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Previous research on the perceptual analysis of optical texture has been severely
restricted by the lack of an appropriate technique for distributing texture on

- curved surfaces in a uniform manner. In an effort to overcome this problem, the
present article presents a new algorithm for generating stochastically regular
distributions of texture on any smooth surface regardless of its curvature. We
also present a new technique for representing the global organization of a textured
image based on the formal concept of a projected area field.

The concept of texture in perceptual psychology
has two distinct meanings that are sometimes
designated as surface texture and optical texture.
Surface texture refers to the physical or chemical
discontinuities on an object’s surface that can
influence the reflection of light. Optical texture,
on the other hand, refers to the discontinuities of
intensity or wavelength within a cone of visual
solid angles. It is useful to conceive of these two
types of texture as if they were composed of
elementary units. The elements of surface texture
can be thought of as bounded regions of one
reflectance surrounded by a background of some
other reflectance, whereas the elements of optical
texture can be portrayed similarly as bounded
regions of homogeneous luminance surrounded by
a background of some other luminance (cf. Todd,
1984). Because variations in luminance within a
cone of visual solid angles are directly influenced
by variations in reflectance on a visible surface,
the elements of surface texture and optical texture
are typically in one-to-one correspondence. It is
important to keep in mind, however, that their
overall patterns of organization are generally quite
different due to the effects of perspective.

The importance of texture for the study of
human perception was first recognized by Gibson
(1950) in his seminal work The Perception of the
Visual World. Gibson assumed that most of the
surfaces encountered in nature have patterns of
texture that are stochastically regular (i.c., the
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texture elements within equal areas of a surface
have comparable distributions of size, shape, and
density). Whenever this assumption is satisfied, he
argued, the structure of a surface in three-dimen-
sional space can be unambiguously specified by
its corresponding pattern of optical texture. In
order to understand why this is so, it is useful to
consider a planar cross section of the cone of
visual solid angles (i.e., a picture plane). Suppose
that a surface is covered with small circular dots.
Although the sizes and shapes of these dots in
three-dimensional space may be identical, their
projected sizes and shapes on the picture plane
will vary as a function of two physical variables:
(a) the distance of the surface from the point of
observation and (b) its orientation in depth relative
to the line of sight (see Figure 1). It is this
systematic variation in the sizes and shapes of the
optical texture elements that provides information
about an object’s three-dimensional form.

The ability of human observers to make use of
texture information has been studied extensively
during the past 3 decades. (See Braunstein, 1976,
for an excellent review). Unfortunately, almost all
of this research has been confined to the perception
of planar surfaces, which may not be representative
of other types of objects encountered in nature.
The primary determinant of textural variations in
an image of a planar surface is that some parts of
the surface may be farther away from the point of
observation than are others. Thus, as is evident in
Figure 1, the optical texture elements may vary in
size but will have relatively little variation in
shape. In an image of a curved surface, on the
other hand, much of the variation in texture is
due to the fact that some parts of the surface have
different orientations than do others. The optical
texture elements in this case vary in both size and
shape. The differences between curved and planar
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Figure 1. The effects of viewing distance and surface
orientation on the polar projection of a circular texture
element. (The columns from right to left depict viewing
distances of 1, 2, 3, and 4 circle diameters, respectively.
The rows from top to bottom depict slant angles of 0°,
25°, 50°, and 75°, respectively. The projected center of
each circle is represented by the point where the horizontal
and vertical lines intersect. The center point appears
displaced in the projections of slanted circles at close
viewing distances because of the convergence effects of
linear perspective.)

surfaces are especially pronounced when viewing
distance is sufficiently large to approximate a
parallel projection (e.g., when a photograph is
taken through a zoom lens). In that case, the
proportional differences in viewing distance for
different parts of a surface become negligible. The
patterns of texture in an image of a curved surface
still vary as a function of surface orientation (see
- Stevens, 1981; Witkin, 1981), but in an image of
a planar surface the optical texture elements are
all identical. On the basis of these observations, it
is reasonable to expect that our perceptions of
curved surfaces could be based on different sources
of information than are our perceptions of planar
surfaces. Indeed, this hypothesis has recently been
confirmed by Cutting and Millard (1984).

One possible reason why perceptual psychologists
have restricted themselves to the study of planar
surfaces is the lack of an adequate technique for
simulating texture patterns on curved surfaces.’

OBSERVATIONS

In order to create a perceptually compelling visual
display of a textured surface, the elements of
surface texture must be distributed evenly so that
all possible surface locations have an equal prob-
ability of being covered. This requirement is easily
satisfied when dealing with planar surfaces. The
usual procedure is to index the points on a surface
with a Cartesian coordinate system and to select
the coordinates of each texture element using a
random number generator. When applied to a
curved surface, however, this random selection of
coordinate values inevitably results in an uneven
distribution of texture—that is to say, some regions
of the surface will have a higher concentration of
texture elements than do others (cf. Braunstein,
1976).2

In our first attempt to solve this problem, we
imagined that an object was completely covered
by a long piece of string wrapped around its
circumference in repeating loops. This defines a
mapping relationship in which each point on an
object’s surface corresponds to a point somewhere
along the length of the string. By selecting propor-
tions of its total length at random, it is possible to
generate an even distribution of texture. The main
problem with this approach is that determining
the length of a curved pieced of string requires
the evaluation of a line integral. For some curves
such as circles or ellipses this is a relatively simple
process, but for many others the integral can be
intractable. (Try it, for example, with a sinusoid.)

In an effort to avoid this difficulty, we recently
devised an alternative technique that does not
require the process of integration. Our procedure
is analogous to tacking small pieces of construction
paper at randomly selected positions on a curved
surface in three-dimensional space. We assume
that each piece of construction paper (i.e., a texture
element) has an area S, and that its position on
the surface is defined by a point at its center. It
will be useful to refer to any region of the surface

! Several methods have been proposed in the computer
graphics literature to create texture in smoothly shaded
images by simulating small bumps and wrinkles on the
depicted surface (e.g., Blinn, 1978; Blinn & Newell, 1976;
Feibush, Levoy, & Cook, 1980; Haruyama & Barsky,
1984; Norton, Rockwood, & Skolmoski, 1982). There is
also an algorithm recently described by Schweitzer (1983)
that is appropriate for unshaded displays. Schweitzer's
algorithm is similar to the one presented here but requires
a much greater amount of computation time.

2 For any curved surface whose Gaussian curvature is
zero at every point (e.g., a cylinder) it is possible to adopt
an alternative coordinate system for which a random
selection of coordinate values produces a uniform distri-
bution of texture (see Stevens, 1981; Todd & Mingolla,
1983). Such procedures do not exist, however, if the
Gaussian curvature of any point on a surface is nonzero.
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Figure 2. A network of bounded regions as might be produced by projecting a grid of picture elements
onto a curved surface in three-dimensional space. (The shaded regions represent those that are covered
by a texture element, the center of which is represented by a small dot. Our analysis assumes that the
curvature of a surface within a local neighborhood is sufficiently small so that all of the bounded regions
within that neighborhood have approximately the same area D. Because a texture element has an area S,

it covers approximately S/D regions.)

that is covered by a texture element as foreground
and any region that is not covered by a texture
element as background. Our goal is to ensure that
the probability g of being part of the background
is the same for every unit area over the entire
surface.

The first step in the procedure is to partition
the surface into a network of bounded regions.
This is accomplished by filling the display screen
with a lattice grid of small rectangles called picture
elements or pixels and projecting that grid onto
the simulated surface. Note that the projective
relationship between the picture plane and the
surface is bidirectional—we can think of the surface
as projecting onto the picture plane, or, alterna-
tively, we can think of the picture plane as pro-
jecting onto the surface.® Because of the digital
nature of computer graphics displays, an individual
picture element cannot be partially filled; it is
either on or off. To maintain consistency, the same
constraint must also be applied to the simulated
surface—that is to say, each of its bounded regions
must be either completely covered by a texture
element (with a probability 1 — g) or completely
uncovered (with a probability g).

Let us now compute the probability p that the
center of a texture element is contained within a
region R, which has an area D. We shall assume
that the local curvature of the surface is not too

large in the vicinity of R so that all of its neigh-
boring regions will have approximately the same
area. A possible configuration that could arise
under these conditions is shown in Figure 2. The
shaded area in this figure represents a texture
element, the center of which is represented by a
small dot. Because a texture element has an area
S, any element that is positioned near R will cover
approximately S/D regions. Similarly, there are
approximately .S/D regions where an element can-
not be positioned for R to remain uncovered.
Each of these S/D regions has a probability 1 — p
of not containing the center of a texture element.
Thus, because ¢ is the probability that R is part
of the background, it follows from the above that

a=0-p"
By rearranging terms we get

p=1-g"

31t is interesting to note that the ratio of foreground
to background remains invariant under this projective
transformation. If every unit area of an object’s surface
has a probability 1 — ¢ of being covered by surface
texture, then it is also the case that every unit area of
the picture plane has a probability of 1| — g of being
covered by optical texture.
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Note that all of the terms on the right side of this
equation are given in the analysis. The values of ¢
and S are defined as constants for an entire
surface, and the value of D for the projected region
of any given picture element is easily computed
from the surface equation (see Appendix for de-
tails). On the basis of this analysis it is possible
to create a perceptually compelling visual display
of a curved surface using the following procedure:
For the surface projection of each picture element
on the display screen we compute the value of p,
select a random number between zero and one,
and draw the appropriate projection of a texture
element whenever the random number is less
than p.

One important problem with this particular
variation of our procedure is that it is computa-
tionally expensive. It is not uncommon for a
graphics display to have millions of individual
picture elements; to calculate the value of p for
each projected region would take many hours on

Figure 3. A computer simulation of a textured ellipsoid
and a hyperboloid of one sheet.
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a typical laboratory computer. Because of the
probabilistic nature of our algorithm, however, it
is also possible to create appropriately textured
displays by sampling only a small subset of these
regions. The value of p for each region in the
sample is then determined by

p=1-— qD!Sm’

where m is the proportion of regions for which
the calculations are performed. Figure 3 shows a
simulated ellipsoid and a simulated hyperboloid
of one sheet that were generated with this modified
procedure. The following parameter values were
used in the simulation: The display screen had a
resolution of 640 X 480 pixels; the center of each
object was located in the picture plane at a distance
of 700 pixel units from the point of observation:
for the ellipsoid, the x-, y-, and z-semiaxes had
lengths of 260, 200, and 230 pixel units, respec-
tively, while for the hyperboloid, they had lengths
of 100, —100, and 100, respectively: the individual
texture elements had dimensions of 15 X 15 pixel
units and were positioned on the surface at ran-
domly selected orientations; in each case the value
of g was 0.8; and the value of m was 0.0625. The
entire generation process took approximately 10
min using an LSI-11/23 processor.

To better understand the conceptual underpin-
nings of our proposed procedure, it is important
to keep in mind that the value of p for any given
region is uniquely determined by three physical
variables: its area (D), the proportion of the surface
that is not covered by texture elements (g), and
the sizes of those elements (.S). Note that the latter
two of these variables reflect global properties of
a surface that do not vary as a function of screen
position. Thus, all variations in p are due entirely
to the fact that some pixels project to larger regions
of the observed surface than do others. It is also
interesting to note in this regard that the values
of D for the projected regions of individual picture
elements form a two-dimensional scalar field. In
other words, for every picture element on the
display screen, there is a corresponding scalar
quantity that represents the area of an observed
surface to which it projects. Consider, for example,
the two images depicted in Figure 3. The area
field for each of these images is represented in
Figure 4 by an interconnecting network of solid
and dashed lines. The solid lines are called isoarea

* A simpler, though somewhat less accurate method of
computing D has been described by Schweitzer (1983).
It is also possible to determine the value of 5/D directly
by calculating the projected size of a texture element in
each region of the display screen. This latter method is
practical, however, only if all of the texture elements have
a regular shape such as a square or a circle.
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contours because they connect sets of pixels whose
projected surface areas are all identical. The in-
nermost isoarea contour of each figure represents
an area that is 1.25 times larger than the smallest
value of D. Each successive contour moving out-
ward represents an additional multiplicative in-
crease of 1.25. The isoarea contours are bunched
closely together near the boundaries of the figures
because the value of D is changing very rapidly in
those regions. The directions of maximum change
in D, called area gradients, are represented in the
figures by dashed lines, which are everywhere
locally orthogonal to the isoarea contours.

An area field diagram, such as the ones depicted
in Figure 4, can provide considerable insight into
the patterns of optical texture within a visual
display. Along each isoarea contour, for example,
the optical texture elements are evenly distributed,
and there are no systematic variations in their
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Figure 4. The projected area fields for the two images
depicted in Figure 3.
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sizes and shapes. (Random variations may still be
observed, however, as is evident in Figure 3.) The
foreshortening of an optical texture element is
always aligned with the area gradient in the direc-
tion that D is changing most rapidly. Moreover, as -
we move along these gradient contours, the optical
texture elements vary continuously in size, shape,
and density. This global pattern of optical structure -
may not be noticeable in an actual textured image
due to the random variations that are inherent in
our generation procedure. When an image is rep-
resented with an area field diagram, in contrast,
its global structure becomes immediately apparent.

Summary

It has been over 30 years since Gibson (1950) '
first suggested that patterns of optical texture
provide useful information for the perception of
three-dimensional form, yet we still know very
little about how this information is utilized by
human observers (cf. Stevens, 1981). By developing
techniques for generating texture patterns on ar-
bitrary curved surfaces and for representing the
global organization of a textured image based on
the formal concept of an area field, we have
attempted to eliminate some of the stumbling
blocks that have restricted previous investigations.
We believe that these new tools provide a solid
conceptual foundation for the mathematical and
psychophysical analysis of optical texture, and we
hope that they will stimulate future research.
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Appendix

The analysis presented below provides a specific
method for computing the projected area of a
picture element. The analysis begins with two
points: the point of observation O, and a point P’
on the picture plane. From the coordinates of
these points we determine the point P on the
simulated surface that is colinear with O and P’
(see Mingolla & Todd, 1984, for details). We then
calculate the distance z between O and P and its
angle of intersection v with the simulated surface.
We also calculate the distance z’' between O and
P’ and its angle of intersection 4’ with the picture
plane.

Following these preliminary calculations, we
construct an arbitrarily small circular cone that
has its vertex at O and is centered around the line

Figure AI. The intersection of a planar surface with a
cone of visual solid angles as viewed parallel to the
surface (top) and perpendicular to the surface (bottom).

segment OP at a visual angle «. We then calculate
the area of intersection 4, between the cone and
the simulated surface and the area of intersection
Ap between the cone and the picture plane. The
projected area D of a picture element at P’ is
defined as the ratio Ap/Ap.

The value of D is most easily computed when
the simulated surface is smooth. In that case it is
possible to make the angle « small enough so that
the region of intersection between the cone and
the simulated surface is approximately planar.
When a cone intersects a planar surface in this
context, their region of intersection forms the
shape of an ellipse. Let M be the center of this
ellipse and let @ and b be the minor and major
axes, respectively. These are depicted in Figure Al
together with three other variables (¢, d, and e)
employed in the computation. Using the law of
sines, we can show from the figures that

e = z sin a/sin(a + )
b+d=zsin afsinfe+ 7 — )
d=(b+d-e)/2
¢ =ztan a.

By placing the origin at M, we can define the
region of intersection by the familiar equation for
an ellipse (see Figure Al).

x3/a® + y*/p? = 1.

Because b is known, we can solve for g by letting
x =cand y = d to yield

' a=cVl ~ (d/by?
The area of the ellipse is then given by
Ap = wab.

" To determine the projected area D of a picture

element, we must perform these calculations twice:
once for the point P on the simulated surface to
obtain Ap and once for the point P’ on the picture
plane to obtain A4,. By forming a ratio of these
two areas, we obtain the value of D. )
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