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Abstract

An exocentric pointing task was used to compare the indicated pointing directions under exchange of target and pointer. Such a pair
of pointing directions, together with the pointer and target locations, specifies a unique cubic arc. Such an arc may assume one of two
qualitatively different shapes, namely a ‘‘C-arc’’ (constant sign of curvature) or an ‘‘S-arc’’ (containing a point of inflection between the
endpoints). We show that human observers most often produce S-curves. This is of fundamental importance, since—in case one inter-
prets the curve as an empirically determined ‘‘pregeodesic’’ (‘‘shortest connection’’, or ‘‘straight’’ connection in visual space)—it would
imply that ‘‘visual space’’ in the strict geometrical sense is a non-entity. The experiments were performed in the outside environment,
under normal daylight conditions, for distances ranging from one to over thirty meters. The implications of these data are discussed
and possible ways to extend the restricted notion of ‘‘visual space’’ (e.g., as advocated by Luneburg) such as to allow one to account
for the present results are suggested. Such extensions of the visual space concept include the local adjustment of geometrical structure
in regions adjacent to the fixation direction.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘Visual Space’’ still figures prominently in the literature
of human vision. Yet the initial euphoria detectible in the
literature immediately following Luneburg’s (1947) work
(e.g., Blank’s (1953, 1957, 1961) papers of the fifties and
sixties) has largely dwindled. It has become clear that visual
space cannot be a homogeneous space as Luneburg, and
Blank after him took it for granted (Foley, 1972; Suppes,
1977; Wagner, 1985; Zajaczkowska, 1956). One of the cen-
tral findings that make it difficult to pin down the concept
of ‘‘visual space’’ is that the geometrical properties assessed
through different paradigms are often inconsistent with one
another (Battro, di Pierro Netto, & Rozestraten, 1976; Bat-
tro, Reggini, & Karts, 1978; Indow & Watanabe, 1988;
Indow, 1990, 1991; Koenderink, van Doorn, Kappers, &
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Lappin, 2002b). This perplexing conclusion is perhaps still
somewhat premature because an extensive and homoge-
neous corpus of data cannot be said to exist. However,
the existing data definitely point into that direction. Several
authors have made a strong case for a ‘‘contextual geome-
try’’ (Ehrenstein, 1977; Foley, 1972; Suppes, 1977) or even
for a ‘‘momentary geometry’’ (Schelling, 1956) in which the
geometry is fixation dependent (Haubensak, 1970, see also
Trommershäuser, Maloney, & Landy, 2003) and thus var-
ies from moment to moment. One also finds task depen-
dencies (Ehrenstein, 1977; Foley, 1972; Indow &
Watanabe, 1988; Indow, 1990, 1991; Koenderink et al.,
2002b) that suggest that no single formal geometrical struc-
ture might suffice throughout. If it turns out to be the case
that data relating to directions cannot be predicted from
data relating to positions—and this appears likely—then
there exists no geometry in the conventional sense. If this
is indeed the conclusion, then the expression ‘‘Visual
Space’’ had perhaps better be avoided altogether, at least
if ‘‘space’’ is intended in the conventional sense of ‘‘space
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Fig. 1. Examples of cubic curves passing through two points in specified
directions. The top example is a ‘‘simple arc’’, i.e., a curve without
inflection. The other two examples represent curves that fail to be simple
arcs since there exists an inflection point between the endpoints of the arc.
In the lower example this is indeed obvious, in the center example perhaps
less so. Given the direction at one end there is a limited range of directions
for the other end that lead to a ‘‘simple arc’’. This is the condition we test
in the experiment.
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as a container’’, and certainly if intended in the sense of the
homogeneous spaces (with the implication of a tight pro-
jective structure, e.g., see Coxeter (1961)) as contemplated
by Luneburg (1947) and as even axiomatized by Blank
(1953, 1957, 1958, 1959, 1961). ‘‘Space’’ would have to be
understood not in the mathematical sense, as a fixed frame-
work, but in the sense of physics (Suppes, 1977), where
space is understood as thoroughly relational and deter-
mined by its contents. In physics the discussion concerning
the notions of (Newton’s) ‘‘absolute space’’ versus space as
a nexus of relations became well known through the Leib-
niz–Clarke correspondence between 1715–1716 (Alexan-
der, 1956), in psychology the discussions on the issue
remain in a muddled state.

In this paper we address the problem of the existence of
a unique straight connecting arc for any given pair of dis-
tinct points A and B. (Note on terminology: We use ‘‘arc’’
for any finite segment of a curve. ‘‘Straight’’ means that an
arc is geodesic, a general arc being ‘‘curved’’. Notice that a
‘‘geodesic’’ need not look ‘‘straight’’ to the Euclidian eye,
e.g., think of the meridians of the globe.) We approach this
problem via the analysis of the pair of directions AB and
BA. Such directions can easily be operationalized through
the psychophysical method of ‘‘exocentric pointing’’. The
method was suggested to us through the repeated finding
(Cuijpers, Kappers, & Koenderink, 2001; Doumen, Kap-
pers, & Koenderink, 2005) that such a pair of directions
typically fails to define a simple arc, that is an arc which
curvature does not change sign (i.e., ‘‘C’’-shaped rather
than ‘‘S’’-shaped) (see Fig. 1).

We have set us to the task of collecting a uniform body
of data over a range of distances (greatly extending the
range of existing measurements). These data are checked
for the existence of simple arcs. We check this via a numer-
ical criterion especially developed for this task.
T
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Fig. 2. The geometry used in this experiment. Pointer P and target T

could be placed at either the far or close position. The mirror reversed
configurations were also used. Distances ranged from 1 to 32 m by factors
of two. Distance ratios used were two and four. The angle between the
directions from the observer towards target and pointer always subtended
60�. This figure is not to scale. The angular sizes of the target and the
diameter of the disk of the pointer as well as the length of the pointer’s
arrow (see Fig. 3) as seen from the observer’s position were 1.8�. Distances
from the observer to pointer or target were 1, 2, 4, 8, 16 or 32 meters, in
the ratio of either two or four.
2. Methods

The method (Koenderink & van Doorn, 1998) used is that of ‘‘exo-
centric pointing’’. This is implemented in the following way: The obser-
ver sees a pointing device and a target and is required (e.g., by remote
control) to put the pointer in such an attitude as to apparently be direc-
ted at the target. The resulting attitude of the pointing device is inter-
preted as the observer’s ‘‘perceived direction of the pointer towards
the target’’. (Whether such an interpretation is indeed reasonable is dis-
cussed in our conclusions.) The pointer, target and observer exist in
physical space, and thus the notion of a ‘‘true’’ or ‘‘veridical’’ direction
from the pointer towards the target is well defined. Experience indicates
that the (in the above sense operationally defined) ‘‘perceived direction’’
and the ‘‘veridical direction’’ typically disagree. The deviation depends
in a systematic fashion on the locations of pointer, target and observer.
Of course the method also generates random deviations and components
of the deviation might be due to various factors as the structure of the
environment, design of pointer and target, viewing conditions, and so
forth.

In the present experiment, we performed the settings in the natural,
outdoors environment, a lawn in front of our laboratory of about fifty
by fifty meters roughly squarish area. The lawn was bounded by build-
ings and rows of trees but was itself virtually featureless (just well kept
grass). The observer’s eyes, centers of target and pointer were put at the
same height of 1.5 m above the ground. The observer was placed upon
an adjustable chair in order to achieve this, the pointer and target were
placed on top of cylindrical poles (see Fig. 3). The observer had a free
view of the environment and thus could see the points where the poles
supporting target and pointer reached the ground. Conceptually target,
pointer and egocenter are located in a single plane, the observer’s hori-
zon, that is the horizontal plane at eye height. Thus the geometrical
configuration involves a triangle with the egocenter, pointer and target
as vertices (see Fig. 2).



Fig. 3. At the center an observer C, holding the transmitter E for radio-control, flanked by pointers A through B and targets D through F. Notice the
range of sizes. The largest pointer (A) and target (F) are 32 times the size of the smallest pointer (B) and target (D) which are barely visible in this
photograph. Pointers and targets, when mounted, are at the same height as the observer’s eyes (A, F and C).
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The design of the target was very simple. We used matte white spheres
placed on black, cylindrical poles of much smaller diameters than those of
the spheres. We kept the angular size fixed at 1.8�, thus the targets varied a
lot in size, the largest (at 32 m) being 1 m in diameter, the smallest (at 1 m)
being only about 3 cm in diameter.

There is much freedom in the design of pointers. We aimed at a design
that allows one to obtain a vivid impression of spatial attitude in any pose
(thus a bad design from this perspective would be a thin cylindrical rod for
instance). We used a white, thick, circular disc pierced with a bright red-
dish-orange, thick cylindrical, pointed arrow sticking out equally at either
side of the disk. The diameter of the disk subtended the same visual angle
as the target at the corresponding target positions. We placed the pointers
on black cylindrical poles, the same diameters as the corresponding poles
supporting the targets. The pointers were placed on a rotatable platform
that could be radio-controlled by the observer. Only rotations about the
vertical were considered.

Thus we achieve identical visual projections for geometrically similar
configurations of various sizes. Of course that is not at all the visual
impression (Gilinsky, 1951). The far target looks huge and the near target
tiny even though their angular subtends are identical.

Before the actual experiment we performed the necessary geodesy and
calibrations. This was done via standard surveying instruments, most
notably a theodolite and a 50 m measuring tape. Locations were marked
on the lawn in such a way that the observers remained unaware of them.
In the course of an experiment targets and pointers were placed at these
marked locations. This involved work of four people, one of them being
in charge of the operation.

The interior angle at the egocenter was fixed at 60�, the two sides abut-
ting at the egocenter had lengths in the ratio two or four. The distances
used were 1, 2, 4, 8, 16 and 32 m, resulting in the pairs 1/2, 2/4, 4/8,
8/16, 16/32 and 1/4, 2/8, 4/16, 8/32. Any pair was presented in two mirror
symmetric configurations, thus 4/8 means either ‘‘4 on the left, 8 on the
right’’ or ‘‘8 on the left, 4 on the right’’. For each configuration we have
two target-pointer combinations. Apart from these constraints we pre-
sented each possible configuration three times. Thus a full experiment
involves ð5þ 4Þ � 2� 2� 3 ¼ 108 settings. The sequence was only semi-
random because we had to minimize the time involved in displacing targets
and pointers. This time was indeed considerable given the distances
involved and the sizes (and thus resulting weights) of the targets and point-
ers. A full experiment involved about 2 1

2
hs of work, of which only a frac-

tion was spent in the observer doing the actual settings. As the
configuration was being changed the observer looked the opposite direc-
tion, thus the observer was only confronted with the actual configuration.
On each new occasion the initial attitude of the pointer was randomized.
A total of seven paid persons participated in the experiments. They
were of either sex and of various ages. All were tested for binocular ste-
reopsis and trichromacy. During the conduction of the experiments it
was evident that two persons could not be regarded as serious observers.
A ‘‘serious’’ observer in this type of experiment should (in our view) at
least:

— look back and forth between target and pointer a few times before even
starting to do a setting;

— adjust the pointer back and forth a few times before being satisfied
with a setting.

The discarded observers failed on one or both of these counts and their
data were not taken into account.
3. Results

A typical result is shown in Fig. 4. These are measure-
ments for all observers in which an arc was sought between
two points that were 60� apart in the visual field and at ego-
centric distances differing by a factor of two. The distances
used were 2/4 and 4/2 m. The figures represent averages
over mirror symmetric configurations and three repeats.
The observer directed a pointer from the vertex at shorter
distance so as to apparently point to a target at the larger
distance and vice versa. The average results of both poin-
tings are shown in the figure. It is immediately obvious that
these pointings represent directions that fail to line up with
the straight line connecting the two vertices. There appears
to be a difference between the cases where the observer
pointed towards himself (from the more remote (P) to the
more near (T) vertex in Fig. 2 right; henceforth referred
to as ‘‘to-pointings’’) and the cases where the observer
pointed away from himself (from the more near (P) to
the more remote (T) vertex in Fig. 2 left; henceforth
referred to as ‘‘fro-pointings’’) in that in the ‘‘to-pointings’’
the observer points too far towards himself and in the ‘‘fro-
pointings’’ the observer mostly points too far away from
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Fig. 4. Examples of exocentric pointing results. These are the averages for the conditions 2/4 and 4/2 m for all five observers.
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himself. This is indeed the overall pattern we have encoun-
tered over and over again in the past.

A similar general pattern is found for all observers,
though looking in detail at the deviations one detects
marked individual differences. There does not seem to
appear a marked distance dependence. The variance at
the nearest locations is somewhat in excess of that at far-
ther locations, an effect that is indeed to be expected
because the calibration and methodological random errors
decrease with increasing distance. Thus there is no reason
to assume that the variance in the observer’s settings is a
function of distance. The standard error in the average set-
tings as assessed over the repeated settings and mirror sym-
metric configurations (total of six instances) is between 1.9�
and 2.8�. In almost all instances the deviation from the
veridical direction is significant at the 5% level (two sided
test of the mean with null hypothesis 0, based on a normal
distribution).

4. Analysis

The aim of the experiment is to check for possible viola-
tions of the conditions that pertain to the existence of sim-
ple arc connections between two points. Such simple arcs
would qualify as candidates for pregeodesics and their
non-existence would rule out large classes of geometries
as applying to visual space. In order to enable this check
we seek for a representation of the data that abstracts from
those individual differences that are irrelevant to the issue.
When the transformed data are in a format that immedi-
ately reflects the relevant properties it might be expected
to appear rather more uniform.

The settings of the observer define two directions, one at
each endpoint of the segment defined by the near and far
target. For the sake of analysis we consider these directions
to be tangent to a smooth curve connecting these points.
Given two points and two tangent directions, there exists
a unique cubic curve that passes through the two points
with a tangent direction equal to the given directions at
those points. Such a cubic curve is arguably the ‘‘simplest’’
candidate as any smooth, analytic curve is well approxi-
mated by it, especially if (as is indeed the case) the curve
is nearly straight. Such curves are characterized by curva-
ture and ‘‘spirality’’, where the latter indicates a gradual
progression of curvature along the curve. These two num-
bers are ‘‘differential invariants’’ in that they specify the
intrinsic shape of the curve, independent of its overall ori-
entation or location. A ‘‘simple arc’’ connecting two points
is a curve that is largely characterized by its (shallow) cur-
vature. Simple arcs have no points of inflection. Whether
there is an inflection depends on the direction of the curve
at the end points. Our analysis shows that the ratio of the
curvature and the spirality yields a number that allows one
to decide on whether the two directions indicated by the
observer define a simple arc or not (see Appendix A). This
is going to be the criterion used for the analysis.

In the case the data would be like a straight line segment
one would say that the settings of the observer were ‘‘verid-
ical’’. This is compatible with a Euclidian structure of
visual space. In general we find non-veridical results
though. Consider the cases illustrated in Fig. 1. From top
to bottom the first instance illustrates a ‘‘simple arc’’. Such
a result would be expected in any reasonable model of the
Luneburg type. The other instances illustrate cases that fail
to be simple arcs. Such cases might be encountered as pre-
geodesic arcs in inhomogeneous (Riemannian) spaces, but
only incidentally, they would not be generically expected.
We will consider these cases as violating the assumption
of a proper ‘‘Visual Space’’.

We find that in the large majority of cases the data rule
out the simple arc hypothesis. Almost all arcs (91%) turn
out to be of the S-type rather than the C-type (see Table
1). Either the method is not fit to reveal pregeodesics of
visual space (see Section 5) or such pregeodesics—and thus
visual space itself—are non-entities.

For the distance ratio of four the results are qualitatively
similar to those for the distance ratio of two. Notice that in
the extreme cases of distance ratio one and very large dis-
tance ratios one does not expect to see non-simple arcs at
all, in the former case because of left–right symmetry, in
the latter case because all pointings have to be roughly in
the radial direction. S-shape curves—if they occur at
all—are only to be expected for moderate distance ratios
like two. We included the larger (thus less interesting) dis-
tance ratio partly to provide the observers with a variety of
tasks in order to prevent them to memorize specific config-



Table 1
For the egocentric distance ratio in the top row and all observers marked in the leftmost column the cases where the data were incompatible with the
existence of a simple arc are marked �, the simple arcs marked �

1/2 2/4 4/8 8/16 16/32 1/4 2/8 4/16 8/32

FB � � � � � � � � �
HH � � � � � � � � �
JW � � � � � � � � �
PO � � � � � � � � �
TV � � � � � � � � �
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urations. We base our conclusions (as originally planned)
on the data for the distance ratio of two. However, it is
encouraging to see that the data for ratio four reveal the
same trends.

5. Conclusions

The hypothesis we set out to test in this experiment is
that the pregeodesics as indicated by exocentric pointing
generally fail to be simple arcs. This hypothesis was sug-
gested to us by a wealth of data gathered in both reduced
and natural settings, though all in ‘‘near space’’ (less than
five meters exocentric distance) because gathered in indoor
environments. Since experiments were done binocularly,
this makes it virtually impossible to extrapolate from the
indoor environment to large outdoor spaces. In the latter
case monocular cues are likely to dominate in many cases.

The present setting was a natural outdoors environment
including exocentric distances up to 32 m. The outcome of
the analysis of the data is non-ambiguous. The results from
the previous experiments are fully confirmed. This is
remarkable because many of the previous data were
obtained under rather reduced conditions, indeed closely
resembling the settings of the early experiments designed
to test Luneburg’s theory. Remarkably, an outdoors set-
ting with anything in the environment in clear view yields
the same data as a setting in reduced laboratory conditions.
Moreover, and unexpectedly, the data at near distances
(few meters) are not qualitatively different from the data
at much more remote distances (tens of meters).

The latter fact is perhaps surprising because binocular
stereopsis is certainly important at the near, but hardly at
the far distances. The result is also unexpected in view of
our earlier results (Koenderink, van Doorn, & Lappin,
2000) with pointings in the frontoparallel. In retrospect, a
reason might be that in the latter experiment the targets
were scaled in size with their distance from the observer,
whereas the pointing device (for technical reasons) was
not. In the present experiment we took pains (see Fig. 3)
to scale both. That this may well be an important point will
be discussed below in the context of some hypothetical
explanations for the present finding.

The main fact established in the present experiments is
that exocentric pointing results generically violate the
assumption of the existence of a simple geodesic arc
between any two points. This is a brute fact that is of con-
siderable conceptual interest because it easily leads one to
conclude that it is generically not the case that a unique
simple arc connects any two points and thus that one can-
not define pregeodesics.

If there is no unique connecting geodesic arc many
geometries are automatically ruled out as candidates for
the structure of visual space, Luneburg’s homogeneous
spaces being cases in point. A familiar example of a space
lacking unique to-and-fro connections is that of a typical
European inner city from the perspective of a car driver
(Krause, 1987). Here one way traffic regulations commonly
make routes from A to B quite different from those from B
to A. Clearly such a situation is not naturally modeled by
the Euclidian plane, quite unlike the case of a Utah salt flat.
It is almost inconceivable that (especially empty) ‘‘visual
space’’ could be anything like that though.

The ‘‘non-desarguesian planes’’ that have been con-
structed in mathematics might be thought to yield sufficient
generalization to explain our present results. Well known
examples are the Hilbert, Moulton and Veblen-Wedder-
burn (or Hughes) planes. In such models one starts with
a desarguesian plane and redistributes the points of the col-
linear sets according to certain rules. Thus one obtains geo-
desics that look (to the Euclidian eye) as ‘‘broken’’ straight
lines. This will not work though, because such planes still
satisfy the basic axioms of a projective structure, notably
any two distinct points are incident with a unique line. This
effectively rules out such models as descriptive of our find-
ings. Moreover, we do not expect the desarguesian prop-
erty to fail empirically, since Pappus’ Theorem fails in
the non-desarguesian planes whereas we have shown that
the Pappus property holds for visual space (Koenderink,
van Doorn, Kappers, & Todd, 2002a). That the desargue-
sian structure holds in visual space is also suggested by the
experiments of Foley (1964), though Foley’s experiment
bears more directly on the Veblen-Young (also known as
Pasch) axiom (on the existence of planes in 3D-space) than
the Deseargues configuration as such.

Is there a way out, that is to say, can ‘‘Visual Space’’ be
saved (at least for the moment)? One would have to drop
the notion of ‘‘space as a container’’. The space would have
to be ‘‘contextual’’, i.e., dependent of what is in the space,
or ‘‘momentary’’, i.e, dependent on where the observer is
fixating in the space, or task dependent, or perhaps all of
these. Such ‘‘spaces’’—in the sense as used by physicists,
rather than the formal geometries contemplated by mathe-
maticians—are certainly conceivable. Whether one chooses
to keep the epithet ‘‘space’’ in such cases is a matter of
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taste. In physics one uses ‘‘space’’ for an entity that is
categorically different from a formal (mathematical)
geometry.

One way to look at the problem is to assume that ‘‘visual
space’’ might depend upon the momentary viewing geome-
try. Of course such an assumption comes dangerously close
to claiming that visual space is a non-entity, that certainly
applies if ‘‘space’’ is used in the formal sense. However,
such an assumption allows one to devise models of a geo-
metrical nature that have predictive power, so the assump-
tion is not altogether damaging. One would generalize
the concept of visual space, rather than discarding it
altogether.

The notion that ‘‘visual space’’ might depend upon the
momentary viewing geometry is perhaps not all that sur-
prising given the well documented non-uniformity of the
visual field, the anisotropic structure of the oculomotor
system, and the bilateral symmetry of head and body.
Indeed, an isotropic and homogeneous visual space can
only be conceived as being constructed over time, including
variations over various viewing directions and head and
body postures, evidently involving memory mechanisms.
That space might thus be ‘‘momentary’’ has been suggested
by a number of authors (Haubensak, 1970; Schelling, 1956;
Suppes, 1977 see also Trommershäuser et al., 2003).

If we assume a dependence on the fixation direction,
results would become dependent on whether the observer
tends to favor the pointer or the target when looking
towards or away from the pointer during the setting. From
our informal observations it seems to be the case that
observers look at the pointer (though they alternate
between pointer and target for some period) when finaliz-
ing their setting. If so, then various models would predict
asymmetries between far-to-near and near-to-far pointing,
and such asymmetries might well account for the present
data.

All such models somehow ‘‘deform’’ visual space in
accordance with the present fixation point. The extremes
are a purely radial and a purely angular distortion (Rich-
ards, 1968, 1971). In the former case one assumes the dis-
tance–depth relation to depend upon the angular distance
from the fixation direction. By shrewd choice of such a
function it is indeed possible to ‘‘predict’’ the data. In the
latter case one assumes the distance metric in the visual
field to be a function of the angular distance from the fix-
ation direction. For instance, one may assume the visual
field to expand about the fixation direction, which expan-
sion would have to be compensated for by a contraction
elsewhere. Such assumptions also lead to fixation depen-
dent pointings. Of course one may consider any type of
combination of such mechanisms.

The crux of such models is the assumption that the
structure of visual space is not fixed, but depends upon
the point that happens to be fixated. This destroys the pos-
sibility of a fixed geometry or ‘‘space as a container’’. It
results in a situation in which the arcs AB and BA appear
to be different, of course this implies that the (unique) arc
AB does not exist. Thus the consequences of these simple
assumptions imply that ‘‘visual space’’ cannot be described
by any (even inhomogeneous) Riemannian structure.

Thus the upshot of this work is that the pregeodesics as
indicated by exocentric pointing generally fail to be simple
arcs. The conclusion from this is that the notion of a
‘‘visual space’’ (in the sense implied by Luneburg say) has
to be discarded or suitably amended. In any case this indi-
cates that different methods to approach the problem of
‘‘visual space’’ are needed (Ehrenstein, 1977). Methods that
address structural relations may prove to be more revealing
and stable than absolute judgments like in the present
experiment. For instance in the experiment of Koenderink
et al. (2002a) we find evidence for a coherent projective
structure (the Pappus property implicating the desargue-
sian property) and the experiment by Todd, Oomes,
Koenderink, and Kappers (2001) has provided evidence
for a coherent affine structure. Such puzzling task depen-
dencies deserve close attention.

Appendix A. A measure of confidence for the existence of a

‘‘straight connection’’ between two points

A ‘‘pregeodesic’’ is a curve such that all tangents at the
curve are parallel in the sense of the geometry. Thus the
intuition is that the pregeodesics are ‘‘straight’’. Thus the
meridians of the globe are pregeodesics whereas latitude
circles (generically) not. A ‘‘pregeodesic’’ differs from a
‘‘geodesic’’ in that it is a projective, rather than a metrical
property. ‘‘Geodesics’’ are the arcs of ‘‘shortest distance’’,
they conceptually carry a distance scale (technically: ‘‘Are
parameterized by arclength’’), whereas the pregeodesics
are defined by mere ‘‘straightness’’. The meridians of the
globe are ‘‘straight’’ because they do not deviate either
way and thus divide the globe into two equal halves, which
is where the term ‘‘geodesic’’ derives from. In many geo-
metrical contexts one does not distinguish between the pro-
jective (‘‘straightness’’) and metrical (‘‘shortest distance’’)
origins and speaks simply of ‘‘geodesics’’. Such sloppiness
will not do in the case of visual space. Here we are singu-
larly concerned with straightness.

A segment of a pregeodesic in some parameter space will
typically be curved. Examples include the images of the
meridians in maps of the globe. Points of inflection may
occur, but only at isolated points.

A pregeodesic of visual space (‘‘apparent straight line’’)
mapped in physical space is likewise expected to be curved,
with perhaps occasional points of inflection. In experiments
it is these images in physical space of the pregeodesics of
visual space that are determined by the experiments. One
expects shallow curvatures. Typical theories (e.g., Lune-
burg’s) indeed typically predict curvatures but no inflection
points.

In the present experiments pregeodesics are implied by
two measurements of the direction of the tangent at differ-
ent locations. We need a measure of ‘‘how reasonable’’ the
estimates are as candidates for pregeodesics. We use the
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tendency to inflect for this. The measurements are per-
formed at many different distances. We seek a measure that
is approximately invariant with respect to such distance
variations.

A simple way to achieve this is the following. Consider a
Cartesian coordinate system, the X-coordinate from left to
right in the frontoparallel direction, the Y-coordinate in
the forward direction. Let the pointer and target be located
at fx1; y1g and fx2; y2g. As the observer points from fx1; y1g
to fx2; y2g we record a direction u1, as the observer points
the other way a direction u2 (say). We look for a curve that
passes through fx1; y1g and fx2; y2g and has a slope
dy=dxjxi

¼ tan uiði ¼ 1; 2Þat these locations. The cubic curve

yðxÞ ¼ c0 þ c1xþ 1

2
c2x2 þ 1

6
c3x3;

is a good candidate because the coefficients fc0; c1; c2; c3g
are uniquely determined by the boundary conditions,
whereas it should be an ample approximation of virtually
any smooth, shallow curve. The curve has a point of inflec-
tion at xI ¼ �c2=c3 (one easily checks that d2y=dx2jxI

¼ 0).
In terms of the boundary conditions you have

xI

¼
ðx1� x2Þ dy

dx j2ð2x1þx2Þþ dy
dx j1ðx1þ2x2Þ

� �
�3ðx1þ x2Þðy1� y2Þ

3 dy
dx j1þ

dy
dx j2

� �
ðx1� x2Þ�2ðy1� y2Þ

� � :

Thus the condition for the existence of a simple curve is

ðxI 6 x1Þ _ ðxI P x2Þ;

for if this condition is FALSE the inflexion point lies on the
segment x1 x2 and the curve is not simple (a ‘‘C-curve’’), but
inflected (an ‘‘S-curve’’). Algebraic simplification yields an
especially simple form for this condition:

� s1

2
< s2 < �2s1;

where

s0 ¼
y2 � y1

x2 � x1

� �
;

denotes the slope of the straight line segment connecting
the endpoints and

s1;2 ¼
dy
dx
j1;2 �

y2 � y1

x2 � x1

� �
;

denote the slopes of the pointing directions, corrected for
the slope of this straight connection.

Thus the final condition is simply that the ratio of slopes
at either end should not exceed a factor of two. This is illus-
trated by the examples in Fig. 1. In the top figure the ratio
is one (the minus sign in the condition means that you flip
the arrow at the righthand side by 180�) and you have a
perfect (that is symmetrical) ‘‘simple arc’’. In the center fig-
ure the slope on the righthand side is less than a factor of
one-half. The condition is violated and you lose the simple
arc and obtain an inflect S-curve. If you consider the left–
right reversal of this figure you have the case of a factor
exceeding two, which again violates the condition and leads
to an S-shaped curve. In the lower figure the violation is
extreme, this case also violates the condition. It is perhaps
the most intuitive example of such a violation.

The condition obviously works for any size of the
configuration.
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