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Curvature is an aspect of three-dimensional structure that has long been neglected
in perceptual psychology. This article describes practical solutions to a number
of computational problems that arise when studying the perception of curved
surfaces. Procedures are described for (a) representing a quadric surface at any
desired position and orientation in space, (b) determining which point on the
surface projects to a given picture location, (c) computing the surface orientation
at that point, and (d) finding the point on a surface with a given surface
orientation. These and related procedures enable experimenters to study perception
of curved surfaces in new and powerful ways.

Although the ability of human observers to
perceive three-dimensional form from a two-di-
mensional image has fascinated researchers since
the Italian Renaissance, a number of recent devel-
opments have given the study of form perception
a new impetus. Of particular importance in this
regard is the increasing availability of laboratory
computer graphics systems. It is now possible, for
example, to create visual displays of unprecedented
realism through the use of computer animation
(Braunstein, 1966; Green, 1961), the manipulation
of shading (Pentland, 1982; Todd & Mingolla,
1983), or the generation of optical texture (Braun-
stein, 1968; Todd & Mingolla, 1984).

Another important development in the study of
form perception is the growing number of theo-
retical analyses in the literature. Researchers within
both psychology and artificial intelligence have
devised a variety of formal algorithms for deter-
mining an object’s structure based on motion
(Koenderink & van Doorn, 1977; Todd, 1982;
Ullman, 1979), shading (Horn, 1977; Koenderink
& van Doorn, 1980, 1982), or texture (Braunstein
& Payne, 1969; Purdy, 1958; Stevens, 1981) in its
visual projection.

Many of these new techniques for simulating
an object with a computer graphics display or
performing a mathematical analysis of the resulting
image are specifically designed for smoothly curved
surfaces. Curvature is an aspect of three-dimen-
sional structure that has generally been neglected
by perceptual psychology. With few exceptions
(e.g., Braunstein, Andersen, & Riefer, 1982; Lappin,
Doner, & Kottas, 1980; Todd & Mingolla, 1983),
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research on form perception has been confined to
isolated planar surfaces, plane-faced polyhedra, or
configurations of disconnected elements. With the
advent of these new methodological tools, however,
it is now possible to employ curved surfaces as
stimuli in perceptual experiments.

One promising technique for evaluating an ob-
server’s perception of curved surfaces in three-
dimensional space has recently been described by
Mingolla (1983). An observer is presented with a
computer-generated image of an object on which
a single point is designated by a blinking light.
The observer’s task is to estimate the surface
orientation at that point in terms of the s/ant and
tilt of the normal at that point. (See Stevens, 1981,
1983.) If many such estimates are obtained at
different points on an image, it is possible to
determine how the perceived three-dimensional
structure of the surface relates to the actual struc-
ture under various experimental conditions.

Although this technique . is conceptually
straightforward, there are several computational
problems that can arise in the process of imple-
mentation. First, the surface must be described in
a formally precise manner. Surfaces known in
mathematics as quadrics are particularly useful in
this regard because they can be described with a
simple second-degree equation in three variables
(i.e., one that contains no exponent greater than
two). The quadric surfaces include a number of
familiar objects such as spheres, cones, and cylin-
ders, as well as a few that are not so familiar such
as elliptic hyperboloids of one sheet. Because they
include such a wide range of shapes and are easy
to manipulate in experimental displays, quadric
surfaces make excellent stimuli for the study of
human perception. However, in order to completely
describe one of these surfaces at a particular
position and orientation in space, a researcher
must be able to generate an appropriate equation.

Once an object in three-dimensional space has
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been specified, the next step in the simulation
process is to compute its optical projection. If a
surface is depicted using patterns of shading, it is
necessary to insure that every addressable element
over the entire display screen is assigned an appro-
priate intensity value. (See Todd & Mingolla,
1983; and Todd & Mingolla, 1984, for a similar
requirement in generating images with patterns of
texture.) This requirement can be satisfied by
performing an inverse projective transformation.
That is, for each picture element on the display
screen, one determines a corresponding point on
the simulated surface to which it is projectively
related. In addition, it is necessary to determine
the orientation of the surface at that point because
the patterns of shading and texture within an
image are each dependent on surface orientation.

The final step of our proposed procedure is to
select the particular points on an object for which
_ orientation judgments will be obtained. Suppose,
for example, that an observer is asked to judge the
surface orientations of points on several different
objects. To facilitate comparisons between the
perceived forms of these objects, it is useful to
sample the same orientations on each one. To
achieve this level of control, however, one must be
able to determine the specific point on each surface
that has the desired orientation.

The various computational problems described
above can be annoying stumbling blocks to a
researcher investigating the percéption of curved
surfaces. Although the solutions to these problems
are known, they are buried in textbooks on solid
analytic geometry and are not easily accessible to
perceptual psychologists. Thus, in an effort to
facilitate future experimentation in this area, the
present article discusses several practical solutions
that have proven to be useful in our own research.
In particular, we present specific procedures for
(a) representing a quadric surface at any desired
position and orientation in space, (b) determining
which point on the surface projects to a given
screen location, (c) computing the surface orien-
tation at that point, and (d) finding the point on
a surface with a given orientation.

Representing the Shape and Position of
Quadric Surfaces
Equation 1 describes a general quadric surface
(Dresden, 1930, p. 159):
a..xz + azzyz + 03322 + 2a.2xy + 2a.3xz

+ 2a23y2 + 2a14X + 2034y + 2a342 + Qs = 0.
' (1)

The values of the first three coefficients determine
the type and shape of the surface. For example, if

OBSERVATIONS

all three are positive and equal to each other, a
sphere results; if they are all positive but unequal,
an ellipsoid is described. One negative and two
positive coefficients produce a hyperboloid of one
sheet, and so on (Dresden, 1930, p. 230). Variation
of these coefficients also determines the shape of
surface regions within a category from pointed to
rounded or flat. Likewise, varying the coefficients
a,», a3, and a,3 produces rotations of the surface
relative to the reference coordinate system; a4,
ays, and a4 describe translations of the surface
from the origin, and a4, is a scaling factor.

An experimenter can set out to display surfaces
of particular shapes and sizes as follows. If aa4 is
set to —1, the first three coefficients can be con-
veniently scaled to a particular screen resolution
in pixel units. Thus, choosing a,, a;, and as;
equal to (1/80), (1/60)%, and (1/50)%, respectively,
produces an ellipsoid 160 units long and 100 units
wide at its narrowest diameter. Similarly, rather
than arbitrarily entering values of a2, a3, and
a,3, the experimenter can select angular values of
rotations of the surface about the x-, y-, or z-axes
from a standard position relative to the display
screen. The values of a,,, a3, and 4,3 that specify
the desired rotation can then be found as follows.
Imagine that the desired orientation is such that
the three principal axes of the surface align with
some coordinate system, called the u-v-w system.
The surface’s equation in this system is

b”uz + b2202 + b33W2 = 1. (2)

Suppose further that the x-y-z- and u-v-w-axes
share a common origin and differ only in that the
x-y-z-axes would align perfectly with the u-v-w-
axes if the former were rotated 6° clockwise about
the z-axis. The equations relating the two coordi-
nate systems are

u = cos(f)x — sin(6)y

v = sin(f)x + cos(f)y
w =z, ‘

(3)

Substitution of Equation 3 into Equation 2 pro-
duces an equation of the desired form in the x-y-
z system, having a new set of coefficients related
to the old by

a;, = cos*(0)b,, + sin*(0)by2

ax = sin¥(®)b;, + coszkﬁ)bzz

a3 = by

ay; = cos(@)sin(0)(b2 — bny). 4

Translation of the surface in pixel units can simi-
larly be achieved by substituting the values u =
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x+kv=y+ 1, w=z+ m, for constants k, /,
and m. In this way, the form of Equation | can
be, constructed out of intuitively meaningful lengths,
rotations, and transiations.

Computing Which Surface Point Corresponds to
a Given Screen Pixel

In order to display a quadric surface on a
computer-generated display, a programmer must
first determine which quadric surface point is on
a line of sight through a given picture element
(pixel) of the display screen. Although a display
screen is naturally specified by two-dimensional
rectangular coordinates, the modeled surface is
three dimensional. By specifying the spatial rela-
tionships of eye, object, and display screen as
shown in Figure 1, a programmer can determine
at which surface point (x,, ys, Z), if any, the line
of sight through the display screen point (X, Vp,
z,) intersects the surface.

The line of sight through (x,, ¥,, 2,) is described
by these parametric equations:

X=Xpl, Y= Ypl, Z=2Zyl, (5)

where z, is constant over the entire display screen.
Substituting Equation 5 into Equation 1 describes
the locus of points that are both on the surface
and in the line of sight. There can be two, one, or
no such points, depending on the number of real
roots of the equation described by that substitution
(Dresden, 1930, p. 150):

(a1 X2 + anyl + anzi + 2a12%.Y
+ 2a13%,2, + 2a23ypzo)t?
+ 2(a14xp + Az Vp + 034Zp)l + Q44 = 0. (6)

Equation 6 is a quadratic of the form ar® + bt +
¢ = 0, and its discriminant is #* — 4ac. Because
z, is constant for a given display, the discriminant
is tested for each value of x and y on the screen.
If the discriminant is negative, the surface is not

drawn at that point. If the discriminant is positive,.

the smaller resulting value of ¢ allows the coordi-
nates of the closer, visible point on the surface to
be calculated directly from Equation 5.

Computing the Surface Normal at a Given Point

The heart of all display algorithms for smoothly
curved surfaces is the computation of unit surface
normals. An introduction to the generation of
shaded graphic displays from surface normals can
be found in Todd and Mingolla (1983), and a
procedure for generating textured surfaces is de-
scribed in Todd and Mingolla (1984). (See Blinn,
1977, for details, and Newman & Sproull, 1979,
chapter 25, for a more extensive survey of shaded
graphics techniques.)
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Figure 1. This scheme relates object and screen coordi-
nates. Rectangular coordinates at the point of observation
are oriented so that the x-axis and y-axis are parallel to
the horizontal and vertical screen dimensions, respectively.
The programmer must explicitly relate the scales of the
screen and of the eye-centered coordinates, as described
in the text.

To compute surface normals, consider partial
derivatives of the left side of Equation 1 as follows:
Differentiating the left side of Equation 1 with
respect to x, y, and z, respectively, yields three
quantities, which will be designated Q,, @, and
0.

Q. = 2Aanx + apy + anz + aiy)

Q. = 2(axx + any + anz + az)
Q; = 2(a3.x + asxy + a33Z + (134). (7)

(By definition, @»y = a2, @n = ais, and ap» =
a,3.) Consider a vector N that is aligned with the
surface normal at a point P. The quantities Q,,
Q,, and Q: are the projected lengths of this vector
along the x-, y-, and z-axes, respectively. If the
coordinates of the point P are (4, B, C), then a
free vector N is specified by substituting the co-
ordinate values 4, B, and C for x, y, and z,
respectively, in Equations 7 to yield (Dresden,
1930, p. 161)!

N = (Q., Oy, Q). (8

It is important to note that N is not necessarily
of unit length and must therefore be normalized
before use in graphics computations. (The nor-
malized values of Qy, Q,, and Q:, designated a,
b, and ¢, are the direction cosines of N.)

! A free vector denotes a sense of orientation in space,
without being attached to any particular place. (Moon &
Spencer, 1965, p. 111.)
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Figure 2. The sphere and ellipsoid were generated using the procedures described in the text. The letters
denote points having orientations specified by an experimenter; points labeled with corresponding letters

have the same local surface orientation.

Locating a Surface Point With a Given
Surface Normal

One approach to probing a subject’s impressions
of a surface’s form or local orientation is to ask
the subject to indicate the direction of a surface
normal at a point. The experimenter selects a set
of surface orientations to be probed and varies the
shape or orientation of surfaces to be displayed.
For each test surface, the specific points having
the selected orientations must then be found. (See
Figure 2.)

The components of a unit surface normal in
rectangular coordinates are the direction cosines
of its orientation. That is, they are the cosines of
the angles formed by the normal and by rays
parallel to the coordinate axes at a point. However,
few individuals find the direction cosine specifi-
cation of surface normals a natural one for indi-
cating judged surface orientations, and a more
natural scheme is given by slant and tilt (Stevens,
1981, 1983). Slant is defined as the angle formed
at a surface point by the normal of the visible side
of the surface and by a ray pointing to the eye. If
the display screen plane is taken to be perpendicular
to the line of sight, tilt is specified as a radial
direction in that plane, such as “toward 11 o’clock”
on an analog watch face. The experimenter can in
any case readily convert either normal represen-
tation to the other.?

Assume then that an experimenter seeks to
locate the point on a surface with a given surface
normal specified in rectangular coordinates. The
components of the surface normal are the direction
cosines a, b, and ¢. These components can readily
be thought of as specifying the orientation of a
plane perpendicular to that surface normal.® Just

as an infinite family of parallel rays in space exists
having the same orientation as the given surface
normal, so also an infinite family of parallel planes
exists having an orientation perpendicular to those
rays. Locating the surface point with a given
normal can thus be approached through the dual
procedure of locating the point of tangency on the
surface with one of the infinite family of planes
perpendicular to the normal direction. Since the
orientation of the desired plane is given, all that
must be found is a single parameter value, R,
specifying where the plane must be placed in order
to just graze the surface. Derivation of the proce-

?Given a rectangular coordinate system, a line of
sight, and a display screen aligned as shown in Figure 1,
conversion formulas between rectangular normal com-
ponents and slant and tilt components are

X = sin(o)cos(r), y = sin(o)sin(r), z = cos(o),

and ¢ =cos!(2), 7= tan_'()'/x)a

where o denotes slant and r tilt.

3 The numbers denoting the components of a free
vector (a, b, ¢) can just as easily be taken to denote the
set of all parallel planes satisfying the equation (Dresden,
1930, p. 253):

x—Aa+(y—-Bb+(z-C) =0,

where (4, B, C) denotes a point on the plane. For this
reason, finding the point of tangency of one such plane
to the surface is equivalent to locating a point with a
given surface normal. The shortcut procedure described
in this section, however, requires that the surface not be
rotated relative to the coordinate axes (ie., a;; = a;3 =
a,; = 0). If the surface under consideration has been
rotated, the normal orientation must be equivalently
rotated before proceeding.
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dure can be found in Dresden (1930, pp. 253-
263), but if a surface has a point with a given
surface normal at all, a real-valued R can be
found by solving

&)

In Equation 9, D, is the determinant of the matrix
of coefficients of Equation 1,

D] = RZDZ.

ay ap a3
a a a a

D, = det 21 22 23 2|
asy Qi dzz Qi
Qs Qa2 Qa3 Aag

where a; = a;;, by definition. D, is also defined as
. a determinant:

apy a2 a3 a
dy G» ax b
D, = det 21 22 Qs
as das; ds ¢
a b ¢ O

For each type of surface, computational shortcuts
equivalent to Equation 9 are described in Dresden
(1930, pp. 256-263). For example, for ellipsoids
Equation 9 is equivalent to

R2(£+£+i)=

az

(10)

If Equation 9 has real roots, the surface has one
or two points with the desired orientation. In the
latter case, the visible point in the image corre-
sponds to the positive root. Simultaneous equations
involving partial derivatives from Equation 7 can
then be solved to find the desired point coordinates:

2(ayx + any + aizz + as) = 2Ra
2(a21x + a.ny + ax2 + (124) = 2Rb
(11)

The values of x, y, and z that satisfy Equation 11
specify the coordinates of the point on the surface
whose surface normal is (a, b, ¢).

2(asx + any + azz + az) = 2Re

Summary

~ The present article provides some practical so-
lutions to a number of computational problems
that arise when studying the perception of curved
surfaces. In particular, we have described proce-
dures for (a) representing a quadric surface at any
desired position and orientation in space, (b) de-
termining which point on the surface projects to
a given picture location, (c) computing the surface
orientation at that point, and (d) finding the point
on a surface with a given surface orientation.
These procedures are especially useful for depicting
curved surfaces with shading (see Todd & Mingolla,
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1983) or texture (see Todd & Mingolla, 1984) and
for obtaining observers’ orientation judgments at
different points on a surface to evaluate its per-
ceived shape (see Mingolla, 1983).

There are several other computational problems
a researcher is likely to confront when manipulating
curved surfaces that are beyond the scope of the
present article. For example, when one is examining
an observer’s ability to discriminate between two
objects of different three-dimensional shape based
on shading or texture, it is useful to adjust their
orientations in space so that their projected outer
contours in the picture plane are identical. A
related problem can also occur when attempting
to determine the projected boundaries of cast
shadows. For the solutions to these and other
problems, the reader should consult Mingolla
(1983).
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