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Abstract—

 

Affine geometry is a generalization of Euclidean geometry
in which distance can be scaled along parallel directions, though rela-
tive distances in different directions may be incommensurable. This
article presents a new procedure for testing the intrinsic affine struc-
ture of a psychological space by having subjects perform bisection
judgments over multiple directions. If those judgments are internally
consistent with one another, they must satisfy a theorem first proved by
Pierre Varignon around 300 years ago. In the experiment reported
here, this procedure was employed to measure the perceived structure
of a visual ground surface. The results revealed that observers’ judg-
ments were systematically distorted relative to the physical environ-
ment, but that the judged bisections in different directions had an
internally consistent affine structure. Implications of these findings for

 

other possible response tasks are considered.

 

One of the most popular ways of modeling perceptual (or cogni-
tive) phenomena is to represent percepts (or concepts) as points within
some psychological space. Often it is assumed, moreover, that a psy-
chological space has an underlying geometric structure that constrains
how different judgments are related to one another. There are many
different geometries that could potentially be used for modeling psy-
chological phenomena (e.g., see Suppes, 1977; Suppes, Krantz, Luce,
& Tversky, 1989). In the present article, we consider one called affine
geometry, which may be unfamiliar to many researchers in psychol-
ogy. We first discuss why this particular geometry might be useful,
and we then introduce a new technique for testing whether the affine
properties of a psychological space are internally consistent.

Of all the possible aspects of geometric structure, the one that has
attracted the most attention in the psychological literature is called a
distance metric. The metric of a space is a mathematical function that
relates distances in different directions. For example, the metric of Eu-
clidean space is defined by the Pythagorean theorem. Euclidean geom-
etry was developed more than 2,000 years ago as an abstract model of
the physical environment, but it does not always provide an adequate
description of the distance relations within a psychological space.
Other possible metrics that have been proposed in this context include
Minkowski metrics (e.g., see Attneave, 1950) and Riemannian metrics
(e.g., see Luneberg, 1947), both of which are based on more general
conceptions of space that need not be Euclidean.

For any space to be considered as metric, there must be a distance
function 

 

d

 

 by which every pair of points can be assigned a nonnegative
distance value that conforms with three basic axioms:

Minimality: δ a,b( ) δ a,a( )≥ 0=

 

It is interesting to consider, therefore, the extent to which these axioms
are satisfied for various types of psychological judgments. Shepard
(1964) made an early attempt to address this issue. He asked subjects
to make similarity judgments for line drawings of a circle with a sin-
gle radial line; the size of the circle and the orientation of the line
could be varied systematically. His results revealed that the observers’
responses could not be adequately characterized by any static metric,
because the relative weighting of the different dimensions in the over-
all similarity judgment could change with a subject’s state of attention.
When responses obtained with different states of attention were com-
bined, the resulting data contained clear violations of the triangle ine-
quality.

To provide a more intuitive example of how this could occur, Shep-
ard offered the following 

 

Gedanken

 

 experiment: Suppose that subjects
were asked to rate the dissimilarity (i.e., distance) between words on a
scale from 1 to 100. If given the pair 

 

table

 

 and 

 

fable

 

, they would likely
notice that the words sound alike, and assign a low dissimilarity rat-
ing, such as 15. If given the words 

 

table

 

 and 

 

chair

 

, the subjects would
probably switch their attention to the frequent co-occurrence of these
objects in the natural environment, and would again provide a low dis-
similarity rating, such as 10. However, 

 

chair

 

 and 

 

fable

 

 have no appar-
ent resemblance at all, and would likely be given a high dissimilarity
rating, such as 80. This pattern of results would be a violation of the
triangle inequality, and would therefore indicate that the psychological
representation of these words is nonmetric.

Let us now consider how affine geometry might provide a more ap-
propriate model of these phenomena. Affine geometry is a generaliza-
tion of Euclidean geometry, with a more limited set of assumptions.
Both geometries share the axioms of incidence and the parallel postu-
late, but affine geometry does not require the axioms of congruence.
(See Blumenthal, 1961, for a more detailed discussion of the axiom-
atic bases of alternative geometries.) Within an affine space, it is possi-
ble to compare the relative lengths of all parallel line segments,

 

1

 

though the relative lengths of nonparallel line segments may be in-
commensurable.

The psychological distinction between parallel and nonparallel dis-
tance intervals was nicely demonstrated in another experiment re-
ported by Shepard (1964). He asked observers to perform two tasks,
one that compared intervals along a single dimension, and another that
compared intervals across different dimensions. On the intradimen-

Symmetry: δ a,b( ) δ b,a( )=
Triangle inequality: δ a,b( ) δ b,c( )+ δ a,c( )≥
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1. It is possible to define an affine geometry that is based only on the axi-
oms of incidence and Euclid’s parallel postulate and that does not provide suf-
ficient structure to establish an equivalence relation between parallel line
segments. In order to ensure this property, it is necessary to include an addi-
tional axiom, which can take the form of either Desargues’s theorem or Pap-
pus’s theorem (see Blumenthal, 1961).
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sional task, observers judged the difference in orientation (i.e., angle)
between pairs of line segments that were connected at one end. One
pair of lines was presented as a standard, and observers could adjust
the relative orientation of a second test pair so that the angle between
them appeared equal to the standard angle. On the cross-dimensional
task, observers were required to adjust an angle to match the size dif-
ference between two circles. All subjects agreed that the intradimen-
sional task was quite trivial, but most of them insisted that they could
find no intuitive basis for performing the cross-dimensional judg-
ments. Consistent with these subjective reports, the variances obtained
for the cross-dimensional task were 19 times larger than the variances
for the intradimensional task, in which the matching stimuli differed
along a single dimension.

Shepard (1964) argued that cross-dimensional confusions are
likely to be limited to artificially defined spaces, whose component di-
mensions have no natural relationship with one another. However,
more recent evidence has revealed that similar distinctions between
judgments of parallel and nonparallel distance intervals can also occur
for other psychological spaces that are generally believed to be homo-
geneous. For example, when observers are asked to compare distance
intervals in the physical environment, their judgments are more accu-
rate and reliable when the comparison stimuli are parallel to one an-
other than when they are not (Norman, Todd, Perotti, & Tittle, 1996;
Todd & Bressan, 1990). These findings provide strong evidence that
affine properties of the physical environment may be more perceptu-
ally salient than its metrical properties.

It is important to keep in mind when considering these issues that
there are many possible geometries involving different sets of underly-
ing assumptions that could potentially be useful within mathematical
psychology. Faced with this plethora of possibilities, how is one to de-
cide which geometry is most appropriate in any given context? One
could, of course, just assume a particular geometry and hope that its
underlying assumptions are valid, but we believe that a better ap-
proach is to perform an independent check of those assumptions, such
as Shepard’s (1964) test of the triangle inequality. In order to adopt
this approach, however, it would be necessary to devise a set of formal
procedures for assessing the internal consistency of observers’ judg-
ments about the relevant properties of each geometry to be considered.

One way of testing the internal consistency of affine judgments is
to exploit a theorem that was first proven by Pierre Varignon around
1700. Let P

 

1

 

, P

 

2

 

, P

 

3

 

, and P

 

4

 

 be arbitrarily selected points that define
the vertices of a quadrilateral. Let Q

 

1

 

, Q

 

2

 

, Q

 

3

 

, and Q

 

4

 

 be the bisection
points along the four quadrilateral edges, respectively, and let T

 

1

 

 and
T

 

2

 

 bisect the intervals between the bisections of opposing edges (see
Fig. 1). In an affine space, the points Q

 

1

 

 through Q

 

4

 

 will form a paral-
lelogram, and the points T

 

1

 

 and T

 

2

 

 will be coincident with one another.
It is important to recognize that intersecting line segments do not ge-
nerically bisect one another. Thus, the coincidence of T

 

1

 

 and T

 

2

 

 in
Varignon’s theorem imposes on the structure of an affine space a se-
vere constraint by which interval bisections in different directions are
formally related to one another.

Varignon’s theorem also provides a straightforward procedure for
measuring the internal consistency of affine structure for any psycholog-
ical space in which it is possible to make bisection judgments. The pro-
cedure involves two separate phases. Subjects would first make
bisection judgments for all edges of an arbitrary quadrilateral to obtain
Q

 

1

 

 through Q

 

4

 

. Next they would bisect the intervals between the judged
bisections of the opposing edges to obtain T

 

1

 

 and T

 

2

 

. If the space is af-
fine, then the final two judgments must be statistically equivalent.

Recently, we have employed this procedure to measure the intrin-
sic affine structure of a perceived ground surface. This particular type
of psychological space is of special interest because prior research has
shown that it is systematically distorted relative to the actual physical
environment (e.g., see Battro, Netto, & Rozestraten, 1976; Koen-
derink, van Doorn, & Lappin, 2000; Norman et al., 1996; Wagemans
& Tibau, 1999). That is to say, physically straight lines can appear per-
ceptually to be curved, and intervals of equal length can appear per-
ceptually to be unequal. These findings demonstrate that observers’
judgments of affine properties in the environment can be physically
inaccurate, but are they internally consistent? Our research was de-
signed to address this question.

 

METHOD

Apparatus

 

The stimuli were created and displayed on a Macintosh G3 com-
puter with a 21-in. monitor. The displays were viewed through LCD
(liquid crystal display) shuttered glasses that were synchronized with
the monitor’s refresh rate. The different views of a stereo pair were
displayed at the same position on the monitor screen, but they were
temporally offset. The left and right lenses of the LCD glasses shut-
tered synchronously with the display at an alternation rate of 60 Hz, so
that each of the two stereo images could be seen only by the appropri-
ate eye. When operating in stereo mode, the monitor had a spatial res-
olution of 1280 

 

3

 

 484 pixels. The displays were viewed from a
distance of 57.3 cm so that each image subtended a visual angle of
38.5

 

8

 

 

 

3

 

 25.8

 

8

 

. Head movements were restricted using a chin rest.

 

Stimuli

 

Each display depicted a blue and black textured ground surface
with three vertical red posts (see Fig. 2). The simulated ground surface
was constructed from a 6.0- 

 

3

 

 6.0-m rectangle located 15.0 cm below
the point of observation. The right and left edges of this rectangle
were located just outside the viewing frustum of the display window
so that they would not be visible. The surface texture was created from
a random check pattern that was blurred and then thresholded to pro-

Fig. 1. A Varignon configuration similar to the configurations used in
the present experiment to investigate the affine structure of perceptual
space. Points P1 through P4 mark the vertices of a quadrilateral. Points
Q1 through Q4 bisect the edges of the quadrilateral, and points T1 and
T2 bisect the intervals between the opposing edge bisections, Q1Q3
and Q2Q4.
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duce a binary texture map. Eight different textures were created, and
one was selected at random on each trial.

Two different manipulations were performed to prevent observers
from judging the depth of a post from the heights of its endpoints in
the visual field. First, the simulated lengths of the posts were varied
over a range of 11.3 to 18.8 cm. Second, the depicted surface had a
random pattern of hills and valleys, so that the height of the ground
varied over a 4-cm range. A different random pattern of bumps was
generated for each trial.

Two of the posts presented in each display had fixed positions on
the ground that varied across trials. The position of the third post
could be adjusted both horizontally and in depth by manipulating a
handheld mouse. Twelve parallelogram Varignon configurations that
had different sizes, shapes, and positions were created. The depths of
the probe points in these configurations ranged from 131 to 397 cm,
and their visual eccentricities ranged from 

 

1

 

16

 

8

 

 to 

 

2

 

16

 

8

 

. Each pair of
probe points defined a virtual line in physical space whose length was
between 26 and 134 cm; these virtual lines were slanted in depth over
a range of angles between 

 

1

 

71

 

8

 

 and 

 

2

 

71

 

8

 

. The resulting visual angles
by which the probe pairs were separated in optical space ranged from
3

 

8

 

 to 24

 

8

 

.

 

Procedure

 

The task on each trial was to adjust the movable post so that it ap-
peared to bisect an imaginary line between the two fixed posts (see
Fig. 2). The bisection judgments for each configuration were obtained
in two separate phases within a single experimental session. During
the first phase, the positions of the fixed posts were selected from the
points P

 

1

 

, P

 

2

 

, P

 

3

 

, and P

 

4

 

 of a predetermined Varignon configuration
(see Fig. 1), and each pair of points was repeated on 10 separate trials.
In the second phase, the fixed posts were positioned at the mean loca-
tions of the observer’s judgments for Q

 

1

 

 and Q

 

3

 

 or for Q

 

2

 

 and Q

 

4

 

 ob-
tained during the first phase. Each pair of points was again repeated on
10 separate trials to estimate the apparent locations of T

 

1

 

 and T

 

2

 

.

Three different configurations were interleaved within each of four ex-
perimental sessions.

 

Observers

 

Six naive observers participated in the experiment and were paid
$8 per hour for their services. All had normal or corrected-to-normal
visual acuity. Each observer performed the sessions in a different ran-
dom order.

 

RESULTS

 

Two representative patterns of responses for different observers
and different configurations are shown in Figure 3. The trapezoidal
boundary in each figure shows the viewing frustum of the display win-
dow. The dotted lines show the actual Varignon configuration in phys-
ical space, with depth represented in the vertical direction. The solid
circular arcs show the perceived configuration as revealed by the ob-
server’s judgments. The small ellipses mark the mean positions of the
observer’s settings, and the axis lengths of these ellipses in different
directions show the standard deviations. The two ellipses in the center
of the configuration show the judged positions of T

 

1

 

 and T

 

2

 

, respec-
tively.

In analyzing the errors in observers’ judgments, it is useful to dis-
tinguish two separate components, which we refer to as 

 

intrinsic

 

 and

 

extrinsic

 

. The extrinsic errors are revealed by systematic differences
between the judged test points and the positions that would be ob-
tained if all of the bisection judgments had been performed veridi-
cally. Note in Figure 3, for example, that the judged locations of T

 

1

 

and T

 

2

 

 were significantly underestimated relative to their actual loca-
tions, which provides strong evidence that the extrinsic geometry of
observers’ judgments was systematically distorted. As in previous
studies (e.g., see Battro et al., 1976; Koenderink et al., 2000), the mag-
nitude of these distortions and the variance of the observers’ settings
tended to increase with viewing distance.

Although extrinsic distortions are of considerable interest, our pri-
mary goal in the present experiment was to measure the intrinsic struc-
ture of perceptual space. Intrinsic errors are revealed in this context by
violations of Varignon’s theorem—that is, by the two test points of a
given configuration being significantly different from one another. For
both of the examples provided in Figure 3, the response distributions
for the two test points were almost identical, thus indicating that the
observers’ judgments had an internally consistent affine structure.

Figure 4 provides a summary of the intrinsic and extrinsic errors
for all 6 observers in both horizontal direction and depth. It is clear
from this figure that there was a strong anisotropy in the observers’
judgments. Although there were large extrinsic errors along the depth
dimension, the judged horizontal positions of the test points were rela-
tively accurate. It is also important to note that the extrinsic errors
were more than four times larger than the intrinsic errors.

To analyze this pattern of results quantitatively, we performed a se-
ries of Hotelling’s 

 

T

 

2

 

 tests for each observer’s judgments of each con-
figuration.

 

2

 

 First, we examined the extrinsic distortions of the
judgments relative to the actual locations of T

 

1

 

 and T

 

2

 

 on the simu-

Fig. 2. A schematic view of a typical stimulus configuration used in
the present experiment. Observers adjusted a vertical post on a bumpy
ground surface until it appeared to bisect the interval between two
other fixed posts.

 

2. The covariance matrices used in this analysis were adjusted to reflect the
propagation of error between the different phases of the experiment (Bevington
& Robinson, 1992).
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lated ground surface. Out of 144 possible comparisons (6 observers 

 

3

 

12 configurations 

 

3

 

 2 test points), 122 of the judged positions were
significantly different from their actual locations in the depicted scene.
Next, we examined the internal consistency of the observers’ percep-
tions by comparing their settings for the two test points in each config-
uration. Out of 72 possible comparisons (6 observers 

 

3

 

 12
configurations), only 6 of the judged test pairs were significantly dif-
ferent from one another, and they appeared to be randomly distributed
among the different observers and conditions. These results suggest,
therefore, that the intrinsic geometry of the observers’ perceptions had
an internally consistent affine structure.

 

DISCUSSION

 

It is important to recognize when evaluating the present experi-
ment that the “geometry” of perceived space can be construed in two
different ways. One possibility is to consider the extrinsic structure of
observers’ perceptions relative to the physical environment. From an
extrinsic point of view, the structure of perceptual space (

 

c

 

) is deter-
mined by its formal relation to physical space (

 

F

 

), such that 

 

c

 

 

 

5

 

 

 

f

 

(

 

F

 

).
Within this context, the geometry of perceived space is defined by the
particular set of properties that are invariant over the transformation

 

f

 

(

 

F

 

). Although this mapping can sometimes be affine when objects are
viewed with relatively weak perspective (Koenderink & van Doorn,
1991; Koenderink, van Doorn, Kappers, & Todd, in press; Todd &
Bressan, 1990; Todd & Norman, 1991), that is generally not the case

Fig. 3. Two representative patterns of responses for different observers and different configurations. The trapezoidal boundary in each panel
shows the viewing frustum of the display window. The dotted lines show the actual Varignon configuration in physical space, and the solid
curves show the perceived configuration as revealed by the observer’s judgments. The small ellipses mark the mean positions of the observer’s
settings, and the axis lengths of these ellipses in different directions show the standard deviations.

Fig. 4. Mean bisection errors in the horizontal direction and in depth
averaged over all 6 observers. Intrinsic error is the average distance
between the two test points (T1 and T2) in each configuration. Extrin-
sic error is the average distance between a judged test point and its ac-
tual location in physical space.
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for the stereoscopic perception of extended ground surfaces. Note in
Figure 3, for example, that straight lines in the physical environment
can be perceived as curved, thus indicating that the transformation

 

f

 

(

 

F

 

) in this instance is neither affine nor projective.
In contrast to most previous studies on three-dimensional form per-

ception, the present experiment was conducted primarily to investigate
the intrinsic geometry of perceptual space. Intrinsic geometry pro-
vides a global set of constraints by which the judgments of a given ob-
server are formally related to one another, irrespective of their relation
to the external environment. Our long-term goal in this research is to
develop a “toolbox” of procedures for measuring the internal consis-
tency of observers’ judgments about various aspects of geometric struc-
ture. In this case, our focus was on affine structure, and the tool for
measuring its internal consistency was provided by Varignon’s theorem.

Let us now consider how affine spaces are related to other types of
geometric structure that have been proposed for modeling psychologi-
cal phenomena. Affine geometry is based on several basic axioms, in-
cluding the axioms of incidence and Euclid’s parallel postulate. The
axioms of incidence state that two points are connected by a single
line, and that two lines are connected at a single point. The parallel
postulate states that for a given line L and a given point P, there is a
single line through P that is parallel to L. Euclidean geometry is a spe-
cial case of affine geometry in which additional axioms are added.
Thus, to demonstrate that a psychological space is affine does not pre-
clude the possibility that it may also be Euclidean.

If a space is not affine, then it cannot be Euclidean, though it may
still possess some other type of distance metric that is based on an al-
ternative set of assumptions. For example, the distance metrics in el-
liptic and hyperbolic geometries are based on assumptions that
specifically contradict Euclid’s parallel postulate. In elliptic geometry,
there are no lines through P that are parallel to L, and in hyperbolic
geometry, there are an infinity of lines through P that are parallel to L.
Euclidean, elliptic, and hyperbolic geometries are all special cases of a
more general framework called Riemannian geometry, which can de-
scribe the structure of any smooth manifold. Riemann spaces of con-
stant curvature—the so-called homogeneous spaces—are the only
ones that allow congruence. These can be subdivided into three dis-
tinct types based on the sign of the intrinsic curvature. The geometry
of spaces with no intrinsic curvature (e.g., planes or cylinders) is Eu-
clidean; the geometry of spaces with positive curvature (e.g., spheres)
is elliptic; and the geometry of spaces with negative curvature (e.g.,
saddles) is hyperbolic.

It is interesting to note in this regard that there have been numerous
experiments that are purported to show that the intrinsic curvature of
perceptual space is measurably non-Euclidean (e.g., Battro et al.,
1976; Indow, 1991; Koenderink et al., 2000; Norman et al., 1996).
This would seem to contradict the results of the present study, because
Euclidean space is the only Riemannian geometry that is also affine. It
is important to keep in mind, however, that these prior experiments
have all been based on an a priori assumption that perceptual space
has a stable Riemannian distance metric, but there is no independent
evidence to verify that assumption. Indeed, there is strong evidence to
suggest that the curvature of perceptual space varies with position (In-
dow, 1991; Koenderink et al., 2000), and that there are large individual
differences among observers. For example, in one series of experi-
ments by Battro et al. (1976), involving more than 120 observers, the
results obtained for 60% revealed a negative curvature, whereas those
for the remaining 40% revealed a positive curvature.

One possible explanation for these large variations in the metric

 

structure of perceptual space is that the underlying geometry of ob-
servers’ judgments may be dependent on contextual factors (see
Suppes, 1977), such as the presence of visible objects in the environ-
ment or how an observer interprets an experimenter’s instructions. We
believe it is best to be skeptical, however, about the generality of this
phenomenon. Although context may be important for the metric struc-
ture of perceptual space, perhaps there are other more primitive as-
pects of observers’ perceptions that exhibit a higher degree of stability.

Within the hierarchy of possible geometries, affine structure is
more primitive than Euclidean structure, because it is based on a
smaller set of underlying assumptions, and is therefore invariant over
a larger set of possible transformations. It is also possible to devise al-
ternative geometries for which these assumptions are relaxed still fur-
ther. For example, projective geometry is a generalization of affine
geometry without any axioms about parallelism.

Just as it is possible to test the internal consistency of affine judg-
ments using Varignon’s theorem, one can also explore the projective
structure of perceptual space using a theorem first proven by Pappus
of Alexandria around 340 A.D. The Pappus theorem provides a global
constraint on how line segments in different directions must intersect
one another. We have recently performed a new set of experiments to
investigate observers’ collinearity judgments on a visible ground sur-
face, and the results have confirmed that the Pappus theorem is satis-
fied (Koenderink, van Doorn, Kappers, & Todd, 1999).

Although most of our discussion has been focused thus far on the
perceived structure of a visual ground surface, the underlying theoreti-
cal issues we have considered are also relevant to all other psycholog-
ical spaces. In order to employ the concepts of geometry for modeling
psychological phenomena, it is necessary to know what type of geom-
etry is most appropriate. In the present article, we have described a
new technique for testing whether a psychological space has an inter-
nally consistent affine structure, and we have considered the implica-
tions of this test for other geometric properties, including metric
structure. The primary constraint on the use of this technique is that
subjects must be able to make bisection judgments for designated
point pairs within the psychological space to be investigated. This
constraint is easily satisfied for many frequently studied perceptual
properties, such as color, surface orientation, or velocity of motion.
However, bisection judgments may not be possible for some psycho-
logical spaces that are discretely populated (e.g., the space of semantic
categories), or for those that have an unknown dimensionality (e.g.,
the space of possible human faces). Additional techniques will need to
be developed to identify the relevant geometry in those cases.
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