mathrm{d} \eta \otimes v\|^{2}=\left\|\nabla^{\Sigma} \eta\right\|^{2}$. Also note that $A_{V}=A_{\eta v}=\eta A$. Putting all of this together, we have that

$$
\begin{equation*}
I_{\Sigma}(\eta, \eta)=\int_{\Sigma}\left\|\nabla^{\Sigma} \eta\right\|^{2}-\left(\operatorname{Ric}(\nu, v)+\|A\|^{2}\right) \eta^{2} \mathrm{~d} \mu_{\Sigma} \tag{3.6}
\end{equation*}
$$

[^6]Integrating by parts and using that $\left.V\right|_{\partial \Sigma}=0$, we also obtain

$$
\begin{align*}
I_{\Sigma}(\eta, \eta) & =\int_{\Sigma}-\eta \triangle_{\Sigma} \eta-\left(\operatorname{Ric}(v, v)+\|A\|^{2}\right) \eta^{2} \mathrm{~d} \mu_{\Sigma} \\
& =-\int_{\Sigma} \eta L_{\Sigma} \eta \mathrm{d} \mu_{\Sigma} \tag{3.7}
\end{align*}
$$

where the stability operator of Σ acting on functions is given by

$$
\begin{equation*}
L_{\Sigma} \eta=\Delta_{\Sigma} \eta+\left(\operatorname{Ric}(\nu, v)+\|A\|^{2}\right) \eta . \tag{3.8}
\end{equation*}
$$

Observe that L_{Σ} is elliptic (its principal symbol equals the one of \triangle_{Σ}) and self-adjoint. It is a well-known fact that the first Dirichlet eigenvalue ${ }^{10} \lambda_{1}\left(L_{\Sigma}\right)$ is non-negative, and expressed via a Rayleigh quotient:

$$
\begin{equation*}
\lambda_{1}\left(L_{\Sigma}\right)=\min _{\eta}\left\{-\int_{\Sigma} \eta L_{\Sigma} \eta \mathrm{d} \mu_{\Sigma} \mid \int_{\Sigma} \eta^{2} \mathrm{~d} \mu_{\Sigma}=1\right\} \geq 0 \tag{3.9}
\end{equation*}
$$

Proposition 13. If $(M, \mathrm{~g})$ has Ric >0, then M does not contain any closed stable minimal 2-sided hypersurfaces.

Proof: If Σ were such a hypersurface, one could set $\eta=1$ in the stability condition

$$
\begin{equation*}
\int_{\Sigma}\left\|\nabla^{\Sigma} \eta\right\|^{2} \mathrm{~d} \mu_{\Sigma} \geq \int_{\Sigma}\left(\operatorname{Ric}(v, v)+\|A\|^{2}\right) \eta^{2} \mathrm{~d} \mu_{\Sigma} \tag{3.10}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
0 \geq \int_{\Sigma} \operatorname{Ric}(v, v)+\|A\|^{2} \mathrm{~d} \mu_{\Sigma} \geq \int_{\Sigma} \operatorname{Ric}(v, v) \mathrm{d} \mu_{\Sigma}>0 \tag{3.11}
\end{equation*}
$$

a contradiction.
A small modification of the above argument gives:
Proposition 14. If $(M, \mathrm{~g})$ has Ric ≥ 0, then any closed stable minimal 2 -sided hypersurface Σ of M is totally geodesic. In addition, $\operatorname{Ric}(v, v)=0$ (for any unit normal field v along Σ) and $\left.\mathrm{s}^{M}\right|_{\Sigma}=\mathrm{s}^{\Sigma}$. When $\operatorname{dim} M=3$, the surface Σ (when connected) must be homeomorphic to a sphere or isometric to a flat torus.

Proof: Choosing $\eta=1$, we see that the strict inequality in (3.11) now becomes weak and leads to

$$
\begin{equation*}
\int_{\Sigma} \operatorname{Ric}(v, v)+\|A\|^{2} \mathrm{~d} \mu_{\Sigma}=0 . \tag{3.12}
\end{equation*}
$$

As each term in the above integrand is non-negative, continuity leads to $\operatorname{Ric}(v, v)=0$ and also to $\|A\|^{2}=0$ (and hence $A=0$). The relation between scalar curvatures now follows from (3.4). When $\operatorname{dim} M=3$, we may apply the Gauss-Bonnet theorem to Σ, using the relation $\mathrm{s}^{\Sigma}=2 K^{\Sigma}$, with K^{Σ} being the Gaussian curvature of Σ. Namely, as $s^{\Sigma} \geq 0$, we have that

$$
\begin{equation*}
\chi(\Sigma)=\frac{1}{2 \pi} \int_{\Sigma} K^{\Sigma} \mathrm{d} \mu_{\Sigma} \geq 0 \Longrightarrow \chi(\Sigma)=0 \text { or } \chi(\Sigma)=1, \tag{3.13}
\end{equation*}
$$

[^7]and the dichotomy follows from the classification of closed surfaces. In the case where Σ is a torus, $\chi(\Sigma)=0$ implies that $\int_{\Sigma} \mathrm{s}^{\Sigma} \mathrm{d} \mu_{\Sigma}=0$, so that $\mathrm{s}^{\Sigma} \geq 0$ implies that $\mathrm{s}^{\Sigma}=0$ by continuity.

The assumption that Ric ≥ 0 in the previous result may be somewhat weakened when $\operatorname{dim} M=3$.

Proposition 15. If $(M, \mathrm{~g})$ has $\mathrm{s}^{M} \geq 0$ and $\operatorname{dim} M=3$, then any stable minimal torus Σ is totally geodesic and flat, with $\operatorname{Ric}(v, v)=0$ for any chosen unit normal field v along Σ.

Proof: In general, substituting (3.5) into (3.10) gives us a rephrased stability condition

$$
\begin{equation*}
\int_{\Sigma}\left\|\nabla^{\Sigma} \eta\right\|^{2} \mathrm{~d} \mu_{\Sigma} \geq \frac{1}{2} \int_{\Sigma} \mathrm{s}^{M}-\mathrm{s}^{\Sigma}-H^{2}+\|A\|^{2} \mathrm{~d} \mu_{\Sigma} \tag{3.14}
\end{equation*}
$$

We know that $\int_{\Sigma} \mathrm{s}^{\Sigma} \mathrm{d} \mu_{\Sigma}=0$ by the Gauss-Bonnet theorem, as Σ is a torus. If Σ is also minimal and stable, then setting $\eta=1$ in the above yields

$$
\begin{equation*}
0 \geq \frac{1}{2} \int_{\Sigma} \mathrm{s}^{M}+\|A\|^{2} \mathrm{~d} \mu_{\Sigma} \geq 0 \tag{3.15}
\end{equation*}
$$

as $\mathrm{s}^{M} \geq 0$. Therefore $\mathrm{s}^{M}=0$ along Σ and $\|A\|^{2}=0$, so Σ is totally geodesic. We may now integrate (3.5) to obtain $\int_{\Sigma} \operatorname{Ric}(v, v) \mathrm{d} \mu_{\Sigma}=0$. This means that the constant function $\operatorname{vol}(\Sigma)^{-1 / 2}$ is an eigenfunction for L_{Σ} and that $\lambda_{1}\left(L_{\Sigma}\right)=0$ is the first eigenvalue, in view of (3.9). More precisely, we know that the minimum of the integrals $-\int_{\Sigma} \eta L_{\Sigma} \eta \mathrm{d} \mu_{\Sigma}$ is nonnegative, but that the value zero was indeed realized by the constant function $\operatorname{vol}(\Sigma)^{-1 / 2}$, so such minimum in fact equals zero. This means that $\operatorname{Ric}(v, v)=L_{\Sigma}(1)=0$ (this spectral argument is crucial in passing from "average zero" to "pointwise zero"). In any case, (3.5) now implies that $\mathrm{s}^{\Sigma}=0$ as well.

For our next result, we'll describe (still in the hypersurface case) how the mean curvature of the stages of a variation evolves. First, note that

$$
\begin{equation*}
\boldsymbol{H}=H v \Longrightarrow H=-\operatorname{div}_{\Sigma} v \tag{3.16}
\end{equation*}
$$

by a direct computation:

$$
\begin{equation*}
\operatorname{div}_{\Sigma} v=g^{i j}\left\langle\nabla_{\partial_{i}} v, \partial_{j}\right\rangle=-g^{i j}\left\langle v, \nabla_{\partial_{i}} \partial_{j}\right\rangle=-g^{i j}\left\langle v, \mathrm{II}\left(\partial_{i}, \partial_{j}\right)\right\rangle=-\langle v, \boldsymbol{H}\rangle=-H \tag{3.17}
\end{equation*}
$$

Thus:
Proposition 16. Let $\left\{\Sigma_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ be a normal variation of Σ, and write the variational vector fields as $V_{t}=\eta_{t} v_{t}$, where v_{t} is an unit normal field along Σ_{t} and η_{t} is a suitable smooth function. Denoting by A_{t} and H_{t} the shape operator and mean curvature scalar of Σ_{t} associated with v_{t}, respectively, we have

$$
\begin{equation*}
\eta_{t} \frac{\mathrm{~d}}{\mathrm{~d} t} H_{t}=-\left\|\nabla^{\Sigma_{t}} \eta_{t}\right\|^{2}+\left(\operatorname{Ric}\left(v_{t}, v_{t}\right)+\left\|A_{t}\right\|^{2}\right) \eta_{t}^{2} \tag{3.18}
\end{equation*}
$$

Proof: From (2.10), (2.12), (2.13), we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{div}_{\Sigma_{t}}\left(V_{t}\right)=-\left\|A_{V_{t}}\right\|^{2}-\operatorname{Ric}_{\Sigma_{t}}^{\top}\left(V_{t}, V_{t}\right)-\left\langle\nabla_{V_{t}} V_{t}, \boldsymbol{H}_{\Sigma_{t}}\right\rangle+\left\|\nabla^{\perp} V_{t}\right\|^{2} \tag{3.19}
\end{equation*}
$$

Substituting $V_{t}=\eta_{t} v_{t}$ yields

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{div}_{\Sigma_{t}}\left(\eta_{t} v_{t}\right)=-\left\|A_{t}\right\|^{2} \eta_{t}^{2}-\operatorname{Ric}\left(v_{t}, v_{t}\right) \eta_{t}^{2}-V_{t}\left(\eta_{t}\right) H_{t}+\left\|\nabla^{\Sigma_{t}} \eta_{t}\right\|^{2} \tag{3.20}
\end{equation*}
$$

However, due to Proposition 2 and the product rule, the left side above reads

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{div}_{\Sigma_{t}}\left(\eta_{t} v_{t}\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(-\eta_{t} H_{t}\right)=-V_{t}\left(\eta_{t}\right) H_{t}-\eta_{t} \frac{\mathrm{~d}}{\mathrm{~d} t} H_{t} \tag{3.21}
\end{equation*}
$$

Hence, (3.18) follows.
Example 17. For $a>0$ and a smooth function $f:[a, \infty) \rightarrow(0, \infty)$, consider in the product $M=[a, \infty) \times S^{n-1}$ the Riemannian metric

$$
\begin{equation*}
\mathrm{g}=\frac{\mathrm{d} r^{2}}{f(r)}+r^{2} \mathrm{~g}^{\circ} \tag{3.22}
\end{equation*}
$$

where g° is the standard round metric in S^{n-1}. Observe that if $\theta_{2}, \ldots, \theta_{n}$ is an orthonormal coframe for the sphere (i.e., $\mathrm{g}^{\circ}=\theta_{2} \otimes \theta_{2}+\cdots+\theta_{n} \otimes \theta_{n}$), then the volume form of \mathbb{S}^{n-1} equals $\mathrm{d} \mu_{\mathbb{S}^{n-1}}=\theta_{2} \wedge \cdots \wedge \theta_{n}$. As $f(r)^{-1 / 2} \mathrm{~d} r, r \theta_{2}, \ldots, r \theta_{n}$ is an orthonormal coframe for (M, g), the same principle yields

$$
\begin{equation*}
\mathrm{d} \mu_{M}=\frac{\mathrm{d} r}{f(r)^{1 / 2}} \wedge\left(r \theta_{2}\right) \wedge \cdots \wedge\left(r \theta_{n}\right)=\frac{r^{n-1}}{f(r)^{1 / 2}} \mathrm{~d} r \wedge \mathrm{~d} \mu_{\mathrm{S}^{n-1}} \tag{3.23}
\end{equation*}
$$

For a fixed value of $r \in[a, \infty)$, we will compute the mean curvature scalar of the slice $\Sigma=\{r\} \times \mathbb{S}^{n-1}$ associated with the unit normal field $v=f(r)^{1 / 2} \partial_{r}$. To do so, consider the variation $F: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow M$ given by $F((r, x), t)=\left(r+t f(r)^{1 / 2}, x\right)$, so that $V=v$. To do so, we will use the (valid, as $\partial \Sigma=\varnothing$) formula

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{vol}\left(\Sigma_{t}\right)=-\int_{\Sigma}\left\langle\boldsymbol{H}_{\Sigma}, V\right\rangle \mathrm{d} \mu_{\Sigma} \tag{3.24}
\end{equation*}
$$

which, due to symmetry reasons, reduces to

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{vol}\left(\Sigma_{t}\right)=-H \operatorname{vol}(\Sigma) \tag{3.25}
\end{equation*}
$$

To explicitly compute $\operatorname{vol}\left(\Sigma_{t}\right)$, observe that $\mathrm{d} \mu_{\Sigma}=\iota_{f(r)^{1 / 2} \partial_{r}} \mathrm{~d} \mu_{M}=r^{n-1} \mathrm{~d} \mu_{\mathrm{S}^{n-1}}$ as a consequence of (3.23), so that replacing r with $r+t f(r)^{1 / 2}$ yields

$$
\begin{equation*}
\mathrm{d} \mu_{\Sigma_{t}}=\left(r+t f(r)^{1 / 2}\right)^{n-1} \mathrm{~d} \mu_{\mathrm{S}^{n-1}}=\left(1+\frac{t f(r)^{1 / 2}}{r}\right)^{n-1} \mathrm{~d} \mu_{\Sigma} \tag{3.26}
\end{equation*}
$$

and thus, differentiating the newfound relation

$$
\begin{equation*}
\operatorname{vol}\left(\Sigma_{t}\right)=\left(1+\frac{t f(r)^{1 / 2}}{r}\right)^{n-1} \operatorname{vol}(\Sigma) \tag{3.27}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{vol}\left(\Sigma_{t}\right)=\frac{(n-1) f(r)^{1 / 2}}{r} \operatorname{vol}(\Sigma) . \tag{3.28}
\end{equation*}
$$

Hence, $H=-(n-1) f(r)^{1 / 2} / r$.
We can proceed further by observing that, for geometric reasons, Σ is totally umbilic in M. Hence all the eigenvalues of A are equal to $H /(n-1)=-f(r)^{1 / 2} / r$, meaning that $\|A\|^{2}=(n-1) f(r) / r^{2}$. Using that $\mathrm{s}^{\Sigma}=(n-1)(n-2) / r^{2}$, relation (3.4) becomes

$$
\begin{equation*}
\frac{(n-1)(n-2)}{r^{2}}=\mathrm{s}^{M}-2 \operatorname{Ric}(v, v)+\frac{(n-1)^{2} f(r)}{r^{2}}-\frac{(n-1) f(r)}{r^{2}} . \tag{3.29}
\end{equation*}
$$

The strength of the approach here is that we may solve for $\operatorname{Ric}(v, v)$, and then s^{M}, without resorting to further computations involving Christoffel symbols or moving frames. As $\eta_{0}=1$, the formula given in Proposition 16 reduces to

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} H_{t}=\operatorname{Ric}(v, v)+\frac{(n-1) f(r)}{r^{2}} \tag{3.30}
\end{equation*}
$$

However, by replacing r with $r+t f(r)^{1 / 2}$, we see that

$$
\begin{equation*}
H_{t}=-\frac{(n-1) f\left(r+t f(r)^{1 / 2}\right)^{1 / 2}}{r+t f(r)^{1 / 2}} \tag{3.31}
\end{equation*}
$$

and thus

$$
\begin{align*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} H_{t} & =\frac{-(n-1) \frac{1}{2} f(r)^{-1 / 2} f^{\prime}(r) f(r)^{1 / 2} r+(n-1) f(r)^{1 / 2} f(r)^{1 / 2}}{r^{2}} \\
& =\frac{-(n-1) \frac{f^{\prime}(r)}{2} r+(n-1) f(r)}{r^{2}} \tag{3.32}\\
& =\frac{(n-1)}{r^{2}}\left(-\frac{r f^{\prime}(r)}{2}+f(r)\right)
\end{align*}
$$

Then (3.30) gives us that

$$
\begin{equation*}
\operatorname{Ric}(v, v)=-\frac{(n-1) r f^{\prime}(r)}{2 r^{2}} \tag{3.33}
\end{equation*}
$$

so (3.29) now reads, after factoring out $(n-1) / r^{2}$,

$$
\begin{equation*}
\frac{(n-1)(n-2)}{r^{2}}=\mathrm{s}^{M}+\frac{(n-1)}{r^{2}}\left(r f^{\prime}(r)+(n-1) f(r)-f(r)\right) \tag{3.34}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\mathrm{s}^{M}=\frac{(n-1)}{r^{2}}\left((n-2)(1-f(r))-r f^{\prime}(r)\right) . \tag{3.35}
\end{equation*}
$$

4 The geodesic case

Let $(M, \mathrm{~g})$ be a Riemannian manifold, and $\Sigma \hookrightarrow M$ be an embedded curve, that is, $\operatorname{dim} \Sigma=1$. We assume that Σ is parametrized by a unit speed regular curve $\gamma: I \rightarrow \Sigma$. It follows from differentiating $\langle\dot{\gamma}, \dot{\gamma}\rangle=1$ that $\left\langle\nabla_{\dot{\gamma}} \dot{\gamma}, \dot{\gamma}\right\rangle=0$, and thus $\nabla_{\dot{\gamma}} \dot{\gamma}=\mathrm{II}(\dot{\gamma}, \dot{\gamma})$. Thus, the mean curvature vector is given by $H_{\Sigma}=\nabla_{\dot{\gamma}} \dot{\gamma}$. Hence, Σ is minimal if and only if γ is a geodesic.

Now, let V be a vector field normal to a unit speed geodesic $\gamma: I \rightarrow \Sigma$, that is, with $\langle V, \dot{\gamma}\rangle=0$. Differentiating and using that $\dot{\gamma}$ is a geodesic, we see that $\left\langle\nabla_{\dot{\gamma}} V, \dot{\gamma}\right\rangle=0$, so that $\nabla_{\dot{\gamma}} V=\nabla \stackrel{\perp}{\dot{\gamma}} V$ and $A_{V}=0$. $\operatorname{As~}_{\operatorname{Ric}}^{\Sigma}{ }^{\top}(V, V)=R(\dot{\gamma}, V, V, \dot{\gamma})$, the stability condition (2.34) reads

$$
\begin{equation*}
\int_{I}\left\|\nabla_{\dot{\gamma}} V\right\|^{2}-R(\dot{\gamma}, V, V, \dot{\gamma}) \mathrm{d} s \geq 0 \tag{4.1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
-\int_{I}\left\langle V, \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} V-R(\dot{\gamma}, V) \dot{\gamma}\right\rangle \mathrm{d} s \geq 0 \tag{4.2}
\end{equation*}
$$

The stability operator L_{Σ} is given by $L_{\Sigma} V=\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} V-R(\dot{\gamma}, V) \dot{\gamma}$ and its kernel consists of classical Jacobi fields (as predicted).

[^0]: ${ }^{1}$ Whose true power consists in keeping a consistent index balance, not in omitting summation signs.

[^1]: ${ }^{2} 2$-sided means that the normal bundle of Σ in M is trivial, that is, that there is a globally defined unit normal field along Σ. When there is no metric present, one may define the notion of being 2 -sided by using the quotient line bundle $\left.T M\right|_{\Sigma} / T \Sigma$ instead.

[^2]: ${ }^{3}$ We assume that Σ is orientable, for simplicity. If not, treat $\mathrm{d} \mu_{\Sigma}$ as a density instead.

[^3]: ${ }^{4}$ We do not use the convention of writing derivatives as subscripts with commas or semi-colons.
 ${ }^{5}$ Namely, $\mathrm{d}(\operatorname{det}){ }_{A}(H)=\operatorname{det} A \operatorname{tr}\left(A^{-1} H\right)$ for all $A \in \mathrm{GL}(k)$ and $H \in \mathbb{R}^{k \times k}$. Any Lie group homomorphism $\varphi: G_{1} \rightarrow G_{2}$ has $\varphi \circ \mathrm{L}_{g}=\mathrm{L}_{\varphi(g)} \circ \varphi$ for all $g \in G_{1}$, and so $\mathrm{d} \varphi_{g}=\mathrm{d}\left(L_{\varphi(g)}\right)_{e} \circ \mathrm{~d} \varphi_{e} \circ\left(\mathrm{~d}\left(\mathrm{~L}_{g}\right)_{e}\right)^{-1}$ by the chain rule. Applying this principle to the Lie group homomorphism det: GL $(k) \rightarrow \mathbb{R} \backslash\{0\}$ together with the easily verified identity $\mathrm{d}(\mathrm{det})_{\mathrm{Id}}=\operatorname{tr}$ yields the Jacobi formula.

[^4]: ${ }^{6}$ Namely: $\left\langle\nabla_{V_{t}} V_{t}, \partial_{i, t}\right\rangle=-\left\langle V_{t}, \nabla_{V_{t}} \partial_{i, t}\right\rangle=-\left\langle V_{t}, \nabla_{\partial_{i, t}} V_{t}\right\rangle=\left\langle V_{t}, A_{V_{t}}\left(\partial_{i, t}\right)\right\rangle=0$.

[^5]: ${ }^{7}$ Considering only boundary-fixing variations allows us to ignore the boundary term in (2.28), while the L^{2} inner product between compactly supported vector fields tangent to M along Σ is nondegenerate.

[^6]: ${ }^{8}$ Conveniently expressed in general codimension as $R^{\Sigma}=R+\mathrm{II} \boxtimes$ II, where \boxtimes is the KulkarniNomizu product between $T M$-valued twice-covariant symmetric tensor fields: it is defined by $2(T \boxtimes S)(X, Y, Z, W)=\langle T(Y, Z), S(X, W)\rangle-\langle T(X, Z), S(X, W)\rangle+\langle S(Y, Z), T(X, W)\rangle-\langle S(X, Z), T(X, W)\rangle$.
 ${ }^{9}$ Here, H is the mean curvature scalar associated with v. Replacing v with $-v$ causes H to be replaced with $-H$ (as the vector H must remain invariant).

[^7]: ${ }^{10}$ By a Dirichlet eigenvalue of an operator L we mean a real number λ such that there is a non-zero function f with $\left.f\right|_{\partial \Sigma}=0$ and $L f+\lambda f=0$.

