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Motion transparency refers to the perception of two or
more directions of motion that are present simultaneously
at the same location in visual space. The earliest system-
atic studies of this phenomenon were primarily concerned
with the kinetic depth effect (Wallach & O’Connell, 1953);
in particular, they focused on the conditions for specify-
ing depth in moving 2-D stimuli (e.g., Balch & Shaw, 1978;
Gibson, Gibson, Smith, & Flock, 1959; Mace & Shaw,
1974). For example, Gibson et al. presented subjects with
two sets of random dots that were uniformly translated
through one another. The subjects not only perceived mo-
tion simultaneously in the directions of translation of the
two stimulus components, but also perceived a separation
of the two components in depth, so that the two sets of dots
appeared as two surfaces, with one moving “in front of ”
the other. Subsequent studies have demonstrated that up
to three surfaces can be distinguished when presented si-
multaneously in motion at different velocities (e.g., An-
dersen, 1989; see also Andersen & Wuestefeld, 1993). While
these studies were concerned primarily with the relation-
ship between motion and the specification of depth in 2-D

stimuli, the phenomenon of motion transparency has be-
come useful in the study of the general problem of com-
puting 2-D object motion from patterns of optical flow to
which low-level motion sensors respond. In the experi-
ments described below, we used motion transparency as
a means of exploring the role played by early inhibitory
or suppressive interactions in these computations.

The idea that inhibitory interactions occur early in vi-
sual motion processing was originally associated with the
view that low-level motion processing was inherently op-
ponent in nature. According to this view, an early repre-
sentation of optical flow is derived from subtractive in-
teractions between motion sensors that differ from one
another by 180º in the directions of motion to which they
respond optimally. Reichardt (1961) incorporated the
concept of motion opponency into his model of motion
processing in insects. Motion opponency also has figured
prominently in a number of subsequent models of mo-
tion sensors in humans (Adelson & Bergen, 1985; Bar-
low & Levick, 1965; van Santen & Sperling, 1984, 1985;
Watson & Ahumada, 1985).

Motion opponency was an appealing concept because
it accounted qualitatively for two kinds of phenomena in
motion perception. The first was adaptation phenomena
such as the motion aftereffect. If a subject was adapted to
motion in one direction, then a subsequently viewed, sta-
tionary stimulus would appear to move in a direction op-
posite to that of the adapting stimulus (see Wohlgemuth,
1911). This suggested (1) that the perception of motion
involved a balance between mechanisms tuned to opposite
directions of motion, (2) that adaptation to motion in one
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Interactions in the perception of motion transparency were investigated using a signal-detection par-
adigm. The stimuli were the linear sum of two independent, moving, random-check “signal” textures
and a third texture consisting of dynamic random “noise.” Performance was measured as the ratio of
squared signal and noise contrasts was varied (S2/N2). Motion detectability was poorest when the two
signal textures moved in opposite directions (180º), intermediate when they moved in the same direc-
tion (0º), and best when the textures moved in directions separated by 90º in the stimulus plane. This
pattern of results held across substantial variations in velocity, field size, duration, and texture-element
size. Motion identification was also impaired, relative to 0º, in the 180º but not in the 90º condition.
These results are consistent with the idea that performance in the opponent-motion condition is lim-
ited by inhibitory (or suppressive) interactions. These interactions, however, appear to be direction
specific: little, if any, inhibition was observed for perpendicular motion.
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direction would create an imbalance, and (3) that the im-
balance was revealed when the stationary stimulus was
viewed following adaptation. The second was the find-
ing that counterphase-modulated cosine gratings, al-
though they simultaneously generated stimuli for motion
in two opposing directions, almost always elicited the
perception of flicker rather than motion in human sub-
jects. The perception of flicker was attributed to the mu-
tual cancellation of motions of equivalent strength in the
two opposing directions. Stromeyer, Kronauer, Madsen,
and Klein (1984) have also shown that cosine gratings
moving in opposite directions effectively cancel each oth-
er’s detectability when superimposed on suprathreshold,
counterphase-modulated masks.

Although the concept of motion opponency, as it was
originally formulated, is able to account for some aspects
of motion perception, a weakness has always been its in-
ability to deal with phenomena related to motion trans-
parency. For example, motion transparency is often seen
in some bidirectional stimuli, even when the components
are moving in opposite directions (see, e.g., Clarke, 1977;
Gibson et al.,1959; van Doorn & Koenderink, 1982a).
Furthermore, the motion aftereffect elicited by transpar-
ent bidirectional stimuli consisting of textures moving at
right angles to one another is not bidirectional, as sug-
gested by the concept of motion opponency, but is in a
direction opposite to the average motions of the two trans-
parent textures (Mather, 1980; van Doorn, Koenderink,
& van de Grind, 1984, 1985; see also Verstraten, Fred-
ericksen, & van de Grind, 1994).

More recently, inhibitory interactions have been incor-
porated into a number of multistage models of motion pro-
cessing that focus explicitly on the computation of motion
from the responses of low-level motion sensors. These
models generally consist of the sensor stage, one or more
pooling stages, and a decision stage. The sensor stage con-
sists of 2-D arrays of motion sensors that are assumed to
be spatially orientation selective and to respond best to
motion at right angles to their preferred orientation. Pool-
ing stages are needed because a moving object generally
produces responses within a number of such sensor arrays
which are tuned to respond optimally to a different range
of spatial frequencies, orientations, speeds, and directions
of motion. The purpose of the pooling and decision stages
is to compute a single unified object velocity from the in-
tegrated responses of these different sensor populations,
and to do so in a way that permits the spatial resolution of
multiple objects in the visual field.

It is not known exactly how this might be done in a way
that is compatible with motion transparency. Many early
computational models of motion proposed a pooling
stage that performed a smoothing or regularization oper-
ation that was based on certain assumptions about patterns
of optical flow or on least squares methods involving the
responses of motion sensors from several neighboring
regions of visual space (e.g., Grzywacz & Yuille, 1990;
Heeger, 1987; Hildreth, 1984; Horn & Schunk, 1981;
Poggio, Yang, & Torre, 1988). These methods worked

well for recovering estimates of motion in a single direc-
tion, but did not work at all for recovering transparent
motion since, by design, they assumed that all responses
within a region of visual space arose from sensor re-
sponses due to a single moving object, noise, or a com-
bination of the two. More recent computational approaches
to the recovery of object motion and motion trans-
parency have proposed pooling processes that permit the
parallel evaluation of motion in multiple velocities (e.g.,
Jasinschi, Rosenfeld, & Sumi, 1992; Kim & Wilson,
1992; Nowlan & Sejnowski, 1995; Qian, Andersen, &
Adelson, 1994b). The focus of these new approaches has
been on the methods by which local sensor measure-
ments arising from two or more transparent layers can be
appropriately partitioned for analysis.

A particularly intriguing approach to this problem is
the one suggested by Qian, Andersen, & Adelson (1994a,
1994b). Their proposal seeks to account for why some
stimuli consisting of two moving components elicit the
perception of motion transparency while others do not,
even though both kinds of stimuli should, in principle,
generate strong responses in motion sensors tuned to re-
spond to the two moving components. A key aspect of
their proposal is the idea that, early in motion processing,
mutual inhibitory or suppressive interactions occur among
the responses of sensors tuned to different directions of
motion, while mutually facilitating interactions occur
among sensors tuned to similar directions of motion.
These early interactions are hypothesized to occur within
a very narrow window of time and within regions of space
corresponding to the sizes of the receptive fields of the
motion sensors themselves. According to Qian et al.,
counterphase-modulated gratings do not elicit motion
transparency, because the motion signals generated by
the two components are locally balanced—that is, of equal
magnitude everywhere in the stimulus field—and effec-
tively cancel one another. By contrast, when two inter-
digited random-dot patterns are translated in opposite di-
rections, the motion signals elicited by these two patterns
vary stochastically with location across the stimulus
field and the cancellation of motion is incomplete.

The present series of studies had three goals. The first
was to measure the effects of putative inhibitory interac-
tions in the processing of transparent motion stimuli and
to see whether there was a directional bias in these inter-
actions. The second goal was to explore the generality of
our findings across a wide variety of potentially impor-
tant stimulus parameters. And the third goal was to relate
our findings to current theories regarding the computa-
tion of 2-D motion. Rather than focusing on the specific
computation of the 2-D speeds and directions of objects,
we approached our study of motion transparency from
the perspective of signal detection theory. That is, we mea-
sured human observers’ abilities to detect and identify
motion that was embedded in spatially coincident dy-
namic random noise.

The experimental paradigm that we employed was
similar to the one devised by van Doorn and Koenderink
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(e.g., 1982a, 1982b). In our version of this paradigm, the
stimuli were determined by the spatiotemporal charac-
teristics of three independently computed, spatially super-
imposed, additively combined dynamic random-texture
patterns. The luminance of a pixel in the final stimulus
texture displayed on the monitor corresponded to the
sum of the corresponding pixel luminances across the
three component textures. The elements of two of these
textures were translated an integer number of elements
per unit time, either in the same direction or in different
directions. These were the two “signal” layers of the stim-
ulus. The third pattern, referred to as the “noise” layer,
was generated anew on each frame of the animation se-
quence and therefore did not contain any net motion sig-
nal. We were interested in how well subjects would per-
form in detecting or identifying motion in mixtures of
signal and noise as their ratio—the signal-to-noise ratio,
or SNR—was decreased.

We chose a signal-detection paradigm because putative
inhibitory or suppressive interactions in early motion pro-
cessing should lead to some degree of cancellation of the
neural responses that subjects may monitor in a signal-
detection task. Accordingly, signal cancellation will re-
duce subjects’ sensitivities, thus making it more difficult
for them to distinguish between a stimulus consisting of
signal plus noise and a stimulus consisting of pure noise
at a given value of SNR. The signal-detection paradigm
does not implicitly distinguish between signal cancella-
tion and other potential forms of information loss. There-
fore, the design of the experiments described below per-
mitted comparisons of performance when the two signal
layers were moving in the same direction with perfor-
mances when the signal layers were moving in different
directions. In interpreting our results, we assume that in-
formation losses due to factors other than signal cancel-
lation remain constant as the relative directions of mo-
tion of the signal layers are manipulated.

GENERAL METHOD

Experimental Design

The study consisted of three experiments. In Experiment 1, we
used a two-interval forced-choice technique and obtained psycho-
metric functions for the discrimination between a stimulus consist-
ing of some mixture of signal and noise and a stimulus consisting
of noise alone. The psychometric functions were obtained for a
suite of five motion conditions. In three of these conditions, the two
signal layers both moved coherently in one of the following three di-
rections: left, right, or down. We will refer to these conditions var-
iously as the nontransparent or unidirectional motion conditions. In
the other two conditions, which we will refer to throughout this paper
as the transparent or bidirectional motion conditions, the signal
layers moved at the same speed but in different directions. In one
case, the opponent motion condition, the stimuli consisted of super-
imposed leftward- and rightward-moving patterns. In the fifth and
final condition, referred to as the perpendicular motion condition,
leftward- and downward-moving patterns were combined. This
suite of five conditions allowed us to make two comparisons of de-
tectability that were fundamental to our study. First, we could com-
pare the effects of one versus two sources of motion—unidirec-
tional versus bidirectional—on the detectability of motion in our

dynamic random-check patterns. Second, we could determine the
degree to which the relative principal directions of the motion sig-
nals—opponent versus nonopponent—influence the detectability
of motion.

In Experiment 2, we examined the generality of the findings of
Experiment 1 across a variety of different physical stimulus pa-
rameters. While we obtained the data in Experiment 1 with a par-
ticular speed, field size, check size, and stimulus duration, in Ex-
periment 2, we measured motion detection thresholds as functions
of each of these variables. The comparison was made across the
same suite of five motion conditions employed in Experiment 1.

In Experiment 3, we examined the generality of the findings of
Experiment 1 across tasks. While Experiments 1 and 2 were de-
signed to measure motion detectability, in Experiment 3, we mea-
sured threshold SNRs for identification of directions of motion in
dynamic random-check stimuli.

Subjects

The first author served as a subject in all of the experiments de-
scribed below. One or more additional subjects were recruited for
each of the experiments. All subjects were either emmetropic or had
normal visual acuity with appropriate corrective lenses.

Apparatus

The animation sequences were generated on an SGI VXGT color
graphics workstation (Silicon Graphics, Inc.) and displayed on a
20-in. high-resolution RGB monitor (1,280 horizontal � 1,024 ver-
tical pixels; 24 bits/pixel; 60 Hz noninterlaced). At the viewing dis-
tance of 57.3 cm, each pixel subtended 1.59′ of arc visual angle. A
mean stimulus luminance of 97 cd/m2 was maintained throughout
the study. The interval between the onsets of frames in the anima-
tion sequences was always 1⁄60 sec. The SGI workstation employs a
double-buffering scheme, and the transition from one presentation
to the next therefore occurred during the display’s vertical-blanking
interval.

The computer monitor was corrected for nonlinearities in its light
output by measuring relative radiance with a PIN10 (United De-
tector Technologies) photodetector as a function of pixel values for
the red, green, and blue guns of the monitor. The measurements
were then digitized and averaged. This calibration matrix was then
inverted to produce the desired correction vector for the video dis-
play controller. An additional series of measurements, designed to
assess the accuracy of the relative radiance calibration, was then
undertaken at regular intervals during the course of the study. The
radiances of individual elements of very coarse random-check pat-
terns were measured as a function of the expected SNR. From these
values, an “actual” SNR was calculated. Typically, the expected and
actual SNRs differed from one another by 2% or less and never by
more than 10%.

Stimuli

The stimuli consisted of dynamic superpositions of three scaled
pseudorandom textures, Pk . The elements of Pk could assume one
of two values: �1 or 1. P1 and P2, were the “signal” textures, and
P3 was the “noise” texture. Let L� represent the mean luminance of
the three-texture composite stimulus. Then the luminance of the ij th
visible check in the t th frame of the animation sequence was spec-
ified in the following way:

(1)

where {v1i ,v1j},{v2 i ,v2 j} correspond to the displacements of the
elements in the two signal textures, P1 and P2 , from one frame of
the animation sequence to the next; q and r are scalars that deter-
mine the relative proportions of P1 and P2 and of P3 , and therefore
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the proportions of signal and noise, in the dynamic stimulus;
LStim(i, j,t ) is mapped to the central square region of an otherwise
dark computer monitor. In all but one series of measurements de-
scribed below, each check consisted of an individual pixel subtend-
ing 0.027º � 0.027º of visual angle.

Figure 1 depicts two successive frames of animation sequences
in which the two signal layers are either both moving in the same
direction (left only) or in different directions (left + down). Panel a
depicts a magnified 16 � 16 pixel portion of a stimulus at frame n
of either animation sequence. It consists of an appropriately scaled
sum of the binary random-check textures depicted in panels b–d.

Panels b and c depict the structures of the two signal textures, S1 and
S2. These patterns consist of portions of binary patterns P1 and P2,
scaled by q. Panel d depicts the noise layer N, consisting of the pat-
tern P3 , scaled by r. The middle column of Figure 1 (panels e–h) de-
picts the same 16 � 16 pixel portion of a stimulus and its three
components—S1, S2, and N—at frame n + 1. Here the composite
pattern seen by the subject (panel e) consists of two signal patterns,
S1 and S2 (panels f and g), which have each moved 1 pixel to the left
of their respective positions in the previous frame, and a noise layer
N (panel h), which is uncorrelated with the noise layer in the previ-
ous frame. The rightmost column (panels i–l) depicts the compos-

Sum
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Left Only Left +DownFirst Frame
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g.
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d. h. l.
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Figure 1. Magnified 16 � 16 pixel portions of two two-frame sequences of dynamic random-check textures, il-
lustrating method of producing unidirectional and bidirectional stimuli. Left column: One frame in an anima-
tion sequence. The random-check texture (a) seen by a subject consists of the sum of two signal patterns, S1 (b)
and S2 (c), and a noise pattern, N (d). Middle column: Same region of the display during the next frame of an an-
imation sequence. Both signal textures have moved 1 pixel to the left (compare b and f; c and g). The structure of
the noise texture is independent of that in the preceding frame (compare d and h). Right column: Same as mid-
dle column, except that S1 has moved leftward 1 pixel (compare b and j); S2 has moved downward 1 pixel (com-
pare c and k).
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ite and its components in frame n + 1 of a sequence in which S1 is
moving to the left and S2 is moving downward 1 pixel per frame.

The Specification of SNR

Following van Doorn and Koenderink (1982a), the signal and
noise components of the stimulus were specified by the relative con-
tributions of the three pseudorandom binary arrays, Pk , to VAR(LStim),
the squared RMS contrast of the stimulus. VAR(LStim) was always
0.281, which corresponded to an RMS contrast of 0.53. The rela-
tive values of q and r were manipulated to maintain this value of RMS
contrast while varying the proportions of signal and noise con-
tributed to the stimulus by Pk . Since the value assigned to a given
element of any array, Pk , was an independent random variable, the
luminance variance of the stimulus was equal to the sum of the
weighted variances contributed by P1 and P2 and P3 :

(2)

(3)

where Pi, j,t is the value of the ij th pixel in the t th animation frame and
n is the total number of pixels over which the variance is computed.

In all of the experiments described below, SNR is reported as the
ratio between the luminance variance associated with motion in any
given direction and the remaining luminance variance.1 In the case
of the unidirectional motion conditions, both P1 and P2 contribute
to the computation of stimulus signal. The variances of P1 and P2
add, and SNR is computed in the following way:

(4)

The specification of SNR is not straightforward in the case of the
transparent motion conditions, since the signal layers move in dif-
ferent directions and will, therefore, be processed by different pop-
ulations of motion sensors. We chose to specify bidirectional SNR
as the ratio of the luminance variance in either signal layer and the
luminance variance in the noise layer2:

(5)

In comparing the results for bidirectional and unidirectional mo-
tion conditions in the experiments described below, it is important
to recognize that the bidirectional motion conditions provide two
signal sources of equal signal level at a given value of SNR while
the unidirectional condition provides only one signal source. The
effects of multiple signal sources on a subject’s performance will
depend on the nature of the visual task. We expect little or no effect
of multiple signal sources in our motion-identification task, be-
cause decisions must be based on identification of a single, specified
direction of motion. However, we expect the presence of multiple
signal sources to facilitate detection, since subjects are required
only to detect the presence of motion and can therefore base their
decisions in our detection task on visual responses elicited by either
or both of these signal sources. The expected magnitude of this fa-
cilitation will depend on many factors, including (1) the assumed
properties of the visual mechanisms that underlie motion detection,
(2) sources of variance in detector responses, (3) uncertainty effects
introduced by the design of the forced-choice task, and (4) the de-
cision rule employed by the subjects (see Graham, 1989, for a com-
prehensive discussion). In the absence of suppressive or inhibitory
effects, a reasonable upper-bound estimate of the facilitating effects
of multiple signal sources based on signal detection theory is that
detectability, d ′, for the bidirectional conditions should be equal to
the sum of the d ′s for the individual components.3 Thus, for equally

detectable components in a bidirectional stimulus, d ′ should be no
greater than twice either of the component d ′s at a given SNR level.
Differences between the unidirectional and bidirectional conditions
in threshold SNR will depend upon the choice of a criterion d ′ and
upon the sensitivities of the subjects to the unidirectional motion
components. Furthermore, if suppressive interactions among sen-
sors tuned to different directions of motion exist, detectability in the
bidirectional cases should be less than predicted by probability
summation.

While interpretation of the results for the uni- and bidirectional
conditions may depend to some extent on a quantitative model of sig-
nal detectability, comparison of the results for the opponent and per-
pendicular bidirectional conditions does not. They differ only in the
direction of motion of one of their components (right vs. down) and
should yield similar detectabilities unless there exist significant
anisotropies in either motion detectability, per se, or in the effects
of suppressive interactions across sensors tuned to different direc-
tions of motion. The measurment of uni- and bidirectional de-
tectabilities in the same experimental session helps decide between
these two alternatives.

General Procedure

The subject, who sat in front of the computer monitor in a room
illuminated only by the light from the monitor, adapted to a uniform
field of the same size and mean luminance as that of the stimulus
for 1 or 2 min prior to the start of data collection. The viewing dis-
tance was maintained and head movements were minimized by
using a conventional chin/head-restraint system. The subject fixated
a small stationary red spot in the center of the stimulus display re-
gion of the RGB monitor throughout a trial. The SGI’s three-button
mouse was used by the subject to initiate each trial and then to
record his/her response.

We employed a two-interval forced-choice procedure (2-IFC) in
Experiments 1 and 2. Each trial consisted of two stimulus intervals.
In one pseudorandomly chosen interval, the stimulus consisted of a
mixture of signal and noise; in the other interval, the stimulus con-
sisted entirely of noise. The stimuli presented in each of the two in-
tervals had identical values of q and r and differed from one another
only in the temporal structures of P1 and P2, which were coherent
in the signal-plus-noise interval and pseudorandom in the noise-
alone interval. At the end of each trial, the subject pressed a button
indicating the interval containing the signal-plus-noise stimulus.
Additional features of the forced-choice procedures used in the ex-
periments are described in the appropriate sections below.

Forced-choice techniques were also used in Experiment 3 to es-
timate identification thresholds. These techniques are described in
detail in the appropriate section below.

EXPERIMENT 1

In Experiment 1, psychometric functions were mea-
sured for discriminating mixtures of signal and noise
from pure noise. Performance was assessed separately
for each of five motion signal conditions: left alone,
right alone, down alone, left plus right, and down plus
left. The first three conditions are the component motion
conditions; the last two constitute the bidirectional mo-
tion conditions, opponent and nonopponent, respectively.
Recall that the effects of multiple motion sources on de-
tectability can be evaluated by comparing unidirectional
and bidirectional motion-detection performance, whereas
potentially direction-specific effects of these multiple
sources can be evaluated by comparing performance on
the two bidirectional motion conditions.

SNR
VAR

VAR

or=
( )
( )

=
q

r

q

r

2
1 2

2
3

2

2

P

P
.

SNR
Signal

Noise

VAR VAR

VAR
Stim

Stim

= =
( ) + ( ){ }

( )
=

q

r

q

r

2
1 2

2
3

2

2

2P P

P
.

VAR P

P

k

i j t
i j t

n( ) =
∑ , ,
, ,

,

2

VAR VAR VAR VARStimL q r( ) = ( ) + ( ){ } + ( )2
1 2

2
3P P P ;



MOTION TRANSPARENCY 563

Method
The dynamic random-check stimuli were presented within a

square aperture subtending 6.8º (256 pixels) on a side. The average
speed of each signal layer was always 12.7º/sec (8 pixels per frame).
The signal-plus-noise and noise-alone stimulus intervals were ob-
tained by multiplying each animation sequence by a trapezoidal
temporal contrast window. The rising and falling phases of each
window were both 30 frames (0.5 sec) in duration. The plateau of
the waveform, corresponding to an RMS contrast of 0.53, had a du-
ration of 100 frames (1.67 sec). A period of 0.5 sec separated the
end of the first stimulus interval and the beginning of the second in-
terval. Thus, the total time required to present both stimulus inter-
vals in a given trial was 3.84 sec.

Subject performance was measured using the method of constant
stimuli coupled with the 2-IFC procedure described in the General
Methods section above. Percent correct responses were measured at
4 or 5 logarithmically spaced SNR levels per motion condition. The
SNRs were chosen for each subject on the basis of extensive prac-
tice sessions. Data for a particular subject were usually gathered over
the course of several experimental sessions. Stimuli were presented
in block-random fashion, where the size of each block of trials was
5 motion conditions � 4 SNR levels � 20 conditions per block. A
typical experimental session consisted of 20 such blocks of trials,
and usually lasted approximately 40 min. The results reported below
are based on 100 trials per condition.

Results

The results of Experiment 1 are shown in Figure 2. The
ordinate plots values of detectability, d ′, obtained by con-
verting each fraction-correct response obtained with the
forced-choice procedure into the corresponding d ′, using
the standard relationship that assumes that subjects’ hit
and false-alarm rates are equivalent:

d ′ � �0�.5� � z( f ), (6)

where z( f ) is the normal deviate corresponding to the
percent correct, f (Green & Swets, 1966; see also Mac-
Millan & Creelman, 1991). The abscissa values indicate
relative proportions of signal in the mixtures of signal
and noise being detected.4 Filled and unfilled symbols
indicate d ′s for bidirectional and unidirectional condi-
tions, respectively. The solid lines are least squares fits to
the opponent and perpendicular motion data, while the
dotted line is fitted to the averaged unidirectional motion
data. The dashed line in each panel indicates the upper
bound estimate for probability summation, as discussed in
the General Method section above. This line has a slope
twice that based on the averaged unidirectional data.

In signal-detection analysis, sensitivity is indicated by
the rate of change of d ′ as signal level is increased. All 3
subjects were most sensitive to the down-left, or nonop-
ponent, transparent-motion condition and, on average,
least sensitive to the left-right, or opponent, motion condi-
tion. On the average, sensitivities for the perpendicular-
and opponent-motion conditions differed by a factor of
2.01. Differences in performance for the two transparent-
motion stimuli can also be expressed as threshold SNRs,
the SNR corresponding to a d ′ of 0.96, or 75% correct
in a 2-IFC experiment. In that case, thresholds for the
perpendicular-motion conditions were, on average, 1.65
times lower than those for opponent motion. Performance
in the case of unidirectional motion tended to fall inter-
mediately between the two extremes.

Several features of the data stand out when performance
is compared either in terms of the slopes of the signal-
detection curves or in terms of threshold-level perfor-
mance. One feature is that the differences in performance

Figure 2. Detectability, d ′, of motion in unidirectional and bidirectional random-check textures as a func-
tion of the motion signal level. Data for 3 subjects are shown. Each panel shows data for the standard suite of
five signal layer conditions: right only, left only, left right, down left, and down only. See figure legend for iden-
tification of plotting symbols. The solid lines in each panel are linear fits to the left-right, opponent-motion
condition (lower solid line) and the down-left, perpendicular-motion condition (upper solid line). The dashed
line in each panel corresponds to a line with a slope twice that derived from a linear fit to the average data ob-
tained for the three unidirectional motion conditions in the suite. This represents an upper-bound estimate for
the effects of probability summation on motion detection in the bidirectional conditions.
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among the different conditions examined were modest,
amounting to no more than a factor of about 2. A second
feature of the data is that the values of d ′ for opponent
motion in each panel fall systematically below the cor-
responding values of d ′ for unidirectional motion. These
results clearly indicate the effects of signal suppression in
the opponent motion condition. We believe that were it
not for probability summation these suppressive effects
would be even greater than indicated in Figure 2.

Another feature of the data is that d ′ rose most rapidly
with signal level in the perpendicular-motion condition
across all 3 subjects tested. These data are consistent with
probability summation of visual responses evoked by the
two signal sources, leftward and downward in this condi-
tion. Note, however, that the degree of summation is less
than the upper-bound indicated in the panel for each sub-
ject. This may indicate that, in addition to probability sum-
mation, some degree of signal suppression or inhibition
occurred in the perpendicular conditions. Another obvious
possibility is that the probability summation actually ex-
hibited by the human visual system may not follow the sig-
nal summation rule described in the General Methods sec-
tion. In any event, the results of Experiment 1 demonstrate
that, whatever the decision model, the factors that govern
signal detectability in the two bidirectional-motion condi-
tions are direction specific: although the two bidirectional-
motion conditions differ only in the direction of motion
of one of the stimulus components (downward vs. right-
ward), performance is lower for opponent than for perpen-
dicular motion. Furthermore, subjects’ performance av-
eraged a factor of about 1.5 less on the opponent-motion
condition than on unidirectional-motion conditions, in
spite of the potential benefits of probability summation.

EXPERIMENT 2

In Experiment 2, we measured threshold SNRs for de-
tecting motion produced by the suite of five signal condi-
tions used in Experiment 1, as functions of the stimulus
speed, field size, check size, and duration. Experiment 2
was designed to explore the generality of the results ob-
tained in the preceding experiment. Were the modest 
direction-specific differences in performance observed
in Experiment 1 sustained across a wide variation in
stimulus parameters or were the conditions under which
Experiment 1 was performed special in some funda-
mental way? The effects of many of these variables on
motion detection had been examined extensively using
dynamic random-check patterns consisting of a single
motion layer (e.g., Koenderink, van Doorn, & van de
Grind, 1985; van de Grind, Koenderink, & van Doorn,
1986; van de Grind, van Doorn, & Koenderink, 1983;
van Doorn & Koenderink, 1982a, 1982b, 1984). How-
ever, the corresponding dependencies of motion detection
in stimuli consisting of multiple motion layers had not
been systematically investigated.

Method
Stimuli

Speed. Detection-threshold SNRs were measured for four values
of average speeds spanning 1.59º to 12.8º/sec in 1-octave steps.
Each desired average speed was obtained by displacing the random-
check patterns 1, 2, 4, or 8 pixels per frame of the animation sequence.

Duration. Detection thresholds were measured as functions of
stimulus duration at each of two speeds: 1.6º and 12.7º/sec. Dura-
tions varied from 83 to 1,667 msec. The speed, field size, and check
size of the stimuli matched those employed in Experiment 1. Ac-
curate timing of the stimulus interval dictated a rectangular rather
than the trapezoidal temporal contrast envelope used in Experi-
ment 1. To mitigate the potential effects of contrast masking at the
onset of the animation sequences, the following presentation se-
quence was employed in each stimulus interval. At the beginning of
a trial, the uniform gray pretrial stimulus field was replaced by a
stationary texture pattern corresponding to the first frame of the
stimulus-animation sequence. Following a period of 0.25 sec, all
but the last of the remaining frames in the animation sequence for
that interval of the trial were presented at 60 frames/sec. The last
frame of the animation sequence remained visible in the stimulus
field for 0.25 sec, and was then replaced by a uniform gray field.
Following a 0.5-sec interstimulus interval, the presentation se-
quence was repeated for the second interval of the trial.

Field Size. The effects of field size on motion-detection thresh-
old were investigated in two series of experiments. In one series of
measurements, detection-threshold SNRs were measured for field
sizes of 2.88 to 46.10 deg2 in 2-octave steps. Due to hardware lim-
itations in our computer graphics system, thresholds for field sizes
larger than 46.10 deg2 could not be measured with single-pixel-per-
check stimuli without reducing the animation rate. Therefore, mea-
surements of detection threshold were repeated on 1 subject (D.T.L.),
using a hardware zoom feature that increased check size from 1 to
8 pixels (0.21º) on a side and permitted animation of larger patterns
at a 60-Hz frame rate. In this second series of measurements, field
size ranged from 2.88 to 184.4 deg2 in 2-octave steps. The velocity
of the stimuli in both series of experiments was 12.7º/sec (8 pixels
per frame).

Procedures
Thresholds were measured using a staircase procedure that

tracked the 75% correct level of performance in our two-interval
forced-choice task (see Lelkens & Koenderink, 1984). In this pro-
cedure, the log SNR value for a particular motion condition always
changed following a trial, but by an amount that depended upon the
subject’s response. If the subject responded correctly on a particu-
lar trial, the log SNR was reduced by 1 step the next time that con-
dition was presented. If the subject responded incorrectly, the log
SNR for the subsequent trial was incremented by 3 steps. The ini-
tial step size for any motion condition was always set to a value of
0.4 log SNR and then declined by half with each response reversal
until a constant minimum value of 0.05 was reached. Thresholds
for motion detection in Experiment 2 were based on averages of the
last 36 of 40 staircase reversals, when the log SNR step size was at
its minimum value. In any experimental session, the particular com-
bination of stimulus speed, field size, duration, and texture element
size was held constant, and thresholds were measured for each of
the five motion conditions in the standard suite.

Results

Log threshold SNRs for the standard suite of motion
conditions, as a function of the speed of the two signal
layers in the stimuli, are shown in Figures 3a–3c. Thresh-
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olds tended to remain relatively constant across the range
of speeds studied, varying by no more than about 0.5 log
SNR for any subject. Nearly all of the data across the 3
subjects tested fell in the range of �1.25 to �1.75 log
SNR. The highest threshold SNR for each motion condi-
tion occurs at the highest velocity tested, 12.7º/sec, a
finding that holds for all 3 subjects tested. Otherwise,
there are no specific trends in the relationship between
threshold log SNR and pattern speed that hold for all 3
subjects. It should be kept in mind that thresholds for the
different speeds were obtained on different days, and the
absence of consistent trends among the 3 subjects may
be due to daily random variation in sensitivity to motion.

An important feature of the detection thresholds de-
picted in the lower panels of Figure 3 is the relationship
between the thresholds for opponent and nonopponent
transparent motion. Log threshold SNR for the nonoppo-
nent stimulus (filled squares) was generally less than the
corresponding threshold for opponent motion (filled cir-
cles). Figures 3d–3f show the opponent and nonoppo-
nent transparent-motion thresholds in terms of ∆log
SNR, the difference in threshold between the transpar-
ent-motion condition and the average for the three uni-

directional motion conditions obtained in the same ses-
sion: log SNRT,directional � log SNRT,unidirectional . We refer
to ∆log SNR as relative thresholds. Positive values of
∆log SNR indicate that motion in the bidirectional condi-
tion was relatively less detectable than suggested by the
average threshold SNR for the unidirectional conditions.
The average differences in relative threshold across the
four speeds examined in Experiment 2 were 0.19, 0.20,
and 0.16 log SNR for D.T.L., A.L.G., and H.F.N., re-
spectively. The results of a 4 speeds � 2 bidirectional
motion types analysis of variance (ANOVA) with repli-
cations indicated signif icant differences in relative
threshold between the opponent and perpendicular mo-
tion stimuli [F(1,16) � 10.5, p < .01] Neither the effects
of speed [F(3,16) � 0.134, p > .75] nor the effects of the
interaction of speed and motion type [F(3,16) � 0.236,
p > .75] were significant.

The effects of stimulus duration on motion detection for
random-check patterns moving at 12.7º/sec are shown in
Figure 4. Log threshold SNR declines as stimulus dura-
tion increases, as seen in the Figure 4a–4c. The diagonal
line of slope �0.5 drawn in Figure 4d provides a ref-
erence for gauging the rate of improvement in threshold

Figure 3. Signal-detection thresholds (log SNR) for unidirectional and bidirectional random-check
textures as a function of the speed of the signal layers. Field size � 6.8º � 6.8º, duration � 2.67 sec, el-
ement size � 0.027º. Data for 3 subjects are shown. Top panels (a–c): log threshold SNRs for the stan-
dard suite of five signal-layer conditions: right only, left only, down only, left right, and down left. Con-
sult legend in Figure 2 for identification of plotting symbols. The error bar to the immediate right of
the data plot indicates ±1 standard error based on averaging standard error for each subject across all
conditions in Experiment 2: ±0.029 (D.T.L.), ±0.029 (A.L.G.), ±0.030 (H.F.N.). Bottom panels (d–f ):
Data for the left-right (filled circles) and down-left (filled squares) compound-motion conditions, re-
plotted as differences from the average of the unidirectional-motion threshold SNRs at each speed.
Consult text for further details.
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SNR with duration. A slope of �0.5 is expected of an ideal
motion detector, one based on cross-correlation of pixel
luminances across space and time (Lappin & Bell, 1976;
van Doorn & Koenderink, 1984). In the case of Subject
D.T.L., for whom a complete set of thresholds was mea-
sured, log threshold SNR declines approximately as the
square root (slope � �0.48) of duration for durations less
than approximately 0.67 sec. Threshold does not con-
tinue to improve at this rate for longer durations and may
actually asymptote to a final value by 1 sec.

Log relative thresholds for the two bidirectional mo-
tion stimuli are shown in Figures 4d–4f. Relative thresh-
old did not vary with stimulus duration in any way that
was consistent with subject. Perpendicular motion thresh-
olds, however, were always lower than the correspond-
ing opponent-motion thresholds. The average log differ-
ences in relative threshold were 0.20, 0.23, and 0.27 for
Subjects D.T.L., A.L.G., and H.F.N., respectively. The
results of a 3 (durations) � 2 (bidirectional motion types)
ANOVA with replications revealed significant differ-
ences in relative threshold between opponent and per-
pendicular motion stimuli [F(1,12) � 27.0, p < .001]. The
effects of duration were not significant [F(2,12) � 1.58,
p > .50], although there was a significant interaction of
duration and motion type [F(2,12) � 7.31, p < .02].

The 1.6º/sec data are shown in Figures 5a–5c. Thresh-
old SNR declined as stimulus duration increased. The re-
sults for the bidirectional and unidirectional motion con-

ditions closely paralleled one another. The threshold
SNRs for the unidirectional motion conditions replicate
previous results obtained by others in two important re-
spects. First, the range of thresholds was similar to those
reported previously by van Doorn and Koenderink
(1982b), among others. Second, unidirectional thresh-
olds in Figure 5 improved more rapidly with duration
than did those measured at 12.7º/sec, a finding that is
consistent with Fredericksen, Verstraten, and van de
Grind’s (1993,1994) results. The bottom panels in Fig-
ure 5 (d–f ) indicate that the differences in log relative
threshold SNR between opponent-motion and perpen-
dicular-motion stimuli obtained at 12.7º/sec were also
seen at the lower speed in 2 of 3 subjects. These differences
were 0.14, 0.21, and 0.0 for D.T.L., A.L.G., and H.F.N.,
respectively. However, the results of a 3 (durations) � 2
(bidirectional motion types) ANOVA with replications
did not show significant differences in relative threshold
between opponent and perpendicular motion stimuli
[F(1,12) � 3.42, p > .10]. Nor were the effects of duration
[F(2,12) � 0.115, p > .75] or the interaction of duration
and motion type [F(2,12) � 0.096, p > .75] significant.

The effect of stimulus area on the detectability of mo-
tion for the suite of motion conditions is shown in Fig-
ures 6a–6c. The thresholds for detecting motion in uni-
directional stimuli improved as field size was increased.
The diagonal line of slope �0.5 drawn in Figure 6d indi-
cates that the improvement approximately followed a

Figure 4. Signal-detection thresholds (log SNR) for unidirectional and bidirectional random-check
textures as a function of the duration of the animation sequences. Speed � 12.7º/sec, field size � 6.8º,
element size � 0.027º. Data for 3 subjects are shown. Consult Figure 3 and text for additional details.
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Figure 5. Signal-detection thresholds (log SNR) for unidirectional and bidirectional random-check
textures as a function of the duration of the animation sequences. Speed � 1.6º/sec, field size � 6.8º � 6.8º,
element size � 0.027º. Data for 3 subjects are shown. Consult Figure 3 and text for additional details.

Figure 6. Signal-detection thresholds (log SNR) for unidirectional and bidirectional random-check
textures as a function of the stimulus area. Speed � 12.7º/sec; duration � 2.67 sec; element size �
0.027º. Data for 3 subjects are shown. Consult Figure 3 and text for additional details.
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square-root law. Thresholds for motion detection in bidi-
rectional stimuli also showed improvement as field size
was increased, and these improvements paralleled those
obtained for unidirectional motion. Detection threshold
was always higher for the opponent stimulus than for the
nonopponent stimulus. Thresholds for the two stimulus
conditions differed from one another, on the average, by
0.20, 0.21, and 0.15 log units for D.T.L., A.L.G., and
H.F.N., respectively. The results of a 2 (sizes) � 2 (com-
pound motion types) ANOVA with replications revealed
a significant difference in relative threshold between op-
ponent and nonopponent motion stimuli [F(1,8) � 8.11,
p < .05]. Neither the effects of stimulus area size [F(1,8) �
0.299, p > .50] nor the interaction of stimulus area and
motion type [F(1,8) � 0.372, p > .50] were significant.

Figure 7 shows results for a single subject, in which
the stimuli were composed of checks that were 8 pixels
on a side. Comparison of these data with those in Figures
6a and 6d reveals little effect of check size under the con-
ditions in which thresholds were obtained in this exper-
iment: thresholds obtained with the coarser texture pat-
terns were generally lowest for the perpendicular motion
condition, middling for the unidirectional conditions, and
highest for the opponent motion conditions. Moreover,
this pattern of results was sustained for patterns as large
as 184.4 deg2.

In summary, the results of Experiment 2 suggest that
the pattern of results obtained in Experiment 1 general-

izes to large variations in stimulus velocity (8::1), field
size (16::1), duration (20::1), and check size (8::1). In all
but one condition examined, the motion-detection thresh-
old for the nonopponent-motion condition was lower
than the threshold for the opponent-motion condition.
The effects, however, were modest, amounting to an av-
erage difference of approximately 0.19 log units (a fac-
tor of 1.6:1). We also find that, on the average, detection
thresholds for unidirectional motion tended to fall be-
tween those obtained for the two bidirectional motion
conditions. This trend in the data is clearly evident in the
correlation plot shown in Figure 8, which replots all of
the data in Experiment 2 in a way that permits compari-
son of the relative thresholds for perpendicular motion
and opponent motion. Data for all 3 subjects are combined
in the plot. If subjects were equally sensitive to opponent
and perpendicular motion conditions, we would expect
the data to be distributed along the diagonal line shown
in the figure. Instead, the data tend to cluster below the
diagonal, indicating a lower relative threshold for per-
pendicular motion than for opponent motion. The aster-
isk in Figure 8 corresponds to the average results for all
conditions tested in Experiment 2. Although there is some
variability in results across the various conditions and
subjects tested, the asterisk shows that, on average, sub-
jects were more sensitive to perpendicular motion than
to unidirectional motion, and they were less sensitive to
opponent motion than to unidirectional motion.

EXPERIMENT 3

The results of the preceding two experiments provide
compelling evidence in favor of direction-specific inhib-
itory or suppressive interactions in the perception of trans-
parent motion. However, we felt that Experiment 3 was
warranted by one important issue concerning these effects
that our motion-detection procedures did not specifically
address. As pointed out in the General Methods section
of this paper, the interpretation of the differences in the
detectability of motion in the uni- and bidirectional con-
ditions depends to some extent on a model of signal de-
tectability that accounts for the effects of probability sum-
mation. We wanted to run a control experiment in which
we could assay for the suppression of one motion signal
by another without the confounding effects of probabil-
ity summation. In Experiment 3, subjects were asked to
identify one of the directions of motion—left, right, up,
or down—in a stimulus. In some trials, the motion was
unidirectional and the target direction corresponded to
the stimulus direction; in other trials, the motion was bi-
directional and the target direction corresponded to one
or the other component in the stimulus. The identifica-
tion task that we designed is an appropriate control, be-
cause subjects could base their forced-choice judgments
solely on a motion signal in a single direction in both
uni- and bidirectional conditions. Also, we designed the
task so that it, like the detection task, would be a forced-
choice procedure in which subjects could choose be-

Figure 7. D.T.L.’s signal-detection thresholds (log SNR) for uni-
directional and bidirectional random-check textures as a function
of the stimulus area. Speed � 12.7º/sec; duration � 2.67 sec; ele-
ment size � 0.21º. Consult Figure 3 and text for additional details.
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tween two response alternatives. However, rather than
choosing between signal-plus-noise and noise-only inter-
vals as in Experiments 1 and 2, subjects in Experiment 3
had to choose between a target direction of motion and a
distractor direction in a single stimulus interval per trial.

Method
The dynamic random-check patterns used in Experiment 3 were

of the same size, duration, and speed, and were presented within
the same temporal contrast window as those presented in Experi-
ment 1. Identification thresholds were measured for all 16 possible
combinations of the two signal layers and four directions of motion:
left, right, up, and down. Thresholds were measured using the follow-
ing forced-choice paradigm. Following the presentation of a stim-
ulus, the subjects were presented with a choice of two arrows, point-
ing in different directions, drawn on the computer monitor. One of
the arrows, the target, pointed in a direction that matched a direc-
tion of motion in the animation sequence. The other arrow, the dis-
tractor, pointed in a direction that did not correspond to any motion
component in the stimulus. The subjects used the computer mouse
to select one of the arrows. Arrows corresponding to the four di-
rections of motion in the experiment served as distractors with
equal mean frequency. Thresholds were measured using the same
3-up/1-down staircase procedure used in Experiment 2. The 16 in-
dividual staircases were all interleaved, and trials on each staircase
were presented in block-random fashion. The reported thresholds
are all based on 36 reversals collected over the course of two ex-
perimental sessions.5

Results

Average log thresholds for the correct identification
of motion in our displays are shown in Figure 9. The data

from the 16 conditions tested in Experiment 3 have been
collapsed into three categories labeled “0,” “90,” and “180”
in the figure. The category names refer to the differences,
in degrees, between the directions of motion of the two
signal layers and correspond to unidirectional, perpendic-
ular, and opponent motion conditions, respectively. The
error bars in the figures correspond to 1 standard error of
the mean. Motion identification thresholds for all sub-
jects were similar to the corresponding detection thresh-
olds measured in Experiments 1 and 2, although A.L.G.’s
identification thresholds for opponent motion are, on av-
erage, 0.4 log SNR higher than the corresponding detec-
tion thresholds.

It is clear from inspection of Figure 9 that there were no
differences in the subjects’ performance on the 0º and 90º
stimuli, and that the subjects performed less well on the
180º stimuli than they did on stimuli in either of the other
two categories. The results of an ANOVA with planned
comparisons among the 0º, 90º, and 180º conditions col-
lapsed across subjects confirmed this observation ( p <
.05). The differences between 0º or 90º and 180º identi-
fication thresholds averaged 0.3 log units, or about a fac-
tor of 2, across the 3 subjects. Thus, the results of Exper-
iment 3, like those of the previous two experiments, are
consistent with the view that inhibitory or suppressive in-
teractions in bidirectional motion are direction-specific:
they affect detection and identification to a greater extent
when the signal layers move in opposite directions than
when they move at right angles to one another. Further-
more, the results of Experiment 3 indicate little if any ef-
fect of suppression in the perpendicular bidirectional
motion condition. The modest improvement in sensitivity
for perpendicular motion (as compared with unidirec-
tional motion) observed in Experiment 1 apparently re-
flects signal summation processes alone rather than a
combination of competing summation and suppressive
processes.

DISCUSSION

In the introduction to this article, we pointed out that
moving objects stimulate diverse populations of motion
sensors, which are tuned to different spatial frequencies
and orientations, and temporal frequencies of motion. A
fundamental unsolved problem in vision is how infor-
mation from all these various sources is integrated into a
unified representation of moving objects that is approx-
imately veridical. Local inhibitory interactions among
sensors tuned to different directions of motion have been
proposed as a process contributing to image segmenta-
tion and unification.

A number of authors have previously pointed out that
the computation of motion transparency is based in part
on global properties other than the velocities of the trans-
parent objects—for example, spatial frequency, contrast,
color, and binocular disparity (e.g., Adelson & Mov-
shon, 1982; Kooi, DeValois, Switkes, & Grosof, 1992;
Krauskopf & Farell, 1990; Krauskopf, Wu, & Farell, 1996;

Figure 8. Correlation plot of all log relative thresholds, �log SNR,
for perpendicular- versus opponent-motion, obtained in Experi-
ment 2. Relative thresholds obtained as a function of speed, dura-
tion, field size, etc., are plotted with different symbols, as indicated
in the figure legend. The mean relative thresholds for opponent-
and perpendicular-motion are indicated by the asterisk.
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Movshon, Adelson, Gizzi, & Newsome, 1985; Qian
et al., 1994a; Stone, Watson, & Mulligan, 1990). These
authors have shown that differences among moving trans-
parent objects along one or more of these dimensions
can provide a simple means for grouping the motion sig-
nals appropriately. Other investigators have observed
that higher level perceptual processes, such as those that
may be responsible for perception of the surface proper-
ties of objects, can facilitate the segmentation of over-
lapping moving patterns into their constituent parts (e.g.,
Lindsey & Todd, 1996; Stoner & Albright, 1993, 1996;
Stoner, Albright, & Ramachandran, 1990; Trueswell &
Hayhoe, 1993). While the visual system may be capable
of using these cues in the analysis of moving stimuli, it
is also clear that these cues are not necessary for motion
transparency to be perceived. The individual layers in
our dynamic random-check stimuli are indistinguishable
from one another on the basis of any of these potential
cues, although motion transparency is readily perceived
in these stimuli.

The results of the present study also make clear three
additional points concerning the processes occurring in
the perception of motion transparency in random-check
patterns. First, they indicate that the statistical efficiency
with which visual processes extract motion from the bi-
directional motion stimuli may depend to some extent
upon the relative directions of motion of the two signal
layers. The results of the first two experiments clearly
show across a broad range of stimulus parameters that mo-
tion in opponent-motion stimuli is more difficult to de-
tect when it is embedded in noise than is motion in either
unidirectional- or perpendicular-motion conditions. Sec-

ond, the range of differences among the motion conditions
tested is very modest. The largest differences in perfor-
mance are on the order of a factor of 2. Third, the results
of the present study also indicate that the differences in
sensitivity are not determined solely by whether the sig-
nal layers move in the same or different directions. Al-
though sensitivity was generally lowest for opponent-
motion stimuli, sensitivity was generally highest for the
perpendicular-motion stimuli.

Several other studies have previously examined the
detectability of opponent motion. Van Doorn and Koen-
derink (1982a, 1982b) measured SNRs for stimuli con-
sisting of dynamic random-check noise superimposed on
interdigitated rows of leftward- or rightward-moving
random checks. Motion of the individual rows was not
resolved when the rows were a single pixel in height, and
subjects perceived left-right transparent motion, pro-
vided the patterns were viewed at suprathreshold values
of SNR. Lappin and Kottas (1981) compared the coher-
ence-detection thresholds in sparse random-dot lattices
moving in one direction as functions of the direction of
a background lattice moving either perpendicular to or
opposite the first pattern. Mather and Moulden (1983)
compared luminance thresholds for detecting motion in
sparse random-dot displays consisting of either a single
lattice in unidirectional motion or two lattices in oppo-
nent motion. The results of all these studies, obtained
across a variety of different techniques, are in agreement
with those of the present study in finding that motion in
the opponent condition is less detectable and less identi-
fiable than motion in a unidirectional comparison con-
dition. Therefore, the psychophysical evidence for inhib-

Figure 9. Log threshold SNRs for the identification of direction of motion in dynamic random-check patterns.
Results for 3 subjects are shown. The data from the 16 conditions tested in Experiment 3 have been collapsed into
three categories: “0,” “90,” and “180.” The bars in each panel represent the logarithm of the average threshold
SNR for identification of leftward, rightward, upward, and downward motion in each of three stimulus configu-
rations. Category 0, both signal layers moved in same direction; category 90, signal layers moved in directions per-
pendicular to one another; category 180, signal layers moved in opposite directions. Error bars: 1 standard error
of the mean threshold for leftward, rightward, upward, and downward identifications.
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itory or suppressive interactions in opponent-motion
stimuli seems firmly established.

The extent to which similar interactions occur in re-
sponse to bidirectional motion when the components are
moving at right angles to one another is less well estab-
lished. Although we do not find evidence for inhibitory
interactions in these conditions, Snowden (1989, 1990),
using superimposed sparse random-dot arrays, found
that the minimum and maximum detectable displacements
(dmin and dmax ) of a horizontally moving array were ad-
versely affected by the addition of a vertically moving ar-
ray. These interactions were dependent upon the relative
speeds of the component random-dot arrays (Snowden,
1990). Verstraten, Fredericksen, van Wezel, Boulton, and
van de Grind (1996) compared SNRs for direction of mo-
tion discriminations of a foreground random-check tex-
ture that was interdigitated with background textures that
were either stationary or moving at right angles to the
test texture. Threshold SNRs were elevated by the presence
of the moving background textures, although Verstraten
et al., like Snowden (1990) found that these effects were
speed-dependent.

In comparing these results with those of the present
study, it is important to recognize that both Snowden and
Verstraten et al. employed high-contrast background stim-
uli. In the present series of experiments, however, the
SNR thresholds for bidirectional motion were always
measured under conditions in which background con-
trast was, logically, near threshold, since foreground and
background contrasts were always equal (see Equation 1).
Therefore, the results of the present study should be re-
garded as an analysis of interactions among weak motion
signals, and, under these conditions, our experiments re-
veal little interaction in perpendicular motion. Under con-
ditions in which signal levels are large, a mutual partial
cancellation of motion signal is found in both opponent-
and perpendicular-motion conditions. In fact, when the
motion signals produced by bidirectional stimuli are bal-
anced locally (Qian et al., 1994a; see also Mace & Shaw,
1974), the motion signals that remain following cancel-
lation are too weak to sustain the perception of motion.
The dependence of signal cancellation on the contrasts of
the component stimuli has been previously pointed out
by Stromeyer et al. (1984) in connection with the detect-
ability of contrast increments in cosine gratings moving
in opposite directions. At very low grating contrasts, the
detection of contrast increments appears to be governed
by independent, direction-specific motion mechanisms
(see also Watson, Thompson, Murphy, & Nachmias,
1980), and no influence of inhibitory interactions is seen.
At high grating contrasts, detection of contrast increments
was influenced by what Stromeyer et al. concluded were
inhibitory effects between mechanisms tuned to oppo-
site directions of motion.

How might visual processes be capable of segregating
overlapping transparent motions? A number of years ago,
Lappin and Bell (1976) suggested that the computation
of global motion might involve processes closely paral-

leling cross-correlation. This proposal was based in part
on their finding that the detection of motion in two-frame
animation sequences involving sparse arrays of random
dots improves as the square root of the number of dots.
Later, van Doorn and her colleagues (e.g., van de Grind,
Koenderink, & van Doorn, 1987; van Doorn & Koen-
derink, 1982a, 1982b, 1984) used a similar conceptual
approach as a guide in their extensive studies of the detect-
ability of motion in the presence of noise. While cross-
correlation provides a computational basis for the percep-
tual segregation of bidirectional random-check stimuli
into their moving constituents, it does not require the ex-
istence of suppressive or inhibitory interactions across
sensors tuned to different directions of motion. The seg-
regation of transparent motion by cross-correlation is
based on the idea that the random-check patterns provide
two statistically independent sources of motion informa-
tion. Cross-correlation readily identifies these two inde-
pendent sources by linear integration across space and
time of the local correlations in each of a number of dif-
ferent hypothesized magnitudes and directions of ran-
dom-check displacements. The estimates of source ve-
locities derived from cross-correlation will correspond to
those velocities for which correlation values are statisti-
cally significantly different from the background values
at other velocities.

More recently, a number of alternative models based
on spatiotemporally oriented linear filter pairs arranged
in quadrature spatiotemporal phase have been proposed
for the computation of global motion. The sums of squared
outputs of these filters provide estimates of motion en-
ergy (Adelson & Bergen, 1985) within a particular spa-
tiotemporal frequency band. Different populations of
sensors provide measurements in different bands. Unlike
the cross-correlation model discussed above, models
based on the measurement of spatiotemporally oriented
energy cannot solve the transparency problem by linear
integration, and other strategies must be devised. This
point is illustrated in Figure 10, which shows idealized
Fourier amplitude spectra for unidirectional-, opponent-,
and perpendicular-motion random-check patterns. The
axes in the figure indicate 2-D spatial frequencies and tem-
poral frequency ( fx , fy , and ft , respectively). As shown in
the figure, the energies of moving patterns are confined
to planes within 3-D Fourier space. For the idealized case
depicted in Figure 10, an average of many stimuli is as-
sumed and the individual checks of the moving patterns
are assumed to be vanishingly small. Therefore, the en-
ergy is uniformly distributed on the plane.

The idealized power spectrum for unidirectional, right-
ward motion is shown in Figure 10a. This stimulus will
elicit responses in sensors with spatiotemporal tunings
that lie on or near planes; those sensors tuned to other fre-
quency bands will respond feebly if at all. The exact pat-
tern of responses among motion sensors will depend upon
the orientation of the plane in Fourier space, which in
turn will depend on the velocity of the moving texture.
The pattern of responses among motion sensors elicited
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by this planar distribution of energy can be used to esti-
mate the velocity of the moving texture pattern, as Heeger
(1987), among others, has demonstrated. However, two
fundamental problems arise when this sort of approach
is attempted for the two transparent motion cases de-
picted in Figures 10b and 10c. First, the motion-energy
measurements now arise from two moving patterns rather
than from one pattern, and a way must be found to appro-
priately group the responses into those arising from each
of the moving layers before computation of their separate
velocities can proceed. Second, algorithms that might
base the segregation of these responses on maxima in the
local measurements of motion energy will not work reli-
ably, since these maxima occur, on average, in spatiotem-

poral frequency bands centered on the intersections of
the planes associated with each of the moving patterns.
In the case of opponent motion depicted in Figure 10b,
this is not a problem, since these maxima lie in the fx , fy ,
plane at right angles to the dominant directions of mo-
tion and are consistent with zero-velocity patterns. In the
case of perpendicular motion depicted in Figure 10c,
however, the maximum lies on a diagonal line in the
down-left direction corresponding to the vector average
of the two pattern velocities.

A potential solution to these two problems has been
proposed by Qian et al. (1994a, 1994b). According to their
proposal, sensors with similar frequency tuning but dif-
ferent directional tuning characteristics are mutually in-
hibitory or suppressive, while sensors with similar direc-
tional tuning characteristics but different frequency tuning
will facilitate one another. These interactions occur only
among signals that arise approximately coincidentally in
space and time, and they lead to a single resultant esti-
mate of velocity at each location in the stimulus field. Ac-
cording to this view, (1) motion transparency in random-
check patterns occurs because much of the motion energy
associated with each of the two layers is uncorrelated,
even though the two layers have similar space- and time-
averaged motion energies; (2) in the case of perpendicular
motion, much of the motion energy measured in the di-
agonal direction is cancelled because it occurs coinci-
dentally with motion energy in the direction of either or
both component patterns; and (3) spatiotemporally local
interactions lead predominantly to interdigitated regions
in the representation of the visual field in which the re-
sultant direction of encoded motion is either leftward or
downward.

The proposal by Qian et al. (1994a, 1994b) seems to
fit a number of aspects of our empirical results when we
compare unidirectional- and opponent-motion condi-
tions. On the other hand, the fit between empirical result
and theory is less perfect when we consider perpendicu-
lar motion. A reasonable interpretation of our results is
that the difference in performance between opponent and
perpendicular motion conditions reflects a direction-
specific difference in the effectiveness of suppression in
the interaction stage, as proposed by Qian et al. Accord-
ing to this view, subjects’ greater sensitivity to perpen-
dicular motion may be due to incomplete cancellation of
motion in the down-left diagonal direction, as compared
with the more effective cancellation of spatiotemporally
coincident motion in the opponent-motion conditions. A
potentially serious problem with this view, however, is
that it suggests that subjects should see diagonal motion
when viewing perpendicular-motion random-check pat-
terns, since it is that direction that contains the greatest
fraction of motion energy, as shown in Figure 10c. None
of the subjects in our study ever reported seeing diago-
nal motion during any of the experimental sessions. In
fact, van Doorn and Koenderink (1982a) have reported
that transparent motion is seen in random-check layers
moving at equal speeds, even when the layers are sepa-

Figure 10. Idealized 3-D Fourier power spectra for random-
check patterns consisting of (a) two signal layers moving leftward
at 1º/sec, (b) 1º/sec leftward- plus rightward-moving signal layers,
and (c) 1º/sec leftward- and downward-moving signal layers. In
each case, a noise-layer contrast of zero is assumed. Fx and Fy are
in cycles/deg; Ft is in hertz.
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rated by as little as 30º. It is not clear how locally suppres-
sive or inhibitory interactions, by themselves, can account
for this degree of selectivity.

In conclusion, we have used a signal-detection paradigm
to reveal direction-specific inhibitory or suppressive inter-
actions among near-threshold signals occurring among
motion sensors responding to transparent motion stimuli.
These interactions occur across a wide variation in stimu-
lus speed, field size, duration, and texture element size.
Many, though not all, features of our data are consistent
with a recent proposal that bidirectional motion stimuli
may be segregated into their component velocities by
spatiotemporally local interactions in which sensors tuned
to similar directions of motion are mutually facilitating,
while those tuned to different directions of motion are
mutually inhibitory or suppressive.
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NOTES

1. Fredericksen, Verstraten, and van de Grind (1993) have previously
referred to the method of varying SNR by varying the ratio of signal and
noise luminance contrast as “LSNR,” to distinguish it from another
technique in which signal-to-noise ratio is determined by the numbers

of elements in a dynamic display that move coherently relative to the
number that jump randomly as the animation sequence progresses.

2. The specification of bidirectional SNR given in Equation 5 as-
sumes that motion in one direction does not serve as noise for motion
sensors that mediate the detection of motion in the other direction. The
degree to which this assumption holds true will depend upon the dif-
ference in directions of motion of the components as well as upon the
directional passbands of the motion sensors. An alternative specifica-
tion of bidirectional SNR,

SNR � � ,

is based solely on luminance variance at each point in the stimulus field,
and implicitly assumes that motion in one direction serves as noise for
motion sensors responding to motion in the other direction. With few
exceptions, performance was measured under conditions where r2 >> q2

and both Equation 5 and the preceding equation give nearly identical
values for SNR.

3. The upper-bound estimate is based on what Graham (1989) refers
to as an “intermixed-summation” experiment and a decision rule based
on the summation of sensor channel outputs. Noise is assumed to be
gaussian distributed. Furthermore, it is assumed that subjects do not
know the directions in which motion will appear in any given 2-IFC
trial, and will therefore always monitor each of three motion sensor
channels, each tuned to one of the three principle directions of motion
signal in a session: left, right, and down (see Method sections in Ex-
periments 1 and 2 for details). The prediction of d ′bi � d ′1,uni + d ′2 ,uni dif-
fers from the often-cited vector magnitude rule,

because the latter is based on the assumption that the subject always
knows which sensor channels to monitor in any given trial. Facilitation
is greater in the presence of signal uncertainty than when the subject
knows which channels to monitor. In the former situation, the sum of
variances in the three channels is constant, regardless of stimulus con-
dition, because all three channels must be monitored on every trial due
to stimulus uncertainty. When the signal condition is known, the greater
channel variance for the bi- versus unidirectional-motion conditions
partially offsets the benefits of increased signal level as the number of
independent signal sources increases. We wish to emphasize the fact
that the expected effects of facilitation also depend upon the choice of
a decision rule. Changing the rule from channel-summation to maxi-
mum-channel response leads to a significant reduction in predicted ef-
fects of probability summation (see Graham, 1989; Pelli, 1985).

4. The signal values depicted in Figure 2 are relative to the normal-
ization S2 + N 2 � 1, where S2 and N 2 are the signal and noise variances,
respectively. Since SNR � S2 /N2, the signal values and SNR are related
by the following expression: S2 � SNR /(1 + SNR). Unnormalized signal
values depend on the RMS pattern contrast, which, in the present experi-
ments, was fixed at 0.53. Therefore, S2 + N 2 � 0.532 and the unnormal-
ized signal values and SNR are related by S2 � 0.532 SNR/(1 + SNR).

5. One might think that direction repulsion affected subjects’ judg-
ments of perceived direction of motion when the stimuli were bidirec-
tional. Direction repulsion effects in opponent (Marshak & Sekuler,
1979) and perpendicular (Hiris & Blake, 1996; Marshak & Sekuler,
1979) motion have been previously measured in dynamic random-dot
stimuli. The effects, which amount to 4º or less, are too small, in our opin-
ion, to influence the outcome of Experiment 3.
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