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1 Setup

Let (M, g) be a Riemannian manifold, and ι : Σ ↪→ M be an embedded subman-
ifold. We will often write 〈·, ·〉 instead of g and identify ι(Σ) with Σ, as it is usual
practice. We write ∇ and ∇Σ for the Levi-Civita connections of (M, g) and (Σ, ι∗g).
We have

(a) ∇XY = ∇Σ
XY + II(X, Y), (b) ∇M

X ξ = −Aξ(X) +∇⊥X ξ, (1.1)

for all X, Y ∈ Γ(TΣ) and ξ ∈ Γ(TΣ⊥), where II denotes the second fundamental form
of Σ in (M, g), Aξ is the shape operator associated with ξ, and ∇⊥ is the normal con-
nection of Σ. Shape operators are related to the second fundamental form via the
relations

〈II(X, Y), ξ〉 = 〈Aξ(X), Y〉. (1.2)

The mean curvature vector HΣ ∈ Γ(TΣ⊥) is the g-trace of II, and may be computed as

HΣ = gijII
(
∂i, ∂j

)
=

k

∑
i=1

II(Ei, Ei), (1.3)

where k = dim Σ and (x1, . . . , xk) are local coordinates on Σ, or (E1, . . . , Ek) is a local
orthonormal frame tangent to Σ. When not working with orthonormal frames, we use
Einstein’s summation convention1.

With the aid of a metric, one may compute the divergence of vector fields and
tensor fields, in general. In our setup, we have a divergence operator divg associated
with (M, g), and divι∗g associated with (Σ, ι∗g). The latter has an obvious extension to
vector fields that are tangent to M along Σ (as opposed to acting just on vector fields
that are tangent to Σ).

Definition 1. The tangential divergence divΣ : Γ(TM|Σ)→ C∞(Σ) is defined by

divΣ(X) = trι∗g((Y, Z) 7→ 〈∇YX, Z〉) = gij 〈∇∂i X, ∂j
〉
=

k

∑
i=1
〈∇Ei X, Ei〉, (1.4)

where (x1, . . . , xk) are local coordinates on Σ, or (E1, . . . , Ek) is a local orthonormal
frame tangent to Σ.

1Whose true power consists in keeping a consistent index balance, not in omitting summation signs.
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For any vector field X tangent to M along Σ, we write X = X> + X⊥ according
to the direct sum decomposition TM|Σ = TΣ⊕ TΣ⊥. Here is what we need to know
about this tangential divergence operator:

Proposition 2 (Main properties of divΣ).

(a) divΣ( f X) = X>( f ) + f divΣ(X), for all X ∈ Γ(TM|Σ) and f ∈ C∞(Σ).

(b) divΣ(X) = divι∗g(X), for all X ∈ Γ(TΣ).

(c) divΣ(X) = divΣ(X>)− 〈HΣ, X〉, for all X ∈ Γ(TM|Σ).
Remark. In particular, the Laplacian4Σ f of a smooth function f : Σ→ R (defined as
divι∗g(∇Σ f )), may be computed as divΣ(∇Σ f ).

Proof: Noting that X> = gij〈X, ∂i〉∂j whenever (x1, . . . , xk) is a local coordinate sys-
tem for Σ, we directly compute

divΣ( f X) = gij〈∇∂i( f X), ∂j〉 = gij〈(∂i f )X + f∇∂i X, ∂j〉
= gij〈X, ∂j〉∂i f + f gij〈∇∂i X, ∂j〉 = X>( f ) + f divΣ(X).

(1.5)

This proves (a). For (b), use (1.1-a): note that 〈∇∂i X, ∂j〉 = 〈∇Σ
∂i

X, ∂j〉 and apply gij.
Finally, as divΣ is additive, it suffices to again use (1.1-a) to obtain

divΣ(X⊥) = gij〈∇∂i(X⊥), ∂j〉 = −gij〈X⊥,∇∂i ∂j〉
= −gij〈X⊥, II(∂i, ∂j)〉 = −〈X⊥, HΣ〉
= −〈X, HΣ〉,

(1.6)

as required.

In a similar manner to what was done for divΣ, we may also consider a “partial”
Ricci tensor, acting on vector fields tangent to M along Σ. Our sign convention for the
Riemann curvature tensor is R(X, Y) = [∇X,∇Y]−∇[X,Y].

Definition 3. The tangential Ricci tensor Ric>Σ : Γ(TM|Σ) × Γ(TM|Σ) → C∞(Σ) is
defined by

Ric>Σ (Y, Z) = trι∗g R(·, Y, Z, ·) = gijR
(
∂i, Y, Z, ∂j

)
=

k

∑
i=1

R(Ei, Y, Z, Ei), (1.7)

for all vector fields Y and Z tangent to M along Σ, where (x1, . . . , xk) are local coordi-
nates on Σ, or (E1, . . . , Ek) is a local orthonormal frame tangent to Σ.

Remark. When Y and Z above happen to be tangent to Σ, Ric>Σ (Y, Z) still does not
agree with the Ricci tensor of Σ itself evaluated at Y and Z. This is only guaranteed to
happen when Σ is totally geodesic in (M, g), that is, when II = 0. In addition, when
Σ is a 2-sided hypersurface2 in M and ν is a unit normal field along Σ, we have the
relation Ric>Σ (Y, Z) = Ric(Y, Z)− R(ν, Y, Z, ν), and hence Ric>Σ (ν, ·) = Ric(ν, ·).

22-sided means that the normal bundle of Σ in M is trivial, that is, that there is a globally defined
unit normal field along Σ. When there is no metric present, one may define the notion of being 2-sided
by using the quotient line bundle TM|Σ/TΣ instead.
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2 Variation formulas and examples

Let (M, g) be a Riemannian manifold, and Σ be an embedded submanifold, possi-
bly with boundary. The volume of Σ is defined by

vol(Σ) =
∫

Σ
1 dµΣ, (2.1)

where dµΣ stands for the volume form3 of the induced metric on Σ. When dim Σ
equals 1 or 2, “volume” means arclength or area, respectively. To understand variations
of this volume functional, we will need to consider variations of submanifolds:

Definition 4. A variation of Σ in M is a smooth map F : Σ× (−ε, ε) → M such that
F(x, 0) = x for every x ∈ Σ. Then:

(a) F is compactly supported if there is a compact subset K ⊆ Σ such that F(x, t) = x
for all (x, t) ∈ (Σ r K)× (−ε, ε).

(b) F is boundary-fixing if F(x, t) = x for all (x, t) ∈ ∂Σ× (−ε, ε).

(c) For each fixed t ∈ (−ε, ε), the t-stage of the variation is Σt = F(Σ, t) (in other
words, Σt is defined as the image of Σ under the partial map Ft = F(·, t) : Σ→ M.
In particular, Σ0 = Σ.

(d) The variational vector field V of F is defined as V = V0, where in general we
define Vt, for t ∈ (−ε, ε), by

Vt(x) =
d
dt

F(x, t) ∈ TF(x,t)M, (2.2)

for every x ∈ Σ.

(e) F is a normal variation of Σ if Vt(x) ∈ [TF(x,t)Σt]⊥ for all (x, t) ∈ Σ× (−ε, ε).

When F is not explicitly needed, one calls {Σt}t∈(−ε,ε) a variation of Σ instead.

Remark. When F is either boundary-fixing, or compactly supported with Σ noncom-
pact, we necessarily have V|∂Σ = 0.

Given any variation F : Σ × (−ε, ε) → M of Σ has been fixed, local coordinates
(x1, . . . , xk) on an open subset U ⊆ Σ induce, for each t ∈ (−ε, ε), local coordinates
(x1

t , . . . , xk
t ) on the open subset Ut = F(U, t) of Σt via the composition xi

t = xi ◦ (Ft)−1.
Namely, as F(·, 0) = IdΣ is a diffeomorphism, so is Ft = F(·, t) : Σ → Σt for t small
enough, so that (Ft)−1 makes sense. Such coordinates satisfy the relations

dF(x,t)

(
∂

∂xi

∣∣∣∣
x

)
=

∂

∂xi
t

∣∣∣∣
F(x,t)

and dF(x,t)

(
∂

∂t

∣∣∣∣
t

)
= Vt(x), (2.3)

for all (x, t) ∈ Σ × (−ε, ε). In particular, the Lie bracket [Vt, ∂/∂xi
t] makes sense and

vanishes due to naturality of the Lie bracket, as ∂/∂xi and ∂/∂t commute as vector

3We assume that Σ is orientable, for simplicity. If not, treat dµΣ as a density instead.
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fields on Σ × (−ε, ε). When doing coordinate computations, we will always assume
that the coordinates on each stage Σt are related to coordinates on Σ via the above
construction. For economy of notation, we will also write4 ∂i,t for ∂/∂xi

t.
Each Σt has its own volume form dµΣt , so we may write (Ft)∗(dµΣt) = v(t)dµΣ,

for a suitable smooth function v(t) : Σ → R, with v(0) = 1. Smoothness of F also
ensures smoothness of v(t)(x) in the variable t. Noting that

vol(Σt) =
∫

Σt
dµΣt =

∫
Ft(Σ)

dµΣt =
∫

Σ
(Ft)

∗dµΣt =
∫

Σ
v(t)dµΣ, (2.4)

we are justified in calling v the volumetric density of the variation F.

Proposition 5. For any variation {Σt}t∈(−ε,ε) of Σ, the first and second derivatives of the
volumetric density v are given by:

(a)
dv
dt

(t) = divΣt(Vt) v(t)

and, assuming that the variation is normal,

(b)
d2v
dt2 (t) =

(
‖∇⊥Vt‖2 − Ric>Σt

(Vt, Vt)− ‖AVt‖2 − 〈HΣt ,∇VtVt〉+ 〈HΣt , Vt〉2
)

v(t)

Proof: The first step is to describe v(t) in coordinates. By evaluating both sides of
(Ft)∗dµΣt = v(t)dµΣ at the coordinate vector fields (∂1, . . . , ∂k) and using (2.3), we see
that

√
det g(t) = v(t)

√
det g(0), where g(t) = [gij(t)]ki,j=1 is the matrix of components

gij(t) = 〈∂i,t, ∂j,t〉. Differentiating and applying Jacobi’s formula5, we have

dv
dt

(t) =
d
dt

√
det g(t)√
det g(0)

=
1√

det g(0)
1
2
(det g(t))−1/2 d

dt
det g(t)

=
1√

det g(0)
1
2
(det g(t))−1/2 det g(t) tr

(
g(t)−1 dg

dt
(t)
)

=
1
2

tr
(

g(t)−1 dg
dt

(t)
)

v(t).

(2.5)

However, we may compute this trace as

tr
(

g(t)−1 dg
dt

(t)
)
= gij(t)

d
dt
〈
∂i,t, ∂j,t

〉
= gij(t)

〈
∇Vt ∂i,t, ∂j,t

〉
+ gij(t)

〈
∂i,t,∇Vt ∂j,t

〉
= 2gij 〈∇Vt ∂i,t, ∂j,t

〉
= 2gij

〈
∇∂i,tVt, ∂j,t

〉
= 2 divΣt(Vt),

(2.6)

4We do not use the convention of writing derivatives as subscripts with commas or semi-colons.
5Namely, d(det)A(H) = det A tr(A−1H) for all A ∈ GL(k) and H ∈ Rk×k. Any Lie group homo-

morphism ϕ : G1 → G2 has ϕ ◦ Lg = Lϕ(g) ◦ ϕ for all g ∈ G1, and so dϕg = d(Lϕ(g))e ◦ dϕe ◦ (d(Lg)e)−1

by the chain rule. Applying this principle to the Lie group homomorphism det : GL(k) → R r {0}
together with the easily verified identity d(det)Id = tr yields the Jacobi formula.
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and (a) follows. Differentiating (a) and reusing it leads to

d2v
dt2 (t) =

(
d
dt

(divΣt(Vt)) + (divΣt(Vt))
2
)

v(t), (2.7)

and so it remains to compute the t-derivative of divΣt(Vt). From here on we assume
that, for each t, Vt is normal to Σt. Starting from

d
dt

divΣt(Vt) =

(
d
dt

gij(t)
)〈
∇∂i,tVt, ∂j,t

〉
+ gij(t)

d
dt

〈
∇∂i,tVt, ∂j,t

〉
, (2.8)

we will compute each term in the right side separately. As

d
dt

gk`(t) =
d
dt
〈∂k,t, ∂`,t〉

= 〈∇Vt ∂k,t, ∂`,t〉+ 〈∂k,t,∇Vt ∂`,t〉

=
〈
∇∂k,t

Vt, ∂`,t

〉
+
〈

∂k,t,∇∂`,t
Vt

〉
= − 〈AVt(∂k,t), ∂`,t〉 − 〈∂k,t, AVt(∂`,t)〉
= −2 〈AVt(∂k,t), ∂`,t〉 ,

(2.9)

it follows that(
d
dt

gij(t)
)〈
∇∂i,tVt, ∂j,t

〉
= −gik(t)

(
d
dt

gk`(t)
)

g`j(t)
〈
∇∂i,tVt, ∂j,t

〉
= 2gik(t) 〈AVt(∂k,t), ∂`,t〉 g`j(t)

〈
∇∂i,tVt, ∂j,t

〉
= −2gik(t)g`j(t) 〈AVt(∂k,t), ∂`,t〉

〈
AVt(∂i,t), ∂j,t

〉
= −2‖AVt‖2.

(2.10)

In addition, observe that
d
dt

〈
∇∂i,tVt, ∂j,t

〉
=
〈
∇Vt∇∂i,tVt, ∂j,t

〉
+
〈
∇∂i,tVt,∇Vt ∂j,t

〉
= R(Vt, ∂i,t, Vt, ∂j,t) +

〈
∇∂i,t∇VtVt, ∂j,t

〉
+
〈
∇∂i,tVt,∇∂j,tVt

〉
,

(2.11)

and thus

gij(t)
d
dt

〈
∇∂i,tVt, ∂j,t

〉
= −Ric>Σ (Vt, Vt) + divΣt(∇VtVt) + ‖AVt‖2 + ‖∇⊥Vt‖2. (2.12)

Here, we have used self-adjointness of AVt to conclude that ‖A2
Vt
‖ = ‖AVt‖2, as well

as the Pythagorean relation ‖∇Vt‖2 = ‖AVt‖2 + ‖∇⊥Vt‖2. Finally, as 〈AVt(·), Vt〉 = 0
implies that6 〈∇VtVt, Zt〉 = 0 whenever Zt ∈ Γ(TΣt), we have that

divΣt(∇VtVt) = gij(t)
〈
∇∂i,t∇VtVt, ∂j,t

〉
= gij(t)∂i,t

〈
∇VtVt, ∂j,t

〉
− gij(t)

〈
∇VtVt,∇∂i,t ∂j,t

〉
= 0− gij(t)

〈
∇VtVt, II(∂i,t, ∂j,t)

〉
= − 〈∇VtVt, HΣt〉 .

(2.13)

Putting (2.10), (2.12), (2.13), and Proposition 2 together, (b) follows from (2.7).
6Namely:

〈
∇Vt Vt, ∂i,t

〉
= −

〈
Vt,∇Vt ∂i,t

〉
= −

〈
Vt,∇∂i,t

Vt
〉
=
〈
Vt, AVt(∂i,t)

〉
= 0.
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Corollary 6. For any compactly-supported variation {Σt}t∈(−ε,ε) of Σ, we have:

(a)
d
dt

vol(Σt) =
∫

Σt
divΣt(Vt)dµΣt ,

and, assuming that the variation is normal,

(b)
d2

dt2 vol(Σt) =
∫

Σt
‖∇⊥Vt‖2 − Ric>Σt

(Vt, Vt)− ‖AVt‖2 − 〈HΣt ,∇VtVt〉+ 〈HΣt , Vt〉2 dµΣt

Proof: As the variation has compact support, we may differentiate (2.4) under the
integral sign and apply Proposition 5. The original definition of v(t) allows us to
rewrite the resulting quantities as integrals over Σt (as opposed to integrals over Σ).

Definition 7. An embedded submanifold Σ of (M, g) is called minimal if

d
dt

∣∣∣∣
t=0

vol(Σt) = 0 (2.14)

for every compactly supported and boundary-fixing variations {Σt}t∈(−ε,ε) of Σ.

Example 8. No closed submanifold of Euclidean space Rn is minimal. More precisely,
if Σ ⊆ Rn is k-dimensional and closed, consider the compactly supported variation
{(1 + t)Σ}t∈(−ε,ε) and note that

d
dt

∣∣∣∣
t=0

vol((1 + t)Σ) =
d
dt

∣∣∣∣
t=0

(1 + t)kvol(Σ) = k vol(Σ) > 0, (2.15)

as a consequence of the general relation vol(λΣ) = λkvol(Σ), valid for λ ∈ (0, ∞).

Example 9. A k-dimensional submanifold Σ of Euclidean space Rn is minimal if and
only if all coordinate projections xr|Σ : Σ → R are harmonic functions. Abbreviating
xr|Σ simply to xr, assume that Σ is minimal, and let η ∈ C∞

c (Σ) be arbitrary. Writing
(e1, . . . , en) for the canonical basis of Rn+1 and regarding all such vectors as constant
fields on Rn, we have that

divΣ(ηer) = gij〈∇∂i(ηer), ∂j〉 = gij〈(∂iη)er, ∂j〉
= gij〈er, ∂j〉∂iη = e>r (η)

= 〈e>r ,∇Ση〉 = 〈∇Σxr,∇Ση〉,
(2.16)

where ∇Σ f ∈ Γ(TΣ) denotes the gradient field of any smooth function f ∈ C∞(Σ),
and we use that the gradient ∇Σxr is obtained by projecting onto TΣ the full gradient
∇xr = er. In addition, Proposition 2 together of the definition of Laplacian 4Σ gives
us that divΣ(η∇Σxr) = 〈∇Ση,∇Σxr〉+ η4Σxr. Applying the first variation formula
for both fields ηer and η∇Σxr gives us that∫

Σ
〈∇Σxr,∇Ση〉dµΣ = 0 and

∫
Σ
〈∇Ση,∇Σxr〉+ η4Σxr dµΣ = 0, (2.17)
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leading to ∫
Σ

η4Σxr dµΣ = 0. (2.18)

Arbitrariety of η now implies that 4Σxr = 0, as required. Conversely, assume that
V ∈ Γ(TM|Σ) is compactly supported with V|∂Σ = 0, and written as V = ∑n

r=1 Vrer.
Then Vr ∈ C∞

c (Σ) for all r = 1, . . . , n, and thus (2.16) for η = Vr yields

∫
Σ

divΣ(V)dµΣ =
∫

Σ
divΣ

(
n

∑
r=1

Vrer

)
dµΣ

=
n

∑
r=1

∫
Σ

divΣ(Vrer)dµΣ

=
n

∑
r=1

∫
Σ
〈∇ΣVr,∇Σxr〉dµΣ

= −
n

∑
r=1

∫
Σ

Vr4Σxr dµΣ = 0,

(2.19)

as required. As one consequence of this equivalence, it now follows that if Σ is min-
imal, then it is contained in the convex hull of its boundary, which is defined as the
intersection

Conv(∂Σ) =
⋂
{H | H is a half-space in Rn with ∂Σ ⊆ H}. (2.20)

Indeed, let H be a half-space of Rn, written as H = {x ∈ Rn | ϕ(x) ≤ b} for suitable
ϕ ∈ (Rn)∗ and b ∈ R. Since all the coordinate functions are harmonic on Σ, so is the
restriction ϕ|Σ. By the maximum principle for harmonic functions, there is x0 ∈ ∂Σ for
which ϕ|Σ(x0) is maximum. Now, it follows that if ∂Σ ⊆ H, then Σ ⊆ H as well: let
x ∈ Σ, and estimate ϕ(x) ≤ ϕ(x0) ≤ b, so that x ∈ H. This proves that Σ ⊆ Conv(∂Σ).

Example 10. We may generalize the first part of Example 9, considering now subman-
ifolds of the sphere Sn and of hyperbolic space Hn. To treat them simultaneously, fix a
parameter c ∈ {1,−1} and consider in Rn+1 the scalar product

〈v, w〉c = v1w1 + . . . + vnwn + cvn+1wn+1, (2.21)

for all v = (v1, . . . , vn+1) and w = (w1, . . . , wn+1) in Rn+1. When c = 1 we have
classical Euclidean space, and when c = −1 we have Minkowski space. This means
that the space form

Mn(c) = {p ∈ Rn+1 | 〈p, p〉c = c} (2.22)

is the sphere for c = 1, and hyperbolic space for c = −1. We claim that a submanifold
Σ ⊆ Mn(c) is minimal if and only if all coordinate functions xr : Σ → R satisfy the
eigenvalue equation4Σxr + ckxr = 0, where k = dim Σ.

All formulas seen so far remain valid when the ambient manifold (M, g) is pseudo-
Riemannian and with indefinite metric signature, provided that squared norms are
suitably interpreted (e.g., ‖A‖2 = 〈A, A〉, which may now vanish even when A 6= 0).

The difficulty now is that the canonical basis (e1, . . . , en+1) of Rn+1 is not in general
tangent to Mn(c). Denoting by P the position vector field of Mn(c) in Rn+1 (i.e., given
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by P(x) = x ∈ Tx(Rn+1), for every x ∈ Mn(c)), we consider the orthogonal projec-
tions ẽr(x) = er − c〈er, P〉P, that is, ẽr(x) = er − cxrP. The Levi-Civita connection∇ of
Mn(c) is given by ∇XY = dY(X)− c〈dY(X), P〉P, and thus

∇X ẽj = dẽj(X)− c〈dẽj(X), P〉P
= −c dxr(X)P− cxrX− c〈−c dxr(X)P− cxrX, P〉P
= −c dxr(X)P− cxrX + c dxr(X)P + 0
= −cxrX.

(2.23)

Repeating (2.16) with ẽr instead of er and (2.23) instead of ∇Xej = 0 leads to

divΣ(ηẽr) = 〈∇Σxr,∇Ση〉 − ckηxr, (2.24)

for all η ∈ C∞
c (Σ). This means that, if Σ is minimal, (2.17) now reads∫

Σ
〈∇Σxr,∇Ση〉 − ckηxr dµΣ = 0 and

∫
Σ
〈∇Ση,∇Σxr〉+ η4Σxr dµΣ = 0, (2.25)

so that ∫
Σ

η(4Σxr + ckxr)dµΣ = 0, (2.26)

and thus 4Σxr + ckxr = 0 by arbitrariety of η. Conversely, if 4Σxr + ckxr = 0 holds
for r = 1, . . . , n + 1, then Σ must be minimal: (2.19) boils down to

∫
Σ

divΣ(V)dµΣ = −
n+1

∑
r=1

∫
Σ

Vr(4Σxr + ckxr)dµΣ = 0, (2.27)

for every compactly supported V ∈ Γ(TM|Σ).

Remark. The above example is easily modified to provide the obvious analogous
conclusions for other indefinite signature space forms, such as the de Sitter space
Sn

1 = {p ∈ Rn+1 | 〈p, p〉−1 = 1}, etc. (here, it becomes 4Σxr + kxr = 0, just as in
the sphere Sn).

Due to the general relation∫
Σ

divΣV dµΣ = −
∫

Σ
〈HΣ, V〉dµΣ +

∫
∂Σ
〈V, N〉dµ∂Σ, (2.28)

valid as a consequence of the divergence theorem (with N being the unit outward
conormal to ∂Σ along Σ), we see that:

(i) Σ is minimal if and only if7 HΣ = 0.

(ii) purely tangential compactly supported variations produce no variation.

With item (i) in mind, the next example should not be surprising:

7Considering only boundary-fixing variations allows us to ignore the boundary term in (2.28), while
the L2 inner product between compactly supported vector fields tangent to M along Σ is nondegenerate.
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Example 11. Consider again the space forms Mn(c) from Example 10, and also set
Mn(0) = Rn so we can discuss all three of Rn, Sn, and Hn together. Letting Σ be
a submanifold of Mn(c) and writing P for the position vector field of Σ, we claim
that 4ΣP + ckP = HΣ (this is usually written just as 4Σx + ckx = HΣ), where the
Laplacian4ΣP is defined componentwise.

To see this, we will repeatedly use the following general fact: whenever (M, g) is
a pseudo-Riemannian manifold and N is a nondegenerate submanifold of M, the for-
mula (HessM f )(X, Y) = (HessN( f |N))(X, Y)− d f (II(X, Y)) holds for X, Y ∈ Γ(TN),
with II denoting the second fundamental form of N in M.

The second fundamental form of Mn(c) in Rn+1 (set to zero when c = 0) is given
by (X, Y) 7→ c〈dY(X), P〉P = −c〈X, Y〉P (as seen by differentiating 〈Y, P〉 = 0 in the
direction of X), so that (HessMn(c)xr)(X, Y) = dxr(−c〈X, Y〉P) = −cxr〈X, Y〉, and
thus

(HessΣxr) = −cxr〈X, Y〉+ dxr(II(X, Y)) (2.29)

for all X, Y ∈ Γ(TΣ), with II denoting the second fundamental form of Σ in Mn(c).
Hence

4Σxr = gij(HessΣxr)(∂i, ∂j)

= gij(−cxrgij + dxr(II(∂i, ∂j))

= −ckxr + dxr(HΣ),

(2.30)

leading to4Σxr + ckxr = dxr(HΣ), as required.

Item (ii) is the reason we have focused on normal variations in the previous re-
sult. Observe that evaluating item (b) of Corollary 6 at t = 0 yields that the second
derivative of vol(Σt) at t = 0 equals∫

Σ
‖∇⊥V‖2 − Ric>Σ (V, V)− ‖AV‖2 −

〈
HΣ,∇VtVt

∣∣
t=0

〉
+ 〈HΣ, V〉2 dµΣ. (2.31)

However, the term ∇VtVt
∣∣
t=0 depends not only on the vector field V, but also on the

variation F itself. In general, the value (∇XY)p depends on Xp and on the values of
Y along a small piece of the integral curve of X passing through p, and this means
that ∇VV is not even well-defined in our setting. More precisely, evaluating ∇VtVt at
t = 0 does define a vector field tangent to M along Σ, but also eliminates transverse
information that V by itself cannot recover.

This issue dissapears in the case where Σ is minimal, as (2.31) gets simplified to

d2

dt2

∣∣∣∣
t=0

vol(Σt) =
∫

Σ
‖∇⊥V‖2 − Ric>Σ (V, V)− ‖AV‖2 dµΣ. (2.32)

The right side of (2.32) depends only on V and not on the variation itself. For this
reason, it is usually denoted by IΣ(V, V), and IΣ is called the index form of Σ. This
motivates the following definition:

Definition 12. A minimal submanifold Σ of (M, g) is stable if

d2

dt2

∣∣∣∣
t=0

vol(Σt) ≥ 0 (2.33)
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for every boundary-fixing normal variation {Σt}t∈(−ε,ε) of Σ or, equivalently, if∫
Σ
‖∇⊥V‖2dµΣ ≥

∫
Σ

Ric>Σ (V, V) + ‖AV‖2 dµΣ (2.34)

for every V ∈ Γ(TΣ⊥) with V|∂Σ = 0.

3 The hypersurface case and the Gauss formula

Let (M, g) be a Riemannian manifold, and assume this time that ι : Σ ↪→ M is
an embedded 2-sided hypersurface in M, with a fixed choice of a unit normal field
ν ∈ Γ(TΣ⊥). Writing A for the shape operator associated with ν, we have the Gauss
formula8

RΣ(X, Y, Z, W) = R(X, Y, Z, W) + 〈AY, Z〉〈AX, W〉 − 〈AX, Z〉〈AY, W〉, (3.1)

valid for all X, Y, Z, W ∈ Γ(TΣ). Writing the mean curvature vector as9 H = Hν and
(ι∗g)-tracing in the variables X and W yields

RicΣ(Y, Z) = Ric>Σ (Y, Z) + H〈AY, Z〉 − 〈AY, AZ〉 (3.2)

which, rewritten without Ric>Σ , reads

RicΣ(Y, Z) = Ric(Y, Z)− Ric(ν, ν) + H〈AY, Z〉 − 〈AY, AZ〉. (3.3)

Taking the (ι∗g)-trace yet again, we obtain

sΣ = sM − 2 Ric(ν, ν) + H2 − ‖A‖2, (3.4)

where sM and sΣ are the scalar curvatures of (M, g) and (Σ, ι∗g), respectively. Here,
‖A2‖ = ‖A‖2 by self-adjointess of A. Note also that ‖A‖2 = ‖II‖2 vanishes if and only
if Σ is totally geodesic in (M, g). A convenient rearrangement of (3.4) is

Ric(ν, ν) =
1
2
(sM − sΣ + H2 − ‖A‖2). (3.5)

Now, every V ∈ Γ(TΣ⊥) may be written as V = ην for some η ∈ C∞(Σ), with
V|∂Σ = 0 if and only if η|∂Σ = 0, and V compactly supported if and only if η is. As
∇⊥ν = 0 (since differentiating 〈ν, ν〉 = 1 in the direction of X leads to 〈∇⊥X ν, ν〉 = 0
and thus ∇⊥X ν = 0), we have that ‖∇⊥V‖2 = ‖∇⊥(ην)‖2 = ‖dη ⊗ ν‖2 = ‖∇Ση‖2.
Also note that AV = Aην = ηA. Putting all of this together, we have that

IΣ(η, η) =
∫

Σ
‖∇Ση‖2 − (Ric(ν, ν) + ‖A‖2)η2 dµΣ. (3.6)

8Conveniently expressed in general codimension as RΣ = R + II©∧ II, where ©∧ is the Kulkarni-
Nomizu product between TM-valued twice-covariant symmetric tensor fields: it is defined by
2(T©∧ S)(X, Y, Z, W) = 〈T(Y, Z), S(X, W)〉 − 〈T(X, Z), S(X, W)〉+ 〈S(Y, Z), T(X, W)〉 − 〈S(X, Z), T(X, W)〉.

9Here, H is the mean curvature scalar associated with ν. Replacing ν with −ν causes H to be
replaced with −H (as the vector H must remain invariant).
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Integrating by parts and using that V|∂Σ = 0, we also obtain

IΣ(η, η) =
∫

Σ
−η4Ση − (Ric(ν, ν) + ‖A‖2)η2 dµΣ

= −
∫

Σ
ηLΣη dµΣ,

(3.7)

where the stability operator of Σ acting on functions is given by

LΣη = 4Ση + (Ric(ν, ν) + ‖A‖2)η. (3.8)

Observe that LΣ is elliptic (its principal symbol equals the one of4Σ) and self-adjoint.
It is a well-known fact that the first Dirichlet eigenvalue10 λ1(LΣ) is non-negative, and
expressed via a Rayleigh quotient:

λ1(LΣ) = min
η

{
−
∫

Σ
ηLΣη dµΣ |

∫
Σ

η2 dµΣ = 1
}
≥ 0. (3.9)

Proposition 13. If (M, g) has Ric > 0, then M does not contain any closed stable minimal
2-sided hypersurfaces.

Proof: If Σ were such a hypersurface, one could set η = 1 in the stability condition∫
Σ
‖∇Ση‖2 dµΣ ≥

∫
Σ
(Ric(ν, ν) + ‖A‖2)η2 dµΣ (3.10)

to obtain
0 ≥

∫
Σ

Ric(ν, ν) + ‖A‖2 dµΣ ≥
∫

Σ
Ric(ν, ν)dµΣ > 0, (3.11)

a contradiction.

A small modification of the above argument gives:

Proposition 14. If (M, g) has Ric ≥ 0, then any closed stable minimal 2-sided hypersurface
Σ of M is totally geodesic. In addition, Ric(ν, ν) = 0 (for any unit normal field ν along Σ)
and sM|Σ = sΣ. When dim M = 3, the surface Σ (when connected) must be homeomorphic to
a sphere or isometric to a flat torus.

Proof: Choosing η = 1, we see that the strict inequality in (3.11) now becomes weak
and leads to ∫

Σ
Ric(ν, ν) + ‖A‖2 dµΣ = 0. (3.12)

As each term in the above integrand is non-negative, continuity leads to Ric(ν, ν) = 0
and also to ‖A‖2 = 0 (and hence A = 0). The relation between scalar curvatures now
follows from (3.4). When dim M = 3, we may apply the Gauss-Bonnet theorem to Σ,
using the relation sΣ = 2KΣ, with KΣ being the Gaussian curvature of Σ. Namely, as
sΣ ≥ 0, we have that

χ(Σ) =
1

2π

∫
Σ

KΣ dµΣ ≥ 0 =⇒ χ(Σ) = 0 or χ(Σ) = 1, (3.13)

10By a Dirichlet eigenvalue of an operator L we mean a real number λ such that there is a non-zero
function f with f |∂Σ = 0 and L f + λ f = 0.
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and the dichotomy follows from the classification of closed surfaces. In the case where
Σ is a torus, χ(Σ) = 0 implies that

∫
Σ sΣ dµΣ = 0, so that sΣ ≥ 0 implies that sΣ = 0 by

continuity.

The assumption that Ric ≥ 0 in the previous result may be somewhat weakened
when dim M = 3.

Proposition 15. If (M, g) has sM ≥ 0 and dim M = 3, then any stable minimal torus Σ is
totally geodesic and flat, with Ric(ν, ν) = 0 for any chosen unit normal field ν along Σ.

Proof: In general, substituting (3.5) into (3.10) gives us a rephrased stability condition∫
Σ
‖∇Ση‖2 dµΣ ≥

1
2

∫
Σ

sM − sΣ − H2 + ‖A‖2 dµΣ. (3.14)

We know that
∫

Σ sΣ dµΣ = 0 by the Gauss-Bonnet theorem, as Σ is a torus. If Σ is also
minimal and stable, then setting η = 1 in the above yields

0 ≥ 1
2

∫
Σ

sM + ‖A‖2 dµΣ ≥ 0, (3.15)

as sM ≥ 0. Therefore sM = 0 along Σ and ‖A‖2 = 0, so Σ is totally geodesic. We
may now integrate (3.5) to obtain

∫
Σ Ric(ν, ν)dµΣ = 0. This means that the con-

stant function vol(Σ)−1/2 is an eigenfunction for LΣ and that λ1(LΣ) = 0 is the first
eigenvalue, in view of (3.9). More precisely, we know that the minimum of the inte-
grals −

∫
Σ ηLΣη dµΣ is nonnegative, but that the value zero was indeed realized by

the constant function vol(Σ)−1/2, so such minimum in fact equals zero. This means
that Ric(ν, ν) = LΣ(1) = 0 (this spectral argument is crucial in passing from “average
zero” to “pointwise zero”). In any case, (3.5) now implies that sΣ = 0 as well.

For our next result, we’ll describe (still in the hypersurface case) how the mean
curvature of the stages of a variation evolves. First, note that

H = Hν =⇒ H = −divΣν, (3.16)

by a direct computation:

divΣν = gij〈∇∂i ν, ∂j〉 = −gij〈ν,∇∂i ∂j〉 = −gij〈ν, II(∂i, ∂j)〉 = −〈ν, H〉 = −H. (3.17)

Thus:

Proposition 16. Let {Σt}t∈(−ε,ε) be a normal variation of Σ, and write the variational vector
fields as Vt = ηtνt, where νt is an unit normal field along Σt and ηt is a suitable smooth
function. Denoting by At and Ht the shape operator and mean curvature scalar of Σt associated
with νt, respectively, we have

ηt
d
dt

Ht = −‖∇Σt ηt‖2 + (Ric(νt, νt) + ‖At‖2)η2
t (3.18)
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Proof: From (2.10), (2.12), (2.13), we have

d
dt

divΣt(Vt) = −‖AVt‖2 − Ric>Σt
(Vt, Vt)− 〈∇VtVt, HΣt〉+ ‖∇⊥Vt‖2. (3.19)

Substituting Vt = ηtνt yields

d
dt

divΣt(ηtνt) = −‖At‖2η2
t − Ric(νt, νt)η

2
t −Vt(ηt)Ht + ‖∇Σt ηt‖2. (3.20)

However, due to Proposition 2 and the product rule, the left side above reads

d
dt

divΣt(ηtνt) =
d
dt

(−ηtHt) = −Vt(ηt)Ht − ηt
d
dt

Ht. (3.21)

Hence, (3.18) follows.

Example 17. For a > 0 and a smooth function f : [a, ∞) → (0, ∞), consider in the
product M = [a, ∞)× Sn−1 the Riemannian metric

g =
dr2

f (r)
+ r2g◦, (3.22)

where g◦ is the standard round metric in Sn−1. Observe that if θ2, . . . , θn is an orthonor-
mal coframe for the sphere (i.e., g◦ = θ2 ⊗ θ2 + · · ·+ θn ⊗ θn), then the volume form
of Sn−1 equals dµSn−1 = θ2 ∧ · · · ∧ θn. As f (r)−1/2dr, rθ2, . . . , rθn is an orthonormal
coframe for (M, g), the same principle yields

dµM =
dr

f (r)1/2 ∧ (rθ2) ∧ · · · ∧ (rθn) =
rn−1

f (r)1/2 dr ∧ dµSn−1 . (3.23)

For a fixed value of r ∈ [a, ∞), we will compute the mean curvature scalar of the
slice Σ = {r} × Sn−1 associated with the unit normal field ν = f (r)1/2∂r. To do so,
consider the variation F : Σ× (−ε, ε) → M given by F((r, x), t) = (r + t f (r)1/2, x), so
that V = ν. To do so, we will use the (valid, as ∂Σ = ∅) formula

d
dt

∣∣∣∣
t=0

vol(Σt) = −
∫

Σ
〈HΣ, V〉dµΣ (3.24)

which, due to symmetry reasons, reduces to

d
dt

∣∣∣∣
t=0

vol(Σt) = −H vol(Σ). (3.25)

To explicitly compute vol(Σt), observe that dµΣ = ι f (r)1/2∂r
dµM = rn−1 dµSn−1 as a

consequence of (3.23), so that replacing r with r + t f (r)1/2 yields

dµΣt = (r + t f (r)1/2)n−1dµSn−1 =

(
1 +

t f (r)1/2

r

)n−1

dµΣ, (3.26)
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and thus, differentiating the newfound relation

vol(Σt) =

(
1 +

t f (r)1/2

r

)n−1

vol(Σ), (3.27)

we obtain
d
dt

∣∣∣∣
t=0

vol(Σt) =
(n− 1) f (r)1/2

r
vol(Σ). (3.28)

Hence, H = −(n− 1) f (r)1/2/r.
We can proceed further by observing that, for geometric reasons, Σ is totally um-

bilic in M. Hence all the eigenvalues of A are equal to H/(n − 1) = − f (r)1/2/r,
meaning that ‖A‖2 = (n− 1) f (r)/r2. Using that sΣ = (n− 1)(n− 2)/r2, relation (3.4)
becomes

(n− 1)(n− 2)
r2 = sM − 2Ric(ν, ν) +

(n− 1)2 f (r)
r2 − (n− 1) f (r)

r2 . (3.29)

The strength of the approach here is that we may solve for Ric(ν, ν), and then sM,
without resorting to further computations involving Christoffel symbols or moving frames.
As η0 = 1, the formula given in Proposition 16 reduces to

d
dt

∣∣∣∣
t=0

Ht = Ric(ν, ν) +
(n− 1) f (r)

r2 . (3.30)

However, by replacing r with r + t f (r)1/2, we see that

Ht = −
(n− 1) f (r + t f (r)1/2)1/2

r + t f (r)1/2 , (3.31)

and thus

d
dt

∣∣∣∣
t=0

Ht =
−(n− 1)1

2 f (r)−1/2 f ′(r) f (r)1/2r + (n− 1) f (r)1/2 f (r)1/2

r2

=
−(n− 1) f ′(r)

2 r + (n− 1) f (r)
r2

=
(n− 1)

r2

(
−r f ′(r)

2
+ f (r)

)
.

(3.32)

Then (3.30) gives us that

Ric(ν, ν) = − (n− 1)r f ′(r)
2r2 , (3.33)

so (3.29) now reads, after factoring out (n− 1)/r2,

(n− 1)(n− 2)
r2 = sM +

(n− 1)
r2

(
r f ′(r) + (n− 1) f (r)− f (r)

)
. (3.34)

We conclude that

sM =
(n− 1)

r2 ((n− 2)(1− f (r))− r f ′(r)). (3.35)
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4 The geodesic case

Let (M, g) be a Riemannian manifold, and Σ ↪→ M be an embedded curve, that is,
dim Σ = 1. We assume that Σ is parametrized by a unit speed regular curve γ : I → Σ.
It follows from differentiating 〈γ̇, γ̇〉 = 1 that 〈∇γ̇γ̇, γ̇〉 = 0, and thus ∇γ̇γ̇ = II(γ̇, γ̇).
Thus, the mean curvature vector is given by HΣ = ∇γ̇γ̇. Hence, Σ is minimal if and
only if γ is a geodesic.

Now, let V be a vector field normal to a unit speed geodesic γ : I → Σ, that is, with
〈V, γ̇〉 = 0. Differentiating and using that γ̇ is a geodesic, we see that 〈∇γ̇V, γ̇〉 = 0, so
that ∇γ̇V = ∇⊥γ̇ V and AV = 0. As Ric>Σ (V, V) = R(γ̇, V, V, γ̇), the stability condition
(2.34) reads ∫

I
‖∇γ̇V‖2 − R(γ̇, V, V, γ̇)ds ≥ 0 (4.1)

or, equivalently,

−
∫

I
〈V,∇γ̇∇γ̇V − R(γ̇, V)γ̇〉 ds ≥ 0. (4.2)

The stability operator LΣ is given by LΣV = ∇γ̇∇γ̇V−R(γ̇, V)γ̇ and its kernel consists
of classical Jacobi fields (as predicted).

Page 15


	Setup
	Variation formulas and examples
	The hypersurface case and the Gauss formula
	The geodesic case

