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Three experiments are reported that examined the abilities of human observers to discriminate textures with identical
distributions of orientation and spatial frequency. In Experiment 1, the stimuli consisted of low-pass filtered noise that was
uniformly distributed and spatially isotropic. Observers were able to discriminate textures with identical image statistics
when their frequencies were 1 cpd or less, but performance dropped off sharply for textures with higher frequencies. In
Experiment 2, a novel procedure was employed with which it is possible to increase the high-frequency energy in the
amplitude spectrum of a texture, while preserving the macroscopic alignments of its phase spectrum. The results reveal that
this has little effect on performance, thus indicating that it is not spatial frequency per se that limits the abilities of observers
to discriminate macroscopic texture patterns. When the phase spectra of these textures were randomly scrambled in
Experiment 3, the frequency thresholds for discriminating textures reverted back to 1 cpd as was obtained in Experiment 1.
These results provide strong evidence that human observers make use of two distinct procedures for discriminating patches
of texture: One based on image statistics that is possible for all textures; and another based on macroscopic phase
alignments that define features that are larger than 1-.
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Introduction

Statistical approaches to visual perception have become
increasingly popular over the past two decades, but they
have proven to be particularly useful for the problem of
texture discrimination. The basic idea of this approach is
quite simple. The spatial structure at each image location
is encoded by a bank of filters that are tuned to a variety of
orientations and spatial scalesVthough filters sensitive to
other higher order features (e.g., textons) may also be
included. In order to compare two patches of texture,
histograms are computed within each patch to represent the
relative activations of each filter type. Based on this
statistical analysis, two texture patches should be percep-
tually distinct whenever the difference between their
respective feature histograms exceeds some critical thresh-
old (e.g., Bergen & Adelson, 1988; Chubb & Landy, 1991).
Within this context, it is useful to keep in mind that

surfaces in the natural environment have structures at a
continuum of scales, which can be partitioned into three
perceptually distinct regimes (see Koenderink & van
Doorn, 1998, 1996). One range of scales that is outside
the limits of visual sensitivity constitutes a surface’s
microstructure. Although these microscopic variations
cannot be seen by the naked eye, they can be perceived
indirectly by the pattern of surface reflectance. For
example, this is what distinguishes matte versus shiny
surfaces. A second range of scales that is referred to as

mesostructure involves surface variations that are large
enough to be visible but too small for the texture elements
to be perceptually individuated. Examples in this regime
include patterns of stucco or the tufting of carpets. Finally,
a third range of scales called macrostructure include
variations on a surface that are sufficiently large to have
perceptually distinct shapes, such as the patterns of
reflectance changes on a Holstein cow.
Let us now consider how this partitioning of scales is

relevant to models of texture discrimination. The lower
panels of Figure 1 show two images that were generated
with a 500 � 500 grid of pixels that were randomly
colored black or white. From a brief examination of these
images, it is clear that they are perceptually indistinguish-
able. Note that this is precisely what would be expected
from a statistically based model of texture discrimination.
Even though the correlation between corresponding pixels
in these images is close to zero, the structure of their
respective feature histograms is nearly identical. The
upper panels of Figure 1 show a similar pair of images
that were generated with a much coarser 4 � 4 grid of
pixels that were randomly colored black or white in equal
proportions. Models of texture discrimination based on
first-order feature histograms would again predict that the
two patterns should be perceptually identical. However, it
is immediately obvious when examining these images that
they are perceptually quite different.
These demonstrations suggest that statistical models of

texture discrimination may provide a good account of the
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ability of human observers to distinguish mesostructures,
but that they are not so good at explaining observers’
perceptions of macrostructures. It is interesting to note
that within the Fourier domain, the distribution of
orientation and spatial frequency used in most models of
texture discrimination are represented entirely within the
amplitude spectrum. However, it has long been known
that most of the visually relevant information for
identifying macroscopic shapes is contained within the
phase spectrum. The classic procedure for demonstrating
the importance of global phase is to combine the
amplitude spectrum of one image with the phase spectrum
of another (Huang, Burnett, &Deczky, 1975; Morgan, Ross,
& Hayes, 1991; Oppenheim & Lim, 1981; Piotrowski &
Campbell, 1982; Ramachandran & Srinivasan, 1961).
When observers examine the resulting combination, it
invariably appears more similar to the image that
contributed the phase spectrum than the one that con-
tributed the amplitude spectrum (e.g., see Figure 2). What
this suggests is that macroscopic shapes are not distin-
guished by the relative activations of different filter types
but rather by the pattern of alignments of the filter
activations across different spatial locations. Thus, any

model that can successfully explain the perceptual dis-
tinction between macroscopic textures must somehow take
into account the relative alignments of local features in
different regions.
It is important to recognize within this context that the

pattern of alignments described above does not refer to
Fourier phase congruence within local regions of an
image. This has been proposed as a possible source of
information for the detection of local edges (e.g., Kovesi,
1999; Morrone & Burr, 1988), though more recent
psychophysical evidence suggests that this is not the
mechanism by which the human visual system localizes
edges (see Georgeson, May, Freeman, & Hesse, 2007;
Hesse & Georgeson, 2005). In order to identify globally
coherent shapes, the encoding of phase cannot be a purely
local process. Rather, it must somehow represent how the
orientations of features in one region of an image are
related to the orientations of other features that may be
spatially quite distant.
The present article describes three experiments that

were designed to explore these issues in greater detail. In
all three studies, observers were asked to make same–
different judgments for pairs of random noise images that

Figure 1. Two extreme scales of texture. The upper panels, consisting of 4 � 4 squares colored randomly black or white, are easily
discriminable while the lower panels at 500 � 500 are far more difficult to discriminate.

Journal of Vision (2010) 10(6):6, 1–14 Phillips & Todd 2



were generated from the same underlying distribution. In
Experiment 1, we use low-pass filtered random noise in an
effort to determine the boundary between mesostructure
and macrostructure by measuring the threshold cutoff
frequency for which observers can no longer discriminate
different noise patterns. In Experiment 2, we attempt to
demonstrate that it is not low spatial frequency per se that
allows observers to discriminate these patterns, but rather
it is the patterns of phase alignments in their respective
macroscopic features. This is achieved by increasing the
spatial frequency of our low-frequency stimuli from
Experiment 1 in a manner that preserves their macro-
scopic phase alignments. Finally, in Experiment 3 we test
whether performance with these latter stimuli would be
impaired if their phase spectra were randomly scrambled.

Experiment 1

We first establish baseline performance using unstruc-
tured noise patterns of varying spatial frequency. This will
establish a limit for the comparison task that we can
compare against performance in structured and partially
structured conditions.

Methods
Subjects

The observers were eight adults, all with normal or
corrected-to-normal vision. All were members of the
laboratories conducting the research and aware of the
purpose and scope of the experiments.

Apparatus

The apparatus consisted of an Apple Power Mac
computer with an ATI 1950 series graphics card
(Advanced Micro Devices), driving an Apple 30W Cinema
HD LCD display, calibrated to a luminance of 150 cd/m2,
running at a spatial resolution of 2560 � 1600 pixels with
8-bit components.1 Subjects were seated at a viewing
distance of 57 cm (1- = 1 cm) from the LCD monitor. The
experiment control software was written using an in-
house, Python-based, experiment packageVeelpy. A chin
rest was used to maintain a constant viewing distance. All
observations were made monocularly with dim back-
ground lighting. Responses were recorded using an X-
Keys programmable USB button box (PI Engineering).

Stimuli

The stimuli consisted of patches of low-pass filtered,
spatially isotropic, uniformly distributed noise. The filters
ranged from 0.14 to 12.7 cycles/deg in spatial frequency
over 14 steps, spaced at intervals scaled by 1/

ffiffiffi

2
p

. Each
stimulus was histogram equalized after filtering to normal-
ize the mean luminance across different stimuli. A sample
set of stimuli is shown in Figure 3. For a detailed
description of the stimulus generation process, see
Appendix A.

Procedure

On a given trial, the stimulus presentation proceeded as
follows: First, a black screen with a randomly positioned
red fixation cross was displayed for 1.0 s. After fixation,
the stimulus patch was displayed at a second random
location, centered within T5- of the initial fixation. The
patch remained on screen for 0.5 s. After which, a second
random fixation and stimulus appeared, again for 1.0 s and
0.5 s, respectively. This second stimulus was either the
same as in the first interval, or a patch of different “base”
noise that was filtered at the same spatial frequency. Thus,
it appeared phenomenally similar but did not always have
the same features in the same configurations. This was
followed by a black screen until the subject responded
“same” or “different” via the button box.
The fixations and random stimulus placement served to

prevent the subject from concentrating their attention on
one particular feature or location on the stimulus patch.
Furthermore, in order to prevent the use of features near

Figure 2. This image was constructed by combining the amplitude
spectrum of a black circle on a white background with the phase
spectrum of a black triangle on a white background and subjecting
the combination to the inverse Fourier transform. It is clear that
the resulting image is dominated by the figure whose phase
information is present.
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the edges and corners of the patch for matching,2 the noise
patch was randomly shifted within its own 0.25- window.
Each subject participated in two blocks of 24 repetitions
of each of the 14 stimulus levels, for a total of 672 trials/
subject (Figure 4).

Results and discussion

Results for Experiment 1 are shown in Figure 5. Fitting
these data to a Log-Weibull distribution determined that
the 60%, 75%, and 90% thresholds for these stimuli were
located at 1, 2, and 3 cycles/deg, respectively. This
establishes a transition region from macro- to mesostruc-
ture in the texture images. When the noise varies at
approximately 1 cpd or less, coherent structures emerge
that the subject can take advantage of for discrimination. For
example, note in the upper right panel of Figure 3 that there
are two vertically aligned black blobs that perceptually

pop out from the overall pattern, and in the upper left
panel, there is a diagonally oriented black blob that is
surrounded on the left by diagonally oriented white blobs.
All of the observers reported during debriefing that they
used this type of macroscopic feature whenever they were
available in order to determine whether or not two texture
patches were the same. However, at approximately 3 cpd,
the blobs in the texture become too small to discern any
specific configural alignments among them, and as shown
in Figure 5, the discrimination of these higher frequency
textures is much more difficult.

Experiment 2

The anecdotal reports from the subjects in Experiment 1
confirmed that they use configural alignments of features

Figure 3. Sample stimulus set from Experiment 1. Each stimulus consists of a patch of low-pass filtered uniformly distributed noise. Filters
ranged from 0.14 to 12.7 cycles/deg, spaced at intervals scaled by 1/

ffiffiffi

2
p

.
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as the primary cue for discriminating textures with
equivalent histograms, and the psychophysical results
reveal that this strategy breaks down for textures with
frequencies above 3 cpd, in which it is difficult to identify
individual feature elements. Having established a boun-
dary between the macro- and mesostructures, we will now
introduce a new manipulation that increases the high-
frequency energy in the amplitude spectrum of a texture,
while preserving the macroscopic alignments of its phase
spectrum. Our goal is to demonstrate that it is the phase
spectrum that defines macroscopic structure of a texture,
rather than its amplitude spectrum.

Methods
Subjects

The observers were seven adults, all with normal or
corrected-to-normal vision. All were members of the
laboratories conducting the research and aware of the
purpose and scope of the experiments.

Apparatus

The apparatus was the same as in Experiment 1.

Stimuli

Similar to Experiment 1, our stimuli started with
patches of low-pass filtered, spatially isotropic, uniformly
distributed noise. Having established the baseline per-
formance thresholds in Experiment 1, we narrow the basic

Figure 4. The task was a “same–different” paradigm with the two stimuli offset spatially and temporally. The trial starts with a 1-s
presentation of randomly placed fixation cross, followed by a randomly positioned stimulus visible for 500 ms. This sequence is repeated
a second time with a second stimulusVsame or different from the first. After which the subject responded “same” or “different”.

Figure 5. Results from Experiment 1. Error bars are TÂ. Fitting
these results to a Log-Weibull distribution shows that the 60%,
75%, and 90% thresholds for these stimuli were located at 1, 2,
and 3 cycles/deg, respectively, establishing a transition from
coherent macrostructure to the more ambiguous mesostructure.
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frequencies to range on the interval 1 to 3 cycles/deg over

five steps, spaced at intervals scaled by 1/
ffiffiffi

2
p

. We refer to
these as the “carrier” frequencies. The resulting images
are subjected to a further transformation that remaps its
grayscale ramp through 3 to 9 sinusoidal modulations.
This creates linear structures at varying scales. This
process can be seen in Figure 6. In all, five carrier
frequencies were used and each was subjected to three
levels of linear structuring, for a total of fifteen spatial
frequency conditions. For a detailed description of the
stimulus generation process, see Appendix A.
A sample set of stimuli is shown in Figure 7. In each

row, the carrier frequency increases, right to left, and the
frequency of the superimposed linear structure increases
from top to bottom.

Procedure

The procedure was the same as Experiment 1. A
temporally separated pair of images was presented and
the subject indicated if they were “same” or “different”.
Each subject participated in two blocks of 24 repetitions
of each of the 15 stimulus levels, for a total of 720 trials/
subject.

Results and discussion

The results for Experiment 2 are shown in Figure 8. The
left panel of this figure shows the thresholds obtained for
the individual carrier � modulation combinations. Note
that there is relatively little decline with increasing
frequency in comparison to Experiment 1. In other words,
the increase of high-frequency energy caused by the
sinusoidal modulations of the grayscale had relatively
little effect on observers’ performance. The right panel of
Figure 8 shows performance only as a function of the
carrier frequency. Note that when we plot the data in a

way that ignores the frequencies introduced by the
sinusoidal modulations, the results are quite similar to
Experiment 1. That is to say, the increase of high-
frequency energy caused by the carrier textures had a
large effect on observers’ performance. These findings
show clearly that it is not spatial frequency per se that
limits the abilities of observers to discriminate macro-
scopic texture patterns. The important characteristic of our
sinusoidal modulations of the grayscale is that they
increase the high-frequency energy in the amplitude
spectrum, while preserving the phase alignments of the
carrier texture in the phase spectrum. This suggests that
the perceptually relevant information for discriminating
these textures is contained primarily in their phase spectra.
If this hypothesis is correct, then we should be able to
attenuate the performance for textures with sinusoidal
modulations by randomly scrambling their phase spectra.
Experiment 3 was designed to test this prediction.

Experiment 3

Methods
Subjects

The observers were four adults, all with normal or
corrected-to-normal vision. All were members of the
laboratories conducting the research and aware of the
purpose and scope of the experiments.

Apparatus

The apparatus was the same as in Experiments 1 and 2.

Stimuli

The stimuli consisted of patches of low-pass filtered,
spatially isotropic, uniformly distributed noise, subjected

Figure 6. An example of the introduction of high-frequency components to the carrier stimuli. On the left is a low-pass filtered stimulus as
used in Experiment 1 and on the right is a stimulus that has had high-frequency sinusoids imposed to provide linear structure.
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to modulation as in Experiment 2. Based on the results of
Experiment 2, three levels of overall spatial frequency (e.g.,
carrier � modulation) were selected to cover the transition
range from meso- to macrostructure as established in
Experiment 1V2, 4, and 6 cycles/deg. This was accom-
plished by using three carrier frequencies of 0.33, 0.66,

and 1.0 cycles/deg, respectively, and modulating each by
six cycles. In order to disrupt the macroscopic alignments
in these images, we adopted a technique used previously
by Hansen and Hess (2007), Thomson, Foster, and
Summers (2000), and Wichmann, Braun, and Gegenfurtner
(2006) to randomize the global phase spectra. In this

Figure 7. Sample stimulus set for Experiment 2. In each row, the carrier frequency increases, right to left, and the frequency of the
superimposed linear structure increases from top to bottom.
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experiment, each stimuli’s global phase, 7, was jittered at
one of five levels, ranging from T:/5 to T:, normally
distributed. A sample set of stimuli is shown in Figure 9.
For a detailed description of the stimulus generation
process, see Appendix A. The effect of the phase scram-
bling is to transition the stimulus from containing structured
information (for example, using a 1 cpd carrier in the lower

row of Figure 9) to unstructured, higher frequency
information (6 cpd in the lower row of Figure 9).

Procedure

The procedure was the same as Experiments 1 and 2. A
temporally separated pair of images was presented and the

Figure 8. Results from Experiment 2. dV is a function of cycles per degree. On the left are the results for the frequency of the linear
structure. On the right, the results are collapsed onto the five carrier frequencies. Error bars indicate TÂ.

Figure 9. Sample stimulus set for Experiment 3. Three levels of spatial frequency were chosen from the stimulus set used in Experiment 2,
using carrier frequencies of 0.33, 0.66, and 1.0 cycles/deg with modulations resulting in 2, 4, and 6 cycles/deg of structured information.
These are shown in each row. The Fourier domain phase was scrambled in magnitudes ranging from T:/5 to T: radians in five steps, seen
here in each column. As the scrambling increases, the higher frequency modulated structure disappears and the images revert to the
lower frequency carrier-based features.
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subject indicated if they were “same” or “different”. Each
subject participated in two blocks of 24 repetitions of each
of the 15 stimulus levels, for a total of 720 trials/subject
(Figure 10).

Results and discussion

Results from Experiment 3 are shown in Figure 11. In
the low-frequency condition, the task is trivial regardless

Figure 10. Power spectra for the stimulus set shown in Figure 9. The three rows correspond to the three base frequencies shown in each
row of Figure 9V0.33, 0.66, and 1.0 cycles/deg. On the left is the power spectra of the unscrambled stimulus and on the right is the mean
of the phase-scrambled stimuli (T:/5 to T: radians).
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of the phase disturbance. HoweverVas the spatial fre-
quency of the scrambled information increases, perfor-
mance begins to drop off as a function of phase scrambling.
Recall that the stimuli were generated by modulating a
given carrier frequency (0.33, 0.66, and 1 cpd)Vall of
which should be easily discriminable according to the
results of Experiments 1 and 2 (a 75% threshold of 2 cpd).
Indeed, in all three conditions, when the phase scrambling
was relatively small, performance was consistent with the

results from Experiment 2 showing that performance was
dependent on the carrier frequency. However, as the
scrambling increased, performance varied across the three
conditions. In the low-frequency carrier condition, when
the phase spectra was totally scrambled, the resulting
stimuli contained features that were still above threshold,
so the task was easily completed. However, in the high-
frequency condition, as the disruption of the phase spectra
yielded features below threshold, the task became more
difficult.

General discussion

The research described in the present article provides
strong empirical evidence that human observers make use
of two distinct procedures for discriminating patches of
texture. One possible approach that has been widely
discussed in the literature is to compare the feature
histograms for each patch. This would make it possible,
for example, to easily distinguish a texture that produces
uniform filter responses at all orientations from another
that activates only a narrow range of orientations. This is
the approach that observers most likely employ when
making judgments of surface mesostructure. However,
when the surface macrostructure contains perceptually
distinct shapes or configurations, then it is also possible to
discriminate textures based on the macroscopic align-
ments of filter responses at different spatial locations.
During the debriefing sessions in the present experiments,
observers spontaneously noted that they consciously
searched for some salient feature in the first texture of
each trial that they could attempt to match with a
corresponding feature in the second texture. Examples
they reported included such things as an “S” shaped
contour or a collinear alignment of blobs.
Experiments 2 and 3 provide additional evidence that

the relevant information for these macroscopic judgments
is entirely contained within the Fourier phase spectra of
the texture patterns. Experiment 2 demonstrates that
texture patterns with frequencies in the mesostructure
range can still be discriminated if the pattern of phase
alignments is in the macrostructure range. Moreover,
discrimination performance for these stimuli is reduced
to chance when their phase spectra are randomly
scrambled, as shown in Experiment 3.
In principle, it might be possible to account for these

results using a statistical approach that incorporates higher
order moments. For example, Thomson and colleagues
(Thomson, 1999a, 1999b; Thomson & Foster, 1997;
Thomson et al., 2000) have shown that phase perturba-
tions of natural images can produce significant changes in
higher order image statistics of degree 3 and above (e.g.,
skewness or kurtosis). Thus, if these higher order
measures are important for the perceptual analysis of

Figure 11. Results from Experiment 3. dV is a function of phase
scrambling. Error bars indicate TÂ. Each graph shows the result
from one of the three spatial frequency conditions, respectively.
Recall that, as the phase scrambling increases, the appearance
of the stimuli changes from predominantly that of the carrier to that
of the total modulated frequency. Note that discrimination perfor-
mance is very good, regardless of phase scrambling, in the
2 cycles/deg total condition, but in the 6 cycles/deg total condition,
performance falls off as the amount of scrambling increases.
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natural images, this could explain why recognition is
impaired by phase scrambling. However, it cannot explain
performance in the present experiments, because there
were no systematic differences in skewness or kurtosis in
the distributions of texture patterns that observers were
required to discriminate.
An important limitation of this type of statistical

approach is that it is insensitive to the long-range align-
ments of features in an image. Consider, for example, the
pair of patterns presented in Figure 12. The pattern on the
left shows a set of line segments whose orientations
change as a function of position in a smoothly continuous
manner so that the pattern is perceived as a circle. The
pattern on the right contains the same set of line segments
with the same orientations but their spatial positions have
been randomly scrambled. If these patterns were visually
encoded as histograms of local luminance values, or
histograms of Gabor filter responses at different local
scales and orientations, there would not be sufficient
information in either of those data structures for determin-
ing whether or not the elements of a pattern are arranged
in a circular configuration.
A similar distinction between higher order statistics and

the alignment of features has recently arisen in theoretical
analyses of the perception of gloss. Motoyoshi, Nishida,
Sharan, and Adelson (2007) have argued that the apparent
glossiness of a surface is determined statistically by the
skewness of its luminance histogram or the skewness of
the histogram of sub-band filter outputs. Anderson and
Kim (2009) have shown, however, that this purely
statistical analysis cannot adequately account for the
perception of gloss because specular highlights only
appear shiny when they are appropriately aligned with

the direction of surface curvature (see also Beck &
Prazdny, 1981; Todd, Norman, & Mingolla, 2004).
Perhaps it might be possible to develop a statistical

measure of contour alignments that incorporates some
type of high order feature that explicitly encodes relative
orientations in different spatial locations (e.g., see Geisler,
2008), but we suspect this is unlikely. Having a specific
filter for each possible global shape or configuration is
obviously not a feasible approach. A more sensible
solution would be to somehow encode shapes using a
more limited set of components (e.g., Biederman, 1987;
Hoffman & Richards, 1984; Hoffman & Singh, 1997).
However, a mere counting of these components is clearly
insufficient to adequately characterize globally distinct
shapes. It is also necessary to specify how they are
arranged with respect to one another. Thus, we suspect
that the most likely data structure for the perceptual
representation of shapes is a graph of their components
rather than a distribution.
One possible mechanism for extracting the global phase

alignments in an image is the boundary contour system
that was originally proposed by Grossberg and Mingolla
(1985a, 1985b). This system consists of two stages: The
first stage is characterized by short-range competition
between cells with different orientational tuning. Incom-
ing signals that survive this competition are then passed to
a second stage in which there is long-range cooperation
between cells whose orientational tunings are approxi-
mately aligned with one another. Activity at this stage is
then fed back to the first level in order to fill in gaps along
a boundary. One of the most interesting properties of this
system is that high-frequency filters can cooperate over
large spatial extents. In other words, the scale of the phase
alignments can be much larger than the scale of the local
mechanisms that are aligned just as we observed in
Experiment 2.
Although the model of Grossberg and Mingolla pro-

vides an elegant explanation of how a pattern of phase
alignments could potentially be extracted from an image,
it does not offer any suggestions about how boundary
contours might be parameterized to encode their specific
shapes. This is an important issue that remains for future
research.

Appendix A

Stimulus construction

The stimuli in each experiment start as a patch of
uniformly distributed noise. The noise is low-pass filtered
at various spatial frequencies to create the base textures
used in Experiment 1. These are further transformed by
remapping image intensity to introduce linear coherent

Figure 12. The pattern on the left shows a set of line segments
whose orientations change as a function of position in a smoothly
continuous manner so that the pattern is perceived as a circle.
The pattern on the right contains the same set of line segments
with the same orientations but their spatial positions have been
randomly scrambled. If these patterns were visually encoded as
histograms of local luminance values, or histograms of Gabor filter
responses at different local scales and orientations, there would
not be sufficient information in either of those data structures for
determining whether or not the elements of a pattern are arranged
in a circular configuration.
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Figure A1. On the left is the base discrete uniformly distributed noise, n. It is decomposed using a Fourier transform, F (u, v). The log-
scaled amplitude spectrum, a, is shown at the top and the phase spectrum, 7, at the bottom. The decomposed image is multiplied by the
appropriately scaled infinite response low-pass filter, G, and recomposed via the inverse Fourier transform, F(u, v).

Figure A2. On the left is a base texture as derived above, whose depicted gray level is a linear function. For the image on the right, that
linear ramp was remapped to a sinusoidal function, so that each blob in the original texture is transformed into a set of concentric dark and
light bands.
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structure for Experiment 2. Finally, this structure is
disrupted by jittering the phase spectrum for Experiment 3.
Base textures. First, define n(x, y) as a two-dimensional

field of uniformly distributed random discrete noise with
dimension N � N. This base noise is subjected to low-pass
filtering at a specified frequency, fbase, by decomposing n
using a Fourier transform,F (u, v). The decomposed image
is multiplied by an infinite response low-pass filter, G, and
recomposed via the inverse Fourier transform, F(u, v). An
illustration of this process is shown in Figure A1.
Structured textures. To create the structured textures, a

simple image intensity remapping is employed. Figure A2
shows an example of this process. The intensity of each
pixel of the input image, Iin(x, y), is mapped to a
sinusoidal function, given by

Iout x; yð Þ ¼ 1

2
jcos fstruct2:Iin x; yð Þð Þj1ð Þ þ 1; ðA1Þ

where fstruct is the frequency of the desired structure. The
highest spatial frequencies of the resulting textures are
now roughly equivalent to the frequency of the base
texture, fbase, multiplied by fstruct.
Phase-scrambled structured textures. Finally, these

structured textures are subjected to phase scrambling to
“de-cohere” the structure while maintaining the same
amplitude spectra. To create these textures, the structured
texture images are subjected to Fourier decomposition.

The phase spectrum is then combined with a map of
normally distributed noise, r. The range of r varies on the
interval T(0, :]. The amplitude spectrum is then com-
bined, unmolested, with the jittered phase and subject to
an inverse Fourier transform, which yields the final
stimulus. This process is illustrated in Figure A3.
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Footnotes

1The ATI 1950 series uses 10-bit DACs, but the Apple
Pro displays are only 8-bit capable.

2For example, a large black blob that is situated on the
upper right corner could be easily diagnostic.

Figure A3. To create the phase-scrambled structured textures, the structured texture is first decomposed via Fourier transform. The phase
is then subjected to a given amount jitter by the addition of a field of normally distributed random noise on the interval T(0, :]. This jittered
phase is recombined with the amplitude spectra for the original texture and subjected to an inverse Fourier transform.
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