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HE CONTROL PARAMETERS USED BY THE CNS TO GUIDE THE
AND DEPEND ON THE VISUO-MOTOR TASK: EVIDENCE FROM

ISUALLY GUIDED POINTING
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bstract—To perform visually guided hand movements the
isuo-motor system transforms visual information into move-
ent parameters, invoking both central and peripheral pro-

esses. Central visuo-motor processes are active in the CNS,
hereas peripheral processes are active at the neuromuscu-

ar junction. A major share of research attention regarding
entral visuo-motor processes concerns the question which
arameters the CNS controls to guide the hand from one
oint to another. Findings in the literature are inconsistent.
hereas some researchers suggest that the CNS controls

he hand displacement vector, others suggest that it controls
nal hand position. The current paper introduces a paradigm
nd analysis method designed to identify the parameters that
he CNS controls to guide the hand. We use simulations to
alidate our analysis in the presence of peripheral visuo-
otor noise and to estimate the level of peripheral noise in

ur data. Using our new tools, we show that hand movements
re controlled either in terms of the hand displacement vector
r in terms of final hand position, depending on the way
isual information relevant for movement production is spec-

fied. Interestingly, our new analysis method reveals a differ-
nce in central visuo-motor processes, even though a tradi-
ional analysis of movement endpoint distributions does not.

e estimate the level of peripheral noise in our data to be
ess than or equal to 40%. Based on our results we conclude
hat the CNS is flexible with regard to the parameters it
ontrols to guide the hand; that spatial distributions of move-
ent endpoints are not necessarily indicative of central

isuo-motor processes; and that both peripheral and central
oise has to be carefully considered in the interpretation of
ovement data. © 2009 IBRO. Published by Elsevier Ltd. All

ights reserved.

ey words: hand movements, visuo-motor transformation,
xecution noise, planning noise, endpoint coding, vector
oding.

o perform visually guided hand movements our visuo-
otor system performs several computations that are
oisy, thus resulting in movement errors. Indeed, many
esearchers have analyzed movement errors in an effort to
etermine the computational properties of central and

Correspondence to: L. Thaler, Department of Psychology, The Uni-
ersity of Western Ontario, Social Science Building, Room 6237,
ondon, Ontario, Canada N6A 5C2. Tel: �519-661-2069; fax: �519-
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c
bbreviations: CNS, central nervous system; 2D, two dimensional; 3D,

hree dimensional.

306-4522/09 © 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
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eripheral visuo-motor processes (i.e. Soechting and
landers, 1989a,b; Soechting et al., 1990; Flanders et al.,
992; Gordon et al., 1994; McIntyre et al., 1997, 1998;
essier and Kalaska, 1997; Harris and Wolpert, 1998;
enriques et al., 1998; Carrozzo et al., 1999; van den
obbelsteen et al., 2001; Hamilton et al., 2004; van Beers
t al., 2004; Vindras et al., 2005; Simmons and Demiris,
006). Central visuo-motor processes are active in the
NS, whereas peripheral processes are active at the neu-

omuscular junction (van Beers et al., 2004; Churchland et
l., 2006).

Since peripheral noise arises at the neuromuscular
unction it depends on physical movement parameters,
uch as the muscles involved, movement amplitude, direc-
ion, speed, etc. It follows that peripheral noise will be the
ame as long as those parameters are the same. Only
ecently has a model of peripheral noise been suggested
hat explains a wide pattern of movement data (van Beers
t al., 2004). However, it has also been reported that
euronal activity arising prior to movement onset can pre-
ict �50% of variability in movement speed. Since this
eural activity arises before the movement is performed, it

ndicates the contribution of central visuo-motor processes
Churchland et al., 2006). Based on these results it ap-
ears necessary to consider both peripheral and central
oise sources in the analysis and interpretation of visuo-
otor performance.

With regard to central visuo-motor processes it has
een of longstanding interest to determine which parame-
ers the CNS controls to guide the hand. Consider for
xample the simple task of moving the hand from point A
o point B. To perform this task it is possible that the CNS
etermines the desired goal state of the hand as an end

ocation in space (van den Dobbelsteen et al., 2001), as a
oal posture (Rosenbaum et al., 1995; Desmurget and
rablanc, 1997) or as an equilibrium point (Feldman, 1966;
olit and Bizzi, 1979; Bizzi et al., 1984) and that it employs
ontrol mechanisms that monitor how the motor apparatus
dvances toward its desired goal state. Alternatively, it is
lso possible that the CNS determines the desired dis-
ance and direction that the hand has to travel, i.e. the
ovement vector, and that it employs control mechanisms

hat monitor how the hand traverses this vector (Bock and
ckmiller, 1986; Gordon et al., 1994; Rossetti et al., 1995;
e Graaf et al., 1996; Ghez et al., 1997; Vindras and
iviani, 1998). Even though the difference between these

wo alternative control schemes appears subtle, it is funda-
ental. In the first scenario, which is referred to as endpoint
oding, movement vectors follow from end positions. In the

mailto:lthaler2@uwo.ca
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econd scenario, which is referred to as vector coding, posi-
ions follow from movement vectors. Consequently, endpoint
oding predicts that errors towards a particular point in space
epend on the target, but not on the path that the hand has to

raverse. In contrast, vector coding predicts that movement
rrors will depend on the path the hand has to traverse, rather

han on a particular point in space.
Endpoint and vector coding models differ with regard to

he visual information that they use to determine the move-
ent goal. Typically, endpoint coding models determine

he desired end position of the hand based on visual
nformation in eye or head centered coordinates. By defi-
ition, endpoint coding models have to use coordinates

hat define target position regardless of current hand position.
therwise, coordinates would specify the hand-target vector,
hich would render endpoint coding equivalent to vector
oding. Vice versa, since vector coding models are based on
he idea that the CNS controls the movement vector, they
ave to use a coordinate system that defines target position
ith respect to the hand (Bock and Eckmiller, 1986; Vindras
nd Viviani, 1998). Thus, they cannot use eye-centered co-
rdinates, for example, since distance and direction of the
ye-target vector will not match the hand-target vector, un-

ess the movement originates at the eye.
Various methods have been used to investigate if the

NS controls the final position or the displacement vector
f the hand. One popular approach is to characterize the
hape and orientation of distributions of movement end-
oints by means of multivariate gaussian distributions, i.e.
y fitting them with an ellipse (in the plane) or with an
llipsoid (in three-space). Results that have been obtained
ith this method are inconsistent. Distributions that are
ligned with the direction of movement can be interpreted
s evidence for vector coding (Gordon et al., 1994; Mess-

er and Kalaska, 1997) whereas distributions aligned with
he line of sight or the body can be interpreted as evidence
or endpoint coding (Soechting and Flanders, 1989a,b;
landers et al., 1992; McIntyre et al., 1997, 1998; Carrozzo
t al., 1999; van den Dobbelsteen et al., 2001). Interest-

ngly, distributions in the plane have the tendency to be
ligned with the direction of movement, whereas distribu-
ions obtained in three-space have the tendency to be
ligned with the line of sight. Based on this observation it
as been suggested that subjects employ different central
isuo-motor processes, depending on the movement de-
rees of freedom available (Desmurget et al., 1998). This

nterpretation is conditional on the assumption that periph-
ral and perceptual noise do not contribute to differences
etween distributions of movement endpoints between
onditions. However, this assumption is difficult to justify
iven differences in physical movement characteristics
i.e. speed, curvature, amplitude, etc.) and overall noise
agnitude between 2D and 3D paradigms. It is important

o point out in this context that peripheral noise will mimic
ector coding whenever the movement trajectory is similar
o the visual hand-to-target vector (van Beers et al., 2004).
his situation might be more likely when movements are

erformed in the plane. Thus, differences in peripheral t
oise might be an alternative explanation for differences in
ndpoint distributions between 3D and 2D paradigms.

Distributions of movement endpoints not only depend
n external factors that affect movement degrees of free-
om, but also on how visual information is specified (Mess-

er and Kalaska, 1997). For example, when target distance
nd orientation are specified in the same plane as the
ovement plane (both horizontal) and subjects can move

heir hand towards a visible target, errors in movement
xtent and direction increase at the same rate with move-
ent distance (Messier and Kalaska, 1997). In contrast,
hen target distance and orientation are presented in the
ertical plane, whereas movements are performed in the
orizontal plane, such that subjects cannot reach towards
visible target but are forced to mentally transform the

isual displacement into a hand movement, errors in
ovement extent and direction follow different scaling

ules (Gordon et al., 1994; Messier and Kalaska, 1997).
ndependence of errors in movement extent and direction
n hand-centered coordinates has been interpreted in favor
f the idea that the CNS uses vector coding. However, the
nding that extent and direction errors are dependent on
hen subjects move their hand towards a visible target
hallenges the generality of this interpretation.

The possibility arises that the way in which visual in-
ormation is specified, determines how the CNS controls
ovements. For example, it is possible that subjects con-

rol the movement endpoint when they can reach towards
visible location, but that they control the hand displace-
ent vector when they have to explicitly transform the

isual displacement vector into a hand movement. How-
ver, the contribution of peripheral or perceptual noise
ust also be considered in this context—e.g. see Messier
nd Kalaska (1997).

In summary, the literature regarding peripheral and
entral visuo-motor processes reveals a complex picture
ith many seemingly discrepant findings (for more com-
lete reviews see Desmurget et al., 1998; Lacquaniti and
aminiti, 1998; Desmurget and Grafton, 2000; Todorov,
004). Of particular importance in this regard is the ques-
ion which parameters the CNS controls to guide the hand.
ome of the inconsistencies in the literature could potentially
e resolved if we assumed that central visuo-motor pro-
esses (i.e. hand movement control parameters) adapt to
pecific task demands. However, as of today the evidence for
exible central visuo-motor processes is inconclusive be-
ause peripheral and perceptual noise sources have not
een considered as potential confounds.

The current experiments were designed to test if the CNS
s flexible in its choice of movement control parameters. We
ecided to test this hypothesis using a sequential movement
aradigm that manipulates the way visual information rele-
ant for movement production was presented to subjects. To
nalyze our data we extended a method that was introduced
y van den Dobbelsteen et al. (2001). This analysis method

s potentially more powerful than traditional techniques for
istinguishing vector from endpoint coding and may detect
ifferences in central noise properties even when distribu-
ions of movement endpoints are undistinguishable. To dem-
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nstrate the validity of our analysis in the presence of periph-
ral noise we modeled both central and peripheral noise
rocesses and applied our analysis to the simulated data. In
ddition to demonstrating the power of our method, the sim-
lations also enable us to estimate relative proportions of
entral and peripheral noise in our data and to compare these
stimates to neuro-physiological estimates reported else-
here (Churchland et al., 2006).

EXPERIMENTAL PROCEDURES

ubjects

ight subjects (six male, two female), including the authors, par-
icipated in the experiment. One male subject reported being
eft-handed and chose to perform the experimental task with his
eft hand. Subjects gave informed consent before the experiment
nd were paid for their participation. All subjects had self-reported
ormal or corrected to normal vision.

pparatus

sketch of the experimental apparatus is provided in Fig. 1.
ubjects were seated on a height adjustable chair. Stimuli were
isplayed on a rear projection screen and viewed by subjects in a
ront-surface mirror that was mounted halfway between the rear
rojection screen and a digitizing tablet. Subjects moved their
ands on the digitizing tablet. Thus, the mirror prevented subjects
rom seeing their hand during the experiment. Matched distances
etween mirror surface and screen, and mirror surface and tablet
ade the mirror reflection of stimuli appear to be in the same
lane as the movement plane on the digitizing tablet.

Hand movements were recorded with a hand held stylus on the
igitizing tablet (AccuGrid, Model A90; Numonics Corporation, Mont-
omeryville, PA, USA, 1200(H)�900(V) mm, accuracy 0.254 mm) at
temporal and spatial resolution of 200 Hz and 40 lines/mm, respec-

ively. Stimuli were projected on the rear projection screen with a
GA projector (Casio XJ-360, Casio Computer Co., Ltd, Tokyo,
apan) at a temporal and spatial resolution of 60 Hz and
024(H)�768(V) pixels, respectively. The active display area sub-
Fig. 1. Sketch of the experi
ended 863(H)�647(V) mm. Displays were viewed binocularly in a
arkened room and a chin rest was used to avoid changes in head
osition. Subjects’ eyes were located �460 mm above the tablet. A
omputer (Dell Dimension 8300 PC, Dell Inc., Round Rock, TX, USA,
ith an ATI Radeon 9700 PRO graphics card, AMD, Sunnyvale,
alifornia, USA) was used to control stimulus presentation and data
ollection. Before each experimental session, a projected 17-point
rid was aligned with a corresponding grid on the rear projection
urface to correct changes in lens position that could occur between
essions.

timuli and task

ubjects performed sequences of hand movements in two condi-
ions that differed in the type of information that was used to inform
ubjects of the required hand movement on each trial (Fig. 2). In
Endpoint” conditions, subjects were presented with sequences of
isual targets, one target at a time. Targets consisted of black 5
m diameter circles projected onto the virtual movement surface.
ubjects were instructed to move their hand smoothly from one

arget to the next during a block, so that the endpoint of one
ovement was the starting point for the next movement. In “Dis-
lacement” conditions, subjects were presented with sequences
f visual displacement vectors, one at a time. Displacement vec-
ors consisted of one white and one black 5 mm diameter circle
rojected onto the virtual movement surface. Subjects were in-
tructed to move their hand to a location whose position with
espect to the hand starting point was identical to the position of
he black dot with respect to the white dot. Just as in “Endpoint”
onditions, the endpoint of one movement was the starting point
or the next movement. All stimuli were presented in front of a light
ray background covered with 2500 small, randomly positioned
oints. Random positions were recomputed on every block. The
ain difference between “Endpoint” and “Displacement” condi-

ions is that subjects can reach towards a visible target location in
Endpoint” conditions, but that they have to mentally transform the
isual displacement vector into a hand displacement in “Displace-
ent” conditions. However, visual information is always specified
t the same scale and in the same plane as the movement plane.
e chose this presentation mode because we found previously

hat perceptual errors in perceived distance are very similar in
mental apparatus.
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hese two conditions and with the spatial distances tested here
Thaler and Todd, submitted for publication).

Fig. 3 provides a bird’s-eye view of the virtual movement
urface and the experimental setup for right-handed subjects. The
etup was mirror symmetric for the left-handed subject. Targets or
isual displacements, respectively, were organized into two differ-
nt target configurations (Fig.3b, d and c, e) that were presented

n different blocks in pseudo-random order. Each configuration
onsisted of three main coordinates (diamonds in Fig. 3b–e) and
our “filler” coordinates (crosses in Fig. 3b–e). Filler coordinates
ere used to increase the variability of movement paths, but they
ere traversed less often than main coordinates. Across filler and
ain coordinates, there were 10 spatially distinct coordinates
cross both configurations. The three main coordinates in config-
ration 1 (Fig. 3b, d) formed an equilateral triangle, each side
12.5 mm long. The three main coordinates in configuration 2
Fig. 3c, e) formed a triangle with side length 150, 112.5 and 75
m. In “Endpoint” conditions coordinates were presented in pseu-
orandom order, such that the six possible paths between the
hree main coordinates of a given configuration and an additional
ix paths between any main and “filler” coordinates were traversed
very 12 movements. In “Displacement” conditions, subjects were
resented with visual displacements vectors computed as paths
etween main and filler coordinates. The white dot of displace-
ent vectors was translated 100 mm to the left and 160 mm to the

ront with respect to the starting point of the hand. Displacements
ere presented in pseudorandom order, so that the six possible
aths between the three main coordinates of a given configuration
nd an additional six paths between any main and “filler” coordi-
ates would be traversed every 12 movements.

rocedure

ach block began with the display of the hand starting position and
he first target, or displacement vector, respectively. To initiate a
lock subjects moved their hand to the starting position. During this
hase subjects received continuous feedback on hand position via a
reen cursor dot (3 mm diameter) projected on their real hand
osition. Once subjects had remained within the 5 mm diameter

ig. 2. Illustration of the experimental task performed in “Endpoint” and
equences of black target dots, one at a time. Subjects were instructed to
ere presented with sequences of visual displacement vectors, one at a

ocation whose position with respect to the hand starting point was ident
ircle around the starting position for at least 1.8 s, a beep would u
ndicate the beginning of a block. Synchronous with the beep the
n-line hand feedback would disappear, while the target or displace-
ent vector and initial hand starting point would remain visible.

Subjects were instructed to move their hand as accurately as
ossible in one smooth movement. No instructions were given
ith respect to the speed of the movement. A movement was
onsidered to have ended when the subject’s hand had moved
ess than 1.5 mm during the last 400 ms. Then, a beep indicated
he end of a trial and feedback was given. Thus, subjects received
eedback after each single movement. In “Endpoint” conditions,
eedback was given via a green cursor dot (3 mm diameter) projected
nto the position of the hand. In “Displacement” conditions, the
eedback dot was not positioned on the subject’s hand, but indicated
ubjects’ moved displacement translated onto the target displace-
ent. Thus, the cursor dot would coincide with the black dot of the
isplacement, if a subject’s movement matched the target displace-
ent. All subjects were aware that the location of the cursor differed

rom the location of their hand. After 450 ms, another beep would
ignal the next trial, the next target or target displacement would
ppear, while the previous target and feedback would disappear.
rom their current position, subjects then moved smoothly to the new

arget or over the new target displacement. Subjects were instructed
o not move their hand in between trials.

Each block consisted of 49 movements using one of the two
ossible configurations. The first movement was considered the
starting movement” and during the remaining 48 movements
ach of the six paths between any two main coordinates was
raversed four times (�24 movements) and the additional 24
ovements consisted of paths between two filler coordinates.

Endpoint” and “Displacement” conditions were blocked in ses-
ions that subjects performed in direct succession. Order of “End-
oint” and “Displacement” sessions was counterbalanced across
ubjects. In both “Endpoint” and “Displacement” sessions, each
ubject performed six blocks, three blocks for each of the two
onfigurations that were presented in pseudorandom order. Thus,
ach subject gave a total of 2 (conditions)�6 (blocks)�49 (tri-
ls)�588 responses and 12 responses were given by each sub-

ect to each path between any two main coordinates of a config-

ment” conditions. In “Endpoint” conditions, subjects were presented with
ir hand from one target to the next. In “Displacement” conditions, subjects
jects were instructed to move their hand from their current position to a
position of the black dot with respect to the white dot.
“Displace
move the
ration in both “Displacement” and “Endpoint” conditions. In the
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eginning of “Endpoint” and “Displacement” sessions, each sub-
ect performed at least 20 practice trials to get familiar with the
ask. Practice trials were not recorded. Total experimental time
as about 50 min per subject. On questioning all subjects re-
orted that both tasks felt quite natural to them.

ata analysis

Analysis of movement kinematics and trajectory shape.
here is the possibility that factors such as average movement
elocity, peak movement velocity, movement duration and trajec-
ory shape differ between “Endpoint” and “Displacement” condi-
ions. If this was the case, peripheral noise is a potential covariate
hat would affect our conclusion regarding central visuo-motor
rocesses. As a numerical measure of trajectory shape, we com-
uted the curvedness of smoothed movement traces as the max-

mum absolute deviation of a point on a trajectory to a straight-line

ig. 3. (a) Bird’s-eye view of the (virtual) movement area (not draw
xperiment, targets were indicated with black circles. Subjects never sa
sed in “Displacement” conditions. In the actual experiment, displacem
onfiguration, but only one displacement at a time. Coordinates of han
eft-handed subject was mirror symmetric.
onnecting end and start points, divided by trajectory length (At- w
eson and Hollerbach, 1985). We multiplied this value by 100 to
ransform the measure into a percentage—e.g. a value of 50%
ndicates a semicircular trajectory. Furthermore, we computed the
verage movement distance, average movement velocity, peak
ovement velocity and movement duration for all movement

races for each subject. Velocities were obtained by numerical
ifferentiation. All computations were applied to movement trajec-
ories smoothed with a 7 Hz Butterworth filter.

Analysis of distributions of movement endpoints. As a stan-
ard analysis, we fit the distributions of movement endpoints using
inimum variance ellipses. The analyses were performed for
very subject separately. To characterize the shape of the distri-
ution we fitted a minimum variance ellipse to all movement
ndpoints made along each possible movement path (Gordon et
l., 1994; van Beers et al., 2004) by computing the eigenvalues �
nd the eigenvectors of the 2�2 sample covariance matrix R,

e). (b, c) Configurations used in “Endpoint” conditions. In the actual
plete configuration, but only one target at a time. (d, e) Configurations
indicated with white and black circles. Subjects never saw a complete
points are given with respect to subjects’ eye position. Setup for the
n to scal
w a com

ents were
hose elements are given by:
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Rjk�
1

n�
i�1

n

�ij�ik

here the deviation �i�p� i�p� is the endpoint of movement i along
ne of two orthogonal axes (rows and columns j, k � {x, y}) and p�

s the mean position over n trials. The square root of the eigenvalues
orresponds to the standard deviation of movements along each
xis specified by the associated eigenvectors. The aspect ratio of
he ellipse was determined by dividing the square root of the lar-
er eigenvalue by the square root of the smaller eigenvalue,

.e. ��1 ⁄ ��2. The larger the ratio, the more elongated the
llipse. Ellipse size depends on magnitude of the eigenvalues and
omputing the SD of movements in the plane is equivalent to
omputing ellipse area:

SD2D����1

2
��2

2
.

In addition to computing minimum variance ellipses we also
omputed standard deviation of movement endpoints in the direc-
ion of movement (on-axis errors) and orthogonal to it (off axis
rrors) and took their ratio (on-axis/off-axis) (Gordon et al., 1994;
essier and Kalaska, 1997). This analysis will yield a different

esult from the minimum variance ellipse analysis whenever the
ajor axis of the minimum variance ellipse is not oriented in the
irection of movement. In the extreme, i.e. when the major axis of
he minimum variance ellipse is oriented orthogonal to the direc-
ion of movement, the ratio of on- and off-axis errors is the inverse
f the aspect ratio of the minimum variance ellipse.

The same analyses was performed for movements in “Dis-
lacement” conditions, with the difference that we first aligned
ovements on those targets that had been used as starting point

n the computation of the target displacement. The reason for
lignment is that the instruction to subjects to always move over
he visual displacement from their current position introduces
hifts of subsequent movements in the direction of any preceding
rror. Alignment removes variability due to those instruction-
ased shifts.

Control system analysis. In our control system analysis, we
ested to what degree subjects use vector and endpoint coding in
Endpoint” and “Displacement” conditions. If subjects use vector
oding, movement errors with regard to targets in space should
esult from errors that depend on the displacement vector of the
and. In contrast, if subjects use endpoint coding, errors with
egard to the displacement vector of the hand should result from
rrors that depend on targets in space. (Assuming that subjects

ook at the target on every trial and assuming that their head
emained stationary in the chinrest, eye- (i.e. line of sight), head-
i.e. cyclopean eye) and body-centered coordinates remain stable
hroughout our experiment and do not vary with the movement
f the hand. Thus, our paradigm and analysis enables us to
istinguish between hand- and target-centered control param-
ters, i.e. between vector and endpoint coding. However, our
nalysis does not permit us to distinguish between different
ypes of endpoint coding. In principle, our paradigm and anal-
sis could be extended to determine if subjects use eye-, head-
r body-centered endpoint coding by incorporating systematic
hifts of the gaze, head and body.) Our analysis illustrated in
ig. 4 exploits this logic and is an extension of an analysis

ntroduced by van den Dobbelsteen et al. (2001).
On each trial, subjects move from one target location to another,

r over a certain target displacement, respectively. We can decom-
ose each movement (Fig. 4a) into three components: Let us define
ovement start and endpoints as observed start and observed end-
oints (Fig. 4b) and the straight line that joins observed start and

nding points as observed movement displacement (Fig. 4g). I
To determine to what degree subjects use hand-centered
ontrol, i.e. vector coding, in “Endpoint” conditions we followed the
teps illustrated in Fig. 4b–f. First, we computed all observed
ovement start and endpoints made from any other target to-
ards a certain main target (Fig. 4b). Then, we computed SD2D of
bserved endpoints for a particular main target—across all start-

ng points. This is equivalent to computing movement errors with
egard to targets in space (Fig. 4c). Then, we combined observed
isplacements with start points from other movements. (The com-
ination of a displacement from one trial with the starting point of
nother assumes that all displacements towards a particular tar-
et are planned according to the same visual target displacement.
his assumption is not met in our experiment, because subjects
oved towards a target from various starting points and because

ubjects received visual feedback that created a different visual
isplacement vector on every trial. Thus, it is conceptually incor-
ect to combine a displacement from one trial with the starting
oint of another. We therefore did not recombine displacements
ith starting points (as shown in Fig.4d), but we recombined
isplacement errors with hand-target vectors instead. The com-
utation of displacement errors and the recombination procedure
re described in Appendix A.) This is equivalent to reshuffling
rrors that depend on the displacement vector of the hand (Fig.
d). From this recombination, we obtained fictional endpoints (Fig.
e). If subjects use vector coding, errors in movement endpoints,

.e. target specific error distributions, should result from errors that
epend on the hand displacement vector. Thus, endpoint errors
hat result from random combination of observed displacements
nd observed start points should be the same as endpoint errors
hat we observe in our data. To test if this is the case, we
omputed SD2D of fictional endpoints in a next step (Fig. 4f) and
hen compared the magnitude of fictional and observed endpoint
D2D by taking the ratio of observed over fictional endpoint SD2D.
his ratio can be interpreted as the proportion of the variance that
an be explained based on vector coding, i.e. hand-centered
ontrol. If we multiply it by 100, we obtain a percentage. If the CNS
ses hand-centered control, i.e. vector coding, the proportion of
ariance that can be explained should be close to 100%. A similar
nalysis was performed for “Displacement” conditions, with the
ifference, that we first aligned movements on those targets that
ad been used as starting point in the computation of the target
isplacement to remove instruction based movement shifts. After
lignment, we can then compute observed and fictional displace-
ents in the same way as in “Endpoint” conditions.

To determine to what degree subjects use target centered
ontrol, i.e. endpoint coding, in “Endpoint” conditions, we followed
he steps illustrated in Fig. 4g–k. First, we computed all observed
isplacements made from any other target towards a certain main
arget (Fig. 4g). We then aligned the displacements at their origin
nd computed the SD2D of the aligned observed displacements by
tting a minimum variance ellipse. This is equivalent to computing
ovement errors that depend on the hand displacement vector

Fig. 4h). In a next step, we combined observed endpoints with
bserved start points from other movements that had been made
o the same target. This is equivalent to reshuffling target specific
rrors (Fig. 4i). From this recombination, we obtained fictional
isplacements (Fig. 4j). If subjects use target centered control, i.e.
ndpoint coding, errors in hand displacements, i.e. hand-centered
rror distributions, should result from errors that depend on targets

n space. Thus, displacements that result from recombination of
tart and endpoints should be the same as the ones that we
bserve in our data. To test if this is the case, we aligned the
ctional displacements and computed their SD2D (Fig. 4k) and
hen compared the magnitude of fictional and observed displace-
ent SD2D by taking the ratio of observed over fictional displacement
D2D. This ratio can be interpreted as the proportion of the variance

hat can be explained by target centered control, i.e. endpoint coding.

f we multiply it by 100, we obtain a percentage. If the CNS uses
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arget-centered control, i.e. endpoint coding, the proportion of vari-
nce that can be explained should be close to 100%. A similar
nalysis was performed for “Displacement” conditions with the differ-
nce that we first aligned movements on those targets that had been
sed as starting point in the computation of the target displacement

o remove instruction based movement shifts. After alignment, we
an then compute observed and fictional displacements in the same
ay as in “Endpoint” conditions.

The analysis described in the previous paragraph and illustrated
n Fig. 4g–k is biased towards endpoint coding, whenever spatial
ariability introduced by experimental layout is large compared to
patial variability introduced by central visuo-motor processes. To

mprove the sensitivity of our analysis we thus normalized observed
nd fictional displacements prior to computing their SD . Please see

ig. 4. Illustration of control system analysis. * Displacements were
* Displacements were normalized before computation of SD2D (see A
2D

ppendix B for a detailed explanation and computational details. n
To create fictional endpoints or displacements we recombine
ovement components from different trials and due to pseudo-

andomization, we can recombine movement components that
ccurred within an average separation of multiples of six trials.
ystematic variation of the number of intervening trials allows us

o determine if there are systematic shifts in performance over
ime. If there is a systematic shift, we should see a systematic
hange in computed ratios as the number of intervening trials
ncreases (van den Dobbelsteen et al., 2001).

odel simulations

n an effort to confirm the validity of the control parameter analysis
nd to assess how it would be affected by central and peripheral

ed into displacement errors before recombination (see Appendix A).
B).
transform
oise, we simulated the performance of ideal subjects using dif-
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erent control schemes and analyzed the results using the same
nalyses that were applied to the actual subjects. We simulated
ubjects using hand- and target-centered control in the presence
f different levels of peripheral noise (0%–100% peripheral noise

n 10% steps). At 0% peripheral noise, all movement errors are
etermined by noise that arises in the determination of the goal
tate of the hand. At 100% percent peripheral noise, all movement
rrors are determined by noise that arises at the neuromuscular

unction during movement execution. Assuming independence
etween central and peripheral noise (van Beers et al., 2004)
rrors from the two processes were added. However, please note

hat even though peripheral and central errors are statistically
ndependent and thus added, the distribution of peripheral noise is
evertheless contingent on central noise, because the planned
oal state of the hand determines movement magnitude and
irection and thus distribution characteristics of peripheral noise.

We simulated five different aspect ratios (major/minor axis) of
entral visuo-motor error ellipses (2.5, 2, 1.7, 1.3 and 1) as well as
hree different total noise levels (7.5%, 10% and 15%). Both vector
nd endpoint coding models were simulated 100 times at all levels
f execution noise, yielding 1100 simulated data sets for each
odel and central noise aspect ratio. Each simulation “performed”

he same experiment as any of our subjects and thus gave a total
f 2 (conditions)�6 (blocks)�49 (trials)�588 responses and 12
esponses to each path between any two main coordinates of a
onfiguration in both “Displacement” and “Endpoint” conditions.
he following paragraphs briefly describe the gist of our simula-

ions. A more detailed description is given in Appendix C.
Peripheral noise was modeled as noise in the results as

ero-mean, bivariate gaussian errors, or error ellipses, respec-
ively, based on the execution noise distribution characteristics
eported by van Beers et al. (2004). We implemented peripheral
oise in the results, instead of process noise, because result noise

s sufficient to investigate its effect on our analysis.
Central, vector coding noise was modeled as normally distrib-

ted with standard deviations proportional to the amplitude of the
and-target vector (Gordon et al., 1994; Messier and Kalaska,
997). In “Endpoint” conditions, the hand target vector was ob-
ained by computing the vector pointing from the current simulated
and position towards the visible target. In “Displacement” condi-
ions, the hand target vector was equal to the visual displacement
ector. To obtain error ellipses that are elongated in the direction
f the hand-target vector, standard deviation of errors orthogonal
o the hand-target vector was chosen to be a scaled version of
tandard deviation of errors along the hand-target vector. Choos-
ng error distributions this way, results in bivariate gaussian error
istributions, i.e. central noise error ellipses, whose aspect ratio is
onstant across movement direction and whose area increases
ith increasing hand-target vector amplitude. Assuming zero
ean noise, central error ellipses are positioned on the (either

isible or virtual) target.
Central, endpoint coding noise was modeled in the same way

s hand-centered noise, with the only difference that errors were
omputed with respect to eye/head-target vector, instead of hand-
arget vector (McIntyre et al., 1997, 1998; Carrozzo et al., 1999;
an den Dobbelsteen et al., 2001). For our model, we assume that
ubjects compute target coordinates either with respect to the line
f sight (in eye-centered coordinates) or with respect to the line
assing from the stationary cyclopean eye through the visible or
irtual target (head centered). It follows that eye- and head-cen-
ered models are equivalent in our experiment. Thus, in “Endpoint”
onditions we obtained the eye/head—target vector by computing
he vector pointing from the cyclopean eye towards the visible
arget. In “Displacement” conditions, it was obtained by shifting the
isual displacement vector onto the current simulated hand posi-
ion and computing the vector pointing from the cyclopean eye
owards the endpoint of the shifted displacement vector. Since

ubjects did not receive feedback on their current hand position in v
Displacement” conditions, we assumed for this simulation that
ubjects estimated current hand position proprioceptively.

RESULTS

ehavioral results

Movement kinematics and trajectory shape. Table 1
hows the results of the analysis of movement velocities,
uration, distance and curvedness across configurations
nd spatial coordinates and subjects. To assess statistical
ignificance we applied a repeated measures ANOVA with
condition” and “path” as repeated measures factors,
here “path” was defined as the 12 distinct paths between
ny two main coordinates across both configurations. Ex-
ept for trajectory curvedness, none of these measures
xhibited a significant main effect of “condition” or a sig-
ificant interaction. Movement trajectories are significantly
ore curved in “Endpoint” than in “Displacement” condi-

ions (F1,7�7.689, P�0.028), as indicated by a 1.8% drop
n curvedness from 4.3% in “Endpoint” conditions to 2.5%
n “Displacement” conditions. However, curvedness values
re overall very low indicating that movement trajectories
ere very close to straight-line trajectories in both condi-

ions. In summary, it appears that physical movement pa-
ameters do not differ between “Endpoint” and “Displace-
ent” conditions. Since peripheral noise depends on phys-

cal movement parameters such as movement velocity,
uration, distance and trajectory shape we can assume
hat peripheral noise does not differ between “Endpoint”
nd “Displacement” conditions.

Error distributions. Fig. 5 shows ellipses fitted to dis-
ributions of endpoints in “Endpoint” and “Displacement”
onditions. For better visibility, the length of each axis in
ig. 5 corresponds to four times the standard deviation
long that axis. Ellipses obtained for clockwise and coun-
erclockwise movement directions have been plotted with
olid and dashed lines, respectively. To allow for easy

able 1. Statistics on various movement parameters computed across
ovement paths, configurations and subjects

Mean SD Median Min Max

Endpoint conditions
Mean velocity (cm/s) 10.5 1.9 10.2 6.8 16.4
Peak velocity (cm/s) 37.1 8.5 34.9 23.9 62
Duration (s) 1.2 0.2 1.2 0.7 1.5
Curvedness (%) 4.3* 2.9 3.5 1.3 16.9
Movement amplitude

(mm)
119 26 115.0 76 197

Displacement conditions
Mean velocity (cm/s) 10.5 1.9 10.4 5.8 16.1
Peak velocity (cm/s) 36.1 7.4 35.2 20.9 60.7
Duration (s) 1.1 0.2 1.1 0.8 1.6
Curvedness (%) 2.5 0.7 2.4 1.2 4
Movement amplitude

(mm)
113 23 112.0 65 166

Significant difference in means between “Endpoint” and “Displace-
ent” conditions, P�0.05.
isual comparison of ellipse size and shape, ellipses are
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ositioned on the average movement endpoint across sub-
ects and paths for a given target. To provide visual indi-
ators of ellipse alignment with the last part of a movement
rajectory, the last part of average movement trajectories
long each path has been plotted as well. Numbers identify
llipses and their corresponding paths.

Overall, it is apparent from Fig. 5 that distributions of
ndpoints vary in size, shape and orientation depending on
he movement path. Ellipses are generally elongated in the
irection of movement and aligned with the last part of the
ovement trajectory, indicating that movement variability
epends on the direction of movement in hand centered
oordinates. Comparing corresponding ellipses between
Endpoint” and “Displacement” conditions reveals that
ven though some ellipses show a tendency to be more
longated in the direction of movement in “Displacement”
onditions (i.e. ellipses 1, 6, 11 and 16) differences are
ather subtle. Furthermore, some ellipses do not appear to
iffer in elongation at all (i.e. ellipses 3, 4, 13, 14 and 15)
nd some are actually less elongated in “Displacement”
ompared to “Endpoint” conditions (ellipse 2). Overall, the

ig. 5. Distributions of movement endpoints in “Endpoint” and “Displac
xes denote four standard deviations around the mean. Ellipses were
asier visual comparison, individual subject’s movement endpoints an
ovement traces have been plotted to indicate alignment with the last p
aths.
ize of ellipses, i.e. overall error magnitude, appears to be i
imilar across the two conditions, even though one ellipse
ellipse 15) increases noticeable in size in “Displacement”
onditions.

To determine if there are statistically significant differ-
nces in ellipse shape between “Endpoint” and “Displace-
ent” conditions, we applied repeated measures ANOVA
ith “condition” and “path” as repeated measures factors

o each of the various ellipse shape measures shown in
able 2. The “path” factor was defined as the 12 distinct
aths between any two main coordinates across both con-
gurations. None of the analyses revealed a significant
ain effect of condition. This result is in agreement with
ur observation from Fig. 5 that on a global level ellipse
hape and size does not seem to differ between “Endpoint”
nd “Displacement” conditions. However, all analyses re-
ealed a significant interaction between “condition” and
path.” This result is in agreement with our observation
rom Fig. 5 that some ellipses change shape, even though
he change may go into different directions (i.e. increase or
ecrease in elongation) for different ellipses. To determine
or which ellipses changes in shape are statistically signif-

nditions for each path between main targets in a configuration. Ellipse
for each path after subtracting each subjects mean for that path. For
are aligned on the group mean for a (virtual) target. Parts of average
ovement trajectory. Numbers identify ellipses and their corresponding
ement” co
computed
d ellipses
cant we computed paired samples t-test for each shape
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L. Thaler and J. T. Todd / Neuroscience 159 (2009) 578–598 587
easure between corresponding ellipses in “Endpoint”
nd “Displacement” conditions. The results of this analysis
re shown in Table 2. The results are in good agreement
ith Fig. 5, in that ellipses that are statistically significantly
ifferent also look different (ellipses 1, 2, 6, 16 and 15).

In summary, ellipse shape appears to depend on the
ovement path, i.e. distance and direction in hand-cen-

ered coordinates, in both conditions. Even though there
re some statistically significant differences in ellipse
hape between “Endpoint” and “Displacement” conditions,
ur statistical analysis indicates that these differences are

imited to certain movement paths and do not apply on a
lobal level. Furthermore, changes are not consistent for
he two conditions, i.e. some ellipses increase in elonga-
ion, whereas others decrease. Most importantly, overall
D2D and thus overall error magnitude is the same in

Endpoint” and “Displacement” conditions.
Based on this traditional analysis of movement end-

oint distributions there appears to be no difference in
istributions of movement endpoints, and thus no differ-
nce in the coordinate system that the CNS uses for
ovement planning in “Endpoint” and “Displacement” con-
itions. Furthermore, the observation that ellipses are gen-
rally aligned with the direction of movement is consistent
ith previous reports in the literature that investigated
and movements in the plane (Messier and Kalaska, 1997)
nd one might conclude that subjects use hand-centered
ontrol, i.e. vector coding, in both tasks in our experiment.
owever, as mentioned in the introduction, an interpreta-

ion of distributions of movement endpoints solely in terms
f central visuo-motor processes is problematic (Church-

and et al., 2006) and the alignment of movement end-
oints with the direction of movement could also be ex-
lained based on peripheral noise (van Beers et al., 2004).

Constant movement errors. Fig. 6 shows each sub-
ect’s average movement endpoint for a given path. Aver-
ges were computed for movement paths between any
wo main targets in a configuration. Group averages in
lockwise and counterclockwise movement directions
ave been connected with solid and dashed lines, respec-
ively. It is apparent that movement endpoints in “Endpoint”
nd “Displacement” conditions are virtually identical. It is
lso evident that despite individual differences average

able 2. Various measures of ellipse shape

tatistic Endpoint conditions

Average SD

n axis error (mm) 10.5 4.70
ff axis error (mm) 7.7 3.20
N/OFF 1.45 0.63
ajor axis length (mm) 11.4 5.00
inor axis length (mm) 6.4 2.30
ajor/minor 1.83 0.68
D2D (mm2) 64 47.00

Averages and SD were computed across configurations, paths an
umbers correspond to ellipse numbers in Fig. 5.
ndpoints of subjects’ movements are shifted in the direc- m
ion of movement in clockwise and counterclockwise direc-
ions, respectively. The average spatial shift of endpoints
ith respect to each other is 8.4 mm. Overall, it is evident

rom the average movement endpoints that subjects are
qually accurate in both “Endpoint” and “Displacement”
onditions. Average movement endpoints therefore do not
iffer between the two conditions and one might conclude
hat subjects rely on the same central visuomotor pro-
esses in “Endpoint” and “Displacement” conditions.

Control system analysis. Our control system analysis
s a potentially more powerful tool to investigate how move-

ents are controlled. As mentioned in the introduction the
nalysis used in the current paper is an extension of an
nalysis first introduced by van den Dobbelsteen et al.
2001). Fig. 7 shows the results of our analysis for both
Endpoint” and “Displacement” conditions. Filled and open
ymbols indicate average percentage of variance ac-
ounted for by endpoint coding (target centered control)
nd vector coding (hand centered control), respectively,
cross subjects, targets and configurations. Denoted on
he abscissa is the average number of movements that
eparated movements used for recombination. Dotted

ines indicate the beginning of a new block. Since presen-
ation order of the two different target configurations was
seudo-randomized within “Displacement” and “Endpoint”
essions, each dotted line corresponds to an average gap
f one block of (49 movements). Error bars indicate stan-
ard errors of the mean across subjects, targets and
onfigurations.

It is apparent from Fig. 7 that in “Endpoint” conditions
ndpoint coding accounts for a larger proportion of move-
ent variance (75%) than vector coding (60%). The oppo-

ite pattern of results holds in “Displacement” conditions,
here vector coding accounts for a larger proportion of
ovement variance (90%) than endpoint coding (65%).
his finding is strong evidence for the idea that central
isuo-motor processes differ between “Endpoint” and “Dis-
lacement” conditions. Specifically, our results suggest
hat subjects employ hand-centered control in “Displace-
ent” conditions, and target-centered control in “Endpoint”

onditions. Interestingly, our analysis reveals this differ-
nce between “Endpoint” and “Displacement” conditions,
ven though standard analyses of distributions of move-

isplacement conditions Ellipses that are significantly
different (P�0.05)

verage SD

2.5 3.4 1, 15
7.9 2.8 15
1.8 0.99 1, 6
3.1 3.2 1, 15
7.0 2.4 2, 12, 15, 16
2.1 1.1 1
5 37 15

ts. Significance was assessed using paired samples t-tests. Ellipse
D

A

1

1

7

d subjec
ent endpoints do not.
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In “Endpoint” conditions, there is a small systematic
hange in observed ratios over time. However, a repeated
easures ANOVA with “average shift” as repeated mea-

ures variable revealed that neither linear nor quadratic
rends are significant. Thus, we conclude that there is no
ystematic shift in hand position over time in our data.

The results obtained on the group level hold for indi-
idual subjects as well. To obtain a compact measure of
erformance for each subject we computed the normalized
ifference d in explained variability between hand- and

arget-centered control for “Endpoint” and “Displacement”
onditions as d��P� target�P� hand� ⁄ ��starget

2 �shand
2 � ⁄ 2, where

� is the average proportion of explained variability and s2

s the sample variance across targets, configurations and
ovement shifts. d is negative when hand-centered con-

rol, i.e. vector coding, explains a higher proportion of vari-
bility and positive when target-centered control, i.e. end-
oint coding, explains a higher proportion of variability. Fig. 8
hows d plotted separately for “Endpoint” and “Displace-

ig. 6. Average movement endpoints in “Endpoint” and “Displacemen
roup means have been connected with lines to show systematic sh
ent” conditions. As expected, d is positive (mean�1.2) h
or all subjects in “Endpoint” conditions and negative
mean��1.1) for all subjects in “Displacement” conditions
nd the difference is significant (t(7)�4.79, P�0.002, t-test

or paired samples, two-tailed). We did not find systematic
ifferences between targets.

imulation results

Validity of control system analysis. To confirm the
alidity of our analysis we simulated the performance of

deal subjects using endpoint and vector coding in the
resence of different levels of peripheral noise. We then
pplied the control system analysis to each simulated data
et in the same way that we analyzed the movement data
f the actual subjects to determine the normalized differ-
nce d in the proportion of explained variability between
arget- and hand-centered control for each simulation. It is
mportant to keep in mind that d is negative when hand-
entered control explains a higher proportion of variabil-

ty and positive if target-centered control explains a hig-

ons computed for every path between main targets in a configuration.
er proportion of variability. Thus, if this is indeed a valid
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nalysis, then d should be positive when a data set is
enerated by the endpoint coding model, and it should be
egative when a data set is generated by the vector coding
odel. For each condition, we also computed the proba-
ility that our analysis correctly recovers the model that
enerated the data p(m|m).

We found that d and p(m|m) were unaffected by aspect
atio of central noise as well by absolute level of noise.
herefore, Fig. 9 shows d collapsed across aspect ratios of
entral noise and total noise levels and plotted as a func-
ion of peripheral noise level. The left and right panels
how the results in “Endpoint” and “Displacement” con-
itions, respectively, and filled and open symbols repre-

ig. 7. Results of the control system analysis in “Endpoint” and “Dis
ariance accounted for by endpoint and vector coding, i.e. target- and h
enoted on the abscissa is the average number of movements that sep
f a new block (gap of 49 movements). Error bars indicate standard e

ig. 8. Normalized difference in proportion of explained variability
n
etween hand- and target-centered control (D) in “Endpoint” and “Dis-
lacement” conditions.
ent average d for data sets generated by endpoint
oding and vector coding models. Numbers above each
ata point indicate p(m|m) across aspect ratios of plan-
ing noise and total noise levels. Error bars denote
tandard deviation of d.

It is evident from Fig. 9 that d and p(m|m) are system-
tically affected by levels of peripheral noise. In both “End-
oint” and “Displacement” conditions, d is well above zero
or data sets generated by the endpoint coding model and
ell below zero for data generated by the vector coding
odel when peripheral noise level is zero and p(m|m) is
ne or close to one. This indicates that our control system
nalysis correctly recovers the model that generated the
ata when no peripheral noise is present. However, as
eripheral noise increases, d as well as p(m|m) decreases
or data sets generated by the endpoint coding model. In
Endpoint” conditions, d is well above zero and p(m|m) is
arger then 0.9 until peripheral noise level reaches 60%.
n “Displacement” conditions, d is well above zero and
(m|m) is larger than 0.9 only until peripheral noise level
eaches 30%. Thus, when peripheral noise exceeds 60%
n “Endpoint” conditions and 30% in “Displacement” con-
itions, our coordinate system analysis has a bias to at-
ribute higher proportion of explained variability to the vec-
or coding model, even though the data set was actually
reated by the endpoint coding model. The bias is stronger

n “Displacement” conditions. In summary, the results sug-
est that our analysis will reliably identify an endpoint
oding model, when peripheral noise is less than or equal
o 60% in “Endpoint” conditions and less than or equal to
0% in “Displacement” conditions. Otherwise, peripheral

t” conditions. Denoted on the ordinate is the average percentage of
ered control, respectively, across subjects, targets and configurations.
ovements used for recombination. Dotted lines indicate the beginning

the mean across subjects, targets and configurations.
placemen
and-cent
oise mimics vector coding in our analysis. This is ex-
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ected, since the movements that we simulated were sim-
lar to the visual hand-target vector.

Given the fact that peripheral noise mimics central
oise stemming from vector coding processes in our anal-
sis, it follows that the average normalized difference d
nd recovery probability p(m|m) of target-centered control

n “Endpoint” conditions can serve as indicators of the
egree of peripheral noise present in the data, i.e. if d is
round 1 and we recover endpoint coding 100% of the time

n “Endpoint” conditions, the level of peripheral noise is
xpected to be between 40% and 50%. In contrast, if we
ecovered vector coding 75% of the time in “Endpoint”
onditions, this could indicate either hand-centered control
r that peripheral noise level is 90%.

In the analysis of our subjects’ data, endpoint coding
on all samples in “Endpoint” conditions, and average d is
.2 (compare Fig. 8). Based on this we can assume that
eripheral noise is around 40% in our experiment. Further-
ore, given the high similarity of movement velocity and
uration between “Endpoint” and “Displacement” condi-

ions, we can also assume that peripheral noise is compa-
able across the two tasks. We conclude that our analysis
s a valid indicator of visually induced differences in the
ay movements are controlled in our experiment.

Estimate of peripheral noise in our data. As stated in
he previous paragraph, endpoint coding won all samples
n “Endpoint” conditions and average d is 1.2. Furthermore,

ovement velocity, duration, distance, etc. are very similar
n “Endpoint” and “Displacement” conditions, such that
eripheral noise can be assumed to be constant. Based on
hese observations we could estimate the peripheral noise
evel in our data to be approximately 40%. An estimate of

ig. 9. Normalized difference in proportion of explained variability be
oding model (open symbols) and endpoint coding model (filled sy
eripheral noise level. Numbers above each data point represent th
verage d and p(m|m) was computed across noise aspect ratios and
0% would be similar to a recent estimate derived from n
euronal activity in dorsal premotor and primary motor cortex
Churchland et al., 2006). In their experiment, Churchland et
l. (2006) measured movement speed and found that neu-
onal activity prior to movement onset predicts 50% of the
bserved variability in movement speed, suggesting that the
emaining 50% are due to peripheral noise arising during
ovement execution. Churchland et al.’s (2006) task was
ighly repetitive. In contrast, our task required the planning of
ew movement parameters on every trial. If we assume that

he estimate of 40% is a correct estimate of peripheral noise
evel in our data, we are therefore led to the conclusion that
ven for non-repetitive tasks the contribution of peripheral
oise can be as high as 40%.

The analysis described above is based on the implicit
ssumption that subjects use either pure endpoint coding
r pure vector coding. However, another possible interpre-
ation of our results is that the CNS uses a combination of
ndpoint and vector coding to guide the hand (Abrams et
l., 1990; De Grave et al., 2004), and in that case the
mount of peripheral noise needed to explain our data
ould be less than 40%. Based on the idea of a hybrid-
ontrol system, differences between “Endpoint” and “Dis-
lacement” conditions would be caused by differences in
he relative contribution of endpoint and vector coding in
he two tasks. Since peripheral noise mimics the use of
and-centered control in our experiment, it is impossible to
istinguish the use of vector coding from the presence of
eripheral noise. However, there are two reasons why we
hink that it is likely that subjects use combination of target-
nd hand-centered control in our experiment. First, it has
een shown that when subjects move towards a visible
arget the perception of length in hand centered coordi-

nd- and target-centered control (D) for data generated by the vector
“Endpoint” and “Displacement” conditions plotted as a function of

ility to correctly recover the model p(m|m) that generated the data.
noise levels. Error bars denote standard deviations.
tween ha
mbols) in
ates contributes approximately 8% to overall movement



a
t
o
t
3
t
u
w
p
F
d
c
t
t

r
t
o
b

E
c

I
fi
a
a
m
t
v
(
c
y
c
c
e
t
m

s
m
c
a
c
t
i
“
b
m

r
c
v
8
a
“
t
s
t
1

p
i
t
3
p
c
i
l
b
s
o
m
3

c
p
n
1
t
p
d
t

e
p
d
i
t
F
i
f
o
b
C
v

w
m
s
“
m
p
c
o
c
t
m
b
c
o
p
h
e
a
e
a
r

L. Thaler and J. T. Todd / Neuroscience 159 (2009) 578–598 591
mplitude (De Grave et al., 2004). This finding suggests
hat vector coding might contribute approximately 10% to
verall movement variability in our “Endpoint” task, and

hat the level of peripheral noise might be approximately
0%. Second, the d-value of �1.1 in displacement condi-

ions in our experiment is highly indicative of a combined
se of endpoint and vector coding, because that value
ould only be expected if 30% of the variability in “Dis-
lacement” conditions is due to endpoint coding (see
ig. 9). Thus, for both “Endpoint” and “Displacement” con-
itions there is good reason to suspect that subjects use a
ombination of target- and hand-centered control, but that
he relative contribution of either process differs between
he two tasks.

In summary, we cannot give an exact estimate of pe-
ipheral noise in our data, because peripheral noise mimics
he use of hand-centered control in our experiment. Based
n other reports in the literature, however, an estimate
etween 30% and 40% appears reasonable.

xplaining error distributions (Fig. 5) based on our
ontrol system analysis (Figs. 7 and 8)

n light of these conclusions, it is useful to reconsider our
nding that distributions of movement endpoints are
ligned with the direction of movement in both “Endpoint”
nd “Displacement” conditions (Fig. 5). The alignment of
ovement endpoint distributions in “Displacement” condi-

ions is expected, since our control system analysis re-
eals that subjects use vector coding in these conditions
Figs. 7 and 8). However, the alignment in “Endpoint”
onditions is unexpected because our control system anal-
sis suggests that subjects use endpoint coding in these
onditions (Figs. 7 and 8). In fact, based on endpoint
oding we would expect that distributions of movement
ndpoints towards the same target overlap perfectly and
hat there should be no systematic alignment with move-
ent direction.

Fortunately, we can reconcile these seemingly incon-
istent results based on the finding that only 60% of move-
ent variability in “Endpoint” conditions is due to target

entered control, and therefore, that the remaining 40%
re due to either peripheral noise and/or hand centered
ontrol. Since both processes will result in endpoint errors
hat depend on the visual hand-target vector in our exper-
ment, their contribution to overall movement variability in
Endpoint” conditions will align movement endpoint distri-
utions in “Endpoint” conditions with the direction of move-
ent.

To test if this explanation is borne out in practice we
an simulations for both “Endpoint” and “Displacement”
onditions. Based on a suggestion by an anonymous re-
iewer, we used our empirically observed values of d (Fig.
) to select relative contributions of target-, hand-centered
nd peripheral noise for our simulations. Since d was 1.2 in
Endpoint” conditions, the contribution of endpoint coding
o movement variability in “Endpoint” conditions was cho-
en to be 60%. The remaining 40% in “Endpoint” condi-
ions was chosen to consist of 30% peripheral noise and

0% vector coding. In “Displacement” conditions, model p
arameters were chosen based on the following reason-
ng. First, peripheral noise level in “Displacement” condi-
ions has to be the same as in “Endpoint” conditions, i.e.
0%. Second, we observed an average d of �1.1 in “Dis-
lacement” conditions, which implies that endpoint coding
ontributes �30% to overall movement variability. Choos-

ng 30% endpoint coding noise and 30% peripheral noise
eaves a remainder of 40% movement variability that must
e due to vector coding in “Displacement” conditions. To
ummarize, for “Displacement” conditions the contribution
f endpoint coding, vector coding and peripheral noise to
ovement variability was chosen to be 30%, 40% and
0%, respectively.

For simulations in both “Endpoint” and “Displacement”
onditions, we used noise characteristics described in Ap-
endix C. We deliberately chose the aspect ratio of central
oise error distributions to be 1.7 and total noise level to be
5%. We simulated 100 data sets for each condition. We
hen analyzed distributions of simulated movement end-
oints in the same way as we had analyzed our subjects’
ata (see Experimental Procedures: “Analysis of Distribu-
ions of Movement Endpoints”).

Fig. 10 shows simulated distributions of movement
ndpoints for “Endpoint” and “Displacement” conditions
lotted in the same format as our empirically observed
ata in Fig. 5. The only difference between Figs. 5 and 10

s that Fig. 5 shows portions of average movement traces
o illustrate alignment with direction of movement, whereas
ig. 10 shows portions of the visual hand-target vector

nstead. Choosing aspect ratios smaller or larger than 1.7
or the simulations will result in ellipses that are overall less
r more elongated, while leaving variations in aspect ratio
etween paths, configurations and conditions unaffected.
hoosing different total noise levels will result in scaled
ersions of the same ellipses.

It is evident from Fig. 10 that simulated ellipses align
ith the direction of movement in all conditions. Further-
ore, it is also evident that there are differences in ellipse

hape between different movement paths and between
Endpoint” and “Displacement” conditions, i.e. ellipses are
ore or less elongated or larger and smaller for certain
aths. To determine quantitatively how the simulated data
apture variations in endpoint distributions generated by
ur subjects we computed major and minor axis lengths of
orresponding ellipses shown in Fig. 10 and Fig. 5. We
hen correlated corresponding axes lengths separately for
ajor and minor axes and for major and minor axes com-
ined. We also computed the orientation of ellipses by
omputing major axis orientation. We limited major axis
rientation to the range 0–179°, since left/right up/down
ointing ellipses are the same. To determine quantitatively
ow similar major axis orientation is between subject gen-
rated and simulated data, we computed the angular-
ngular correlation between corresponding major axes ori-
ntations (Fisher, 1993). Figure 11 shows plots of ellipse
xes orientation and length in the left and right panel,
espectively. Correlation coefficients are indicated in each

lot.
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It is evident from the left panel in Fig. 11 and the high
ngular-angular correlation (r�0.86, z�3.31, P�0.001)
hat ellipse orientation between subject-generated and
simulated data correspond well. For ellipse axis length,
e observe that axes of simulated data generally exceed

hose of subject-generated data, because we arbitrarily
hose 15% overall noise level. Since overall noise level is
scale parameter it does not affect variation in ellipse axes

ength, however. With regard to variations in ellipse axes
ength, observe that our model predicts differences be-
ween major and minor axes lengths well. This is indicated
y the comparably low scatter in Fig. 11 (right panel) and

he high correlation coefficient when it is computed for
inor and major axes combined (r�0.86, t(46)�11.4,
�0.0001). Correlations drop when we correlate simu-

ated and subject generated axis length separately for
inor and major axes (major axes: r�0.61, t(22)�3.6,
�0.005) minor axes: r�0.52; t(22)�2.86, P�0.01). This

ndicates that our model simulations predict variation be-
ween major and minor axes lengths better than variations

ig. 10. Distributions of simulated movement endpoints in “Endpoin
onfiguration. Ellipse axes denote four standard deviations around the
or a (virtual) target. Parts of the visual hand-target vector have been
umbers identify ellipses and their corresponding paths and correspo
ithin minor and major axis lengths. e
We discovered that we could make the simulated data
redict our subjects’ data better by changing peripheral
oise characteristics, such as the direction in which exe-
ution noise ellipses are maximally elongated (compare
ig. A in Appendix C). Even though van Beers et al. (2004)
eport that execution noise is affected by location of work-
pace and subjects specific differences, we do not have a
rincipled way to determine those parameters for our cur-
ent data. Thus, even though it is possible to create a
etter fit between simulated and observed data, Figs. 10
nd 11 only show the results based on general execution
oise characteristics reported by van Beers et al. (2004).

In conclusion, our analyses suggest that ellipses de-
ived from our simulated data correspond reasonably well
o ellipses derived from subject-generated data. Thus,
ven though the results in Fig. 5 and Figs. 7 and 8 appear
ontradictory at a first glance, they are not. In fact, simu-

ations that incorporate both central and peripheral noise
ources can account for various aspects of our data. This
nding further emphasizes that distributions of movement

Displacement” conditions for each path between main targets in a
or easier visual comparison, ellipses are aligned on the group mean
indicate ellipse alignment with the simulated direction of movement.

mbers in Fig. 5.
t” and “
mean. F
ndpoints are affected by both central and peripheral noise
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rocesses and that this has to be considered in their
nterpretation.

DISCUSSION

ne of the major research questions regarding central
isuo-motor processes regards the question which param-
ters the CNS controls to guide the hand. In the literature,
odels that use hand- and target-centered control are

eferred to as vector and endpoint coding models, respec-
ively. Here we used a sequential movement paradigm that
anipulated the way visual information relevant for move-
ent production was presented to investigate if the CNS is

exible in its choice of control parameters. We analyzed
patial movement errors using a traditional analysis of
ovement endpoint distributions and a new analysis that
ses different recombination rules to investigate the con-

ribution of endpoint and vector coding to movement con-
rol. We used simulations to test if our new analysis recov-
rs the control model that generated the data under differ-
nt levels of peripheral noise.

Our control system analysis reveals that subjects em-
loy target centered control, i.e. endpoint coding, when
hey can reach towards a visible target but that they use
and-centered control, i.e. vector coding, when they can-
ot reach towards a visible target but have to explicitly
ompute the displacement vector of the hand. Our simu-
ations strongly suggest that our analysis is a reliable tool
o detect differences in central visuo-motor processes,
nless peripheral noise level exceeds 60% in “Endpoint”
nd 30% in “Displacement” conditions. “Endpoint” condi-
ions can be used to identify the level of peripheral noise in
ur data and we estimate it to be between 30% and 40%.
ince physical movement characteristics were almost

dentical in the two experimental tasks, we conclude that
ur analysis is a valid indicator of how the CNS controls
ovements in our experiment. Therefore, we conclude

hat the CNS does not employ a monolithic control system,

ig. 11. Scatter plots of ellipse parameters derived from subject gene
0, respectively. Ellipse orientations are plotted on the left. Ellipse maj
and 180° denote ellipses whose major axes are oriented horizontal
ut that it can change the coordinate system used to a
ontrol the limb depending on task demands. Thus, sub-
ects use predominantly endpoint or vector coding, de-
ending in the way visual information relevant for move-
ent production is specified. Based on this finding we

uggest that the scientific investigation regarding central
isuo-motor processes and visuo-motor transformations
hould not investigate if the CNS uses endpoint or vec-
or coding to guide the hand, but rather the conditions
nder which one or the other control strategy is used.

Our traditional analysis of movement endpoints did not
eveal any systematic differences between “Endpoint” and
Displacement” conditions, and the distributions were
ligned with the direction of movement in all conditions.
et, our control system analysis reveals a difference in the
ay movements are controlled in the two tasks. Based on

his finding we conclude that shape and orientation of
istributions of movement endpoints are not necessarily

ndicative of the way the CNS plans and controls move-
ents.

We estimate the level of peripheral noise in our data to
e between 30% and 40%. Even though our analysis is
mbiguous with respect to the exact level of peripheral
oise, our findings in combination with other reports in the

iterature (De Grave et al., 2004; Churchland et al., 2006)
evertheless raise the strong possibility that even in a
on-repetitive task the contribution of peripheral noise
ources can be substantial. In agreement with Church-
and et al. (2006), we therefore suggest that in order to
etter understand how the CNS transforms visual infor-
ation into movements, empiric data have to be inter-
reted in terms of both central and peripheral visuo-
otor processes.

In our experiments, we pitched vector coding and end-
oint coding models against each other. Our experimental
esign does not distinguish between head- and eye-cen-
ered endpoint coding. Furthermore, we cannot determine
he possible involvement of body-centered control mech-

d simulated data, i.e. parameters of ellipses shown in Fig. 5 and Fig.
nor axes are plotted on the right. Please note that orientations of both
rated an
or and mi
nisms, because not only the head, but also the body and
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houlder remained stationary throughout the experiment.
owever, our paradigm can be extended to systematically

est the involvement of eye, head and body by introducing
ystematic shifts of the gaze, head and/or body from trial to
rial.

ontribution of perceptual noise to movement
ariability

ne possible factor that we have not yet considered is the
otential impact of perceptual noise on observers’ move-
ent performance. Suppose, for example that observers’

udgments of distances in “Displacement” conditions were
ess reliable than their judgments of position in “Endpoint”
onditions. Other things being equal, we would expect in
hat case that the perceptual noise would influence the
eliability of subjects’ hand movements such that variability
n “Displacement” conditions would be greater than in
Endpoint” conditions. The results show clearly, however,
hat there were no significant differences in movement
ariability between these conditions and average move-
ent endpoints were virtually the same. Thus, it is reason-
ble to conclude from this finding that the “Displacement”
nd “Endpoint” conditions had comparable levels of visual
erceptual noise.

In addition to visual perceptual noise, distributions of
ovement endpoints are also affected by perceptual noise

hat arises for example when head, eye, body and hand
osition are sensed based on proprioceptive and efferent

nformation. For these noise sources it is also reasonable
o assume that they affected “Endpoint” and “Displace-
ent” conditions equally, because there were no differ-
nces in movement variability or average movement end-
oints between “Endpoint” and “Displacement” conditions.

In conclusion, even though we cannot give exact esti-
ates of the contribution of perceptual and/or peripheral
otor noise to movement variability in our experiment,
either of these noise sources is likely to have contributed
o the differences in movement coding that were revealed
y our control systems analysis.

elation to previous results

t has been reported previously, that the way visual infor-
ation is presented, affects errors in movement extent and
irection (Messier and Kalaska, 1997). Specifically, errors

n movement extent and direction follow the same scaling
ule when subjects reach towards a visible target, but they
cale independently when subsets have to compute the
isual displacement vector. As stated in the introduction,
his could be taken as evidence for the use endpoint vs.
ector coding in those two conditions. Yet, at the same
ime, large differences in overall error magnitude in Mess-
er and Kalaska’s experiments made a direct comparison
etween the two conditions difficult because peripheral
nd perceptual noise represent potential confounds. In the
urrent paper, we used a traditional analysis of movement
ndpoint distributions to investigate if endpoint distribu-
ions differ between the two conditions and we did not find
ny systematic differences. Thus, we can exclude periph-

ral and perceptual noise as potential confounds. At the B
ame time, our control system analysis suggests that sub-
ects use different central visuo-motor processes in the two
onditions. Therefore, our data are consistent with the

nterpretation of Messier and Kalaska’s (1997) results
iven in the introduction.

It has been reported that errors in pointing movements
o remembered targets depend on the direction of gaze,
uggesting the use of eye centered coordinates to guide
he hand towards a remembered location in space. These
ndings hold for both single hand movements (Henriques
t al., 1998) and movement sequences (Sorrento and
enriques, 2008). As mentioned in the introduction, end-
oint coding models need to employ visual coordinates
hat define target location independent from hand position,
nd eye/head-centered coordinates are typically used. Our
nding that subjects use endpoint coding in “Endpoint”
onditions is consistent with the finding that gaze shifts

nduces gaze-dependent pointing errors to remembered
argets. At the same time, we predict based on our results
hat a shift of gaze should not result in gaze-dependent
ointing errors to remembered targets, when subjects per-
orm in conditions equivalent to our “Displacement” condi-
ions. The reason for these predictions is that vector coding
odels need to employ visual coordinates that define the
and displacement vector. Thus, they cannot employ eye-
entered coordinates, because the eye-target vector will
ot match the hand-target vector unless the hand starts at
he eye. The effects of gaze shifts on pointing errors to
emembered targets in “Displacement” conditions remains
o be tested in future experiments.

Sequential hand movements have been used by other
esearchers in order to investigate how movements are
ontrolled. Two widely cited studies in this context were
onducted by Bock and Eckmiller (1986) and Bock and
rnold (1993). In both studies, the authors used a para-
igm that required subjects to point open loop to se-
uences of six to eight targets on each trial. They showed
hat errors accumulate (Bock and Eckmiller, 1986) and that
rrors on subsequent movements are correlated (Bock
nd Arnold, 1993). In an open loop pointing task, errors are
xpected to correlate, if subjects use vector coding and if
ubjects do not correct their errors. In contrast, if subjects
ither correct their errors or use endpoint coding, then the
ccumulation and correlation of errors should not occur.
an den Dobbelsteen et al. (2001) suggested that the
ccumulation (and thus correlation) of errors observed by
ock and Arnold (1993) is caused by systematic shifts in
and position that arise when vision of the hand is pre-
ented during sequences of open loop pointing (Wann and
brahim, 1992; Brown et al., 2003; Smeets et al., 2006).
owever, systematic shifts may also arise from error ac-
umulation. Thus, it is difficult to determine if shifts and
rror accumulation are either cause or effect.

The use of visual feedback in the current experiments
hould have prevented any systematic shifts in perceived
and position so that errors in successive movements
hould not have been correlated. In order to test this
rediction we applied the regression analysis described by

ock and Arnold (1993, pp 113, 114) to our data in “End-
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oint” conditions separately for each subject and path. To
est if correlations are significantly different from zero, we
veraged correlation coefficients separately for errors
long and orthogonal to the direction of movement across
aths for each subject and applied t-tests (two tailed) to

hese averages. The analysis reveals that correlations are
ignificantly larger than zero both along the direction of
ovement (r�0.3, t(7)�5.37, P�0.001) and orthogonal to

t (r�0.18, t(7)�5.03, P�0.0014). The correlations we ob-
erve are considerably lower than those observed by Bock
nd Arnold (which are around 0.6), but they differ from
ero. The correlation of errors we observe is puzzling and
t is not explained by any current model of either endpoint
r vector coding for conditions in which subjects receive
isual feedback about their current hand position (Feld-
an, 1966; Polit and Bizzi, 1979; Bizzi et al., 1984; Bock
nd Eckmiller, 1986; Gordon et al., 1994; Rosenbaum et
l., 1995; Rossetti et al., 1995; De Graaf et al., 1996;
esmurget and Prablanc, 1997; Ghez et al., 1997; Vindras
nd Viviani, 1998; van den Dobbelsteen et al., 2001).

One speculative explanation of the correlations we
bserve in our subjects’ data are that subjects used a
ybrid control strategy in “Endpoint” conditions (i.e. 60%
ndpoint coding, 10% vector coding, 30% peripheral
oise), and that the vector component of the movement
ommands was not completely updated by the visual feed-
ack we provided. Additional research will be required to
ore clearly resolve this issue.

isuo-motor processes in 2D vs. 3D

t has been suggested that the CNS may employ different
entral visuo-motor processes depending on the move-
ent degrees of freedom available (Desmurget et al.,
998). Our analysis in “Endpoint” conditions is similar to
ne used previously in 3D (van den Dobbelsteen et al.,
001). The analysis used in “Displacement” conditions is a
ignificant extension of that, which is introduced here for
he first time. Where comparable, i.e. in “Endpoint” condi-
ions, our results replicate previous findings (van den Dob-
elsteen et al., 2001). Since our results obtained in 2D
gree well with those obtained in 3D we believe that the
NS uses the same central visuo-motor mechanisms in
D and 3D. Furthermore, we suggest that differences in
he observed distributions of movement endpoints be-
ween 3 and 2D are caused by differences in peripheral,
ather than central visuo-motor processes. In this context,
t remains to be investigated how the results obtained in
Displacement” conditions generalize to 3D.

hanges in peripheral vs. central visuo-motor
rocesses

s it possible that differences between “Endpoint” and “Dis-
lacement” conditions are not caused by differences be-
ween central, but by differences in peripheral visuo-motor
rocesses? Physical movement characteristics are the
ame in the two conditions. Therefore, peripheral noise
hat arises at the neuro-muscular junction cannot explain

erformance differences between “Endpoint” and “Dis-
lacement” tasks. However, even though peripheral noise
tself is the same, it is nevertheless possible that the CNS
ses a different control law to deal with the peripheral
oise in “Endpoint” and “Displacement” conditions. Thus,
ven though differences in peripheral noise per se could
ot explain the results, differences in the control law cho-
en by the CNS could.

It has been suggested that the CNS is flexible in its
hoice of laws used to control noise that arises at the
euromuscular junction (Todorov and Jordan, 2002;
odorov, 2004). According to the framework of optimal
ontrol (Todorov and Jordan, 2002; Todorov, 2004) an

nitial planning stage selects higher order goals that are
hen used to define task relevant errors that determine the
hoice of error control laws. In our experiment, the task
elevant error as instructed to subjects can be considered
onstant, since in both “Endpoint” and “Displacement” con-
itions subjects were asked to move their hand as accu-
ately as possible to a location that was located at a certain
istance and direction with respect to their current hand
osition. However, even though the instruction-based task
elevant error can be considered constant, it is possible
hat subjects redefined the task and therefore, that we
ave different higher order goals in “Endpoint” and “Dis-
lacement” conditions. For example, the higher order goal

n “Endpoint” conditions could be that the endpoint errors
e minimized (i.e. deviations from the trajectory along the
ay are left uncorrected, as long as they do not increase
nal position error), whereas the goal in “Displacement”
onditions could be that the trajectory be traversed as
ccurately as possible (i.e. deviations from the trajectory
long the way are corrected, even if this leads to an

ncrease in final position error). If we permit a redefinition of
igher order goals this way, our results are consistent with
he model of optimal control. However, in order to predict
ur results, a model of optimal control would need to

ncorporate a mechanism that chooses a control law based
n the type of visual information that is used to specify the
equired movement on each trial. It follows that our con-
lusions about task dependent flexibility remain valid re-
ardless of whether one interprets the results in terms of
lternative control laws for peripheral noise or alternative
ypes of movement coding parameters.

cknowledgments—We thank R. van Beers and J.J. van den
obbelsteen for helpful comments and discussions regarding a
revious version of this manuscript.
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APPENDIX A

ere we explain how we computed displacement errors and how
e recombined displacement errors with hand-target vectors from
ther trials. Displacement errors were computed in terms of am-
litude and direction of the observed displacement, d, compared
o the hand-target vector, h-t, that pointed from the current hand
tarting position to the target location. Displacement amplitude
rrors were computed by dividing the observed displacement
mplitude by the corresponding hand-target amplitude, i.e.
A�Ad/Ah-t. Displacement orientation errors were computed as
ngular difference in orientation between observed displacement
nd hand-target vectors, i.e. ����d��h-t. To recombine displace-
ent errors with hand-target vectors from other trials, amplitude

rror was multiplied by the amplitude of the new hand-target vector
nd orientation error was added to the orientation of the new hand-
arget vector. Coordinates of fictional endpoints are then given by
os�����h'�t���AAh'�t��xh'�t and sin�����h'�t���AAh'�t��yh'�t, respec-
ively, where xh=-t and yh=-t are coordinates of the hand starting
osition of new hand-target vector. Displacement errors were
omputed in the same way in “Displacement” conditions. But
lease note that in “Displacement” conditions, the hand-target
ector, h-t, was equivalent to the target-to-target vector, t-t, or the
arget displacement vector, respectively, because subjects were
nstructed to always move over the target displacement from their
urrent position.

APPENDIX B

ere we explain the reason for, and the computation of normal-
zing observed and fictional displacements before computing their
D2D. If we compute SD2D of displacements that occurred to the
ame target from various starting points in either “Endpoint” or
Displacement” conditions, the variance of displacements partially
epends on variability due to the spatial separation of the different
tarting points with respect to the target. This in turn is determined

y the experimentally designed spatial layout of the target config-
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ration. It is easy to see that the more distant the different starting
oints are to the target and to each other, the larger the spatial
ariability introduced by experimental layout. If the spatial variabil-
ty introduced by experimental layout is large compared to the
ariability introduced by errors in hand movements, the ratio of
bserved to fictional displacement SD2D will always be close to
ne, which would bias our analysis towards endpoint coding. The
ias is reduced when analyzing single start–endpoint-paths. How-
ver, since the variance of starting points for a single path in the
Displacement” condition is always zero, due to the alignment that
emoves instruction-based errors, we have to invoke multiple
tarting points to perform our analysis. To overcome the bias in
he analysis introduced by variability due to experimental layout,
e normalized observed and fictional displacements with respect

o their corresponding target-to-target paths before computing
heir SD2D.

Observed and fictional displacements were normalized by
ividing their amplitudes, Ad, by the amplitude of the correspond-

ng target-to-target vector, At-t, and by computing the angular
ifference in orientation between the displacement �d and the
arget-to-target vector �t-t. Normalized displacement coordinates
re then given by cos��d��t�t��Ad ⁄ At�t� and sin��d��t�t��Ad ⁄ At�t�,
espectively.

APPENDIX C

ere we describe the implementation of central and peripheral
isuo-motor noise models.

Vector coding models assume that the goal state of the hand
s determined based on the vector h-t pointing from the hand to the
arget. Vector h-t has amplitude Ah-t�|h�t| and orientation �h-t.
entral error along vector h-t, �A.c, was modeled as normally
istributed with standard deviation 	A.c proportional to vector am-
litude. Thus, 	A,c�rA.c�Ah-t is the length of the major axis of the
entral error ellipse. Error orthogonal to vector h-t, �o.c, was mod-
led as normally distributed with standard deviation 	o.c�	A.c/
CentralNoise, so that aCentralNoise determines aspect ratio of error
llipses. To retain equal noise magnitude, i.e. ellipse area, for
ifferent ellipse aspect ratios, we can multiply each axis of the
llipse by �aCentralNoise, such that area is ��0.25�	2

A.c. The
rror ellipse fits into a tangent cone originating at h and with slope
f each leg �rA.c�aCentralNoise ⁄ 2aCentralNoise. Coordinates of error
ontaminated goal state, hp, for every trial are given by

�cos(�h�t) �sin(�h�t)

sin(�h�t) cos(�h�t)
� � �o.c

�A.c�Ah�t
���hx

hy
�

here hx and hy are the coordinates of hand starting position h.
ssuming zero mean noise, error ellipses are positioned on the

visible or virtual) target t. Ellipse area is determined by rA.c and
ector amplitude Ah-t, aspect ratio by aCentralNoise and orientation
y vector orientation �h-t. In “Displacement” conditions vector h-t
ointing from the hand to the target is the same as the visual
isplacement vector t-t.

Endpoint coding models assume that the goal state of the
and is determined based on the vector o-t pointing from the
ubject’s cyclopean eye to the target. Vector o-t has amplitude Ao-t

nd orientation �o-t. We modeled central errors for eye/head co-
rdinates based on the cyclopean eye because the subject’s head
emained stationary throughout the experiment (we used a chin
est) and because we can assume that subjects shift their gaze to
ook at the target or target displacement, respectively, on every
rial. Thus, the coordinate system is stationary both in eye cen-
ered (representation along the line of sight) and head-centered
oordinates and the cyclopean eye is a reasonable approximation
o both. Central error in eye/head-centered coordinates was mod-
led in the same fashion as in hand-centered coordinates, with the

ifference that errors were computed with respect to vector o-t,

3
e

nstead of vector h-t. Coordinates of error contaminated goal state,
p, for every trial are then given by

�cos(�o�t) �sin(�o�t)

sin(�o�t) cos(�o�t)
�� �o.c

�A.c�Ao�t
�

Assuming zero mean noise, error ellipses are positioned on
he (visible or virtual) target t. Ellipse area is determined by rA.c

nd vector amplitude Ao-t, aspect ratio by aCentralNoise and orien-
ation by vector orientation �o-t. In “Displacement” conditions, tar-
et t is obtained by translating the visual displacement vector t-t
nto the current hand position. Since visual feedback in “Displace-
ent” conditions was translated with respect to the physical hand
osition, we assume that this transformation could be achieved
ased on a proprioceptive estimate of hand position.

Peripheral noise was modeled according to the execution
oise characteristics suggested by van Beers et al. (2004). On
very trial, the hand moves from its current position h to the
esired goal state hp or along vector h�hp with orientation �h-hp

nd amplitude Ah-hp�|h�hp|, respectively. Movement trajectories
ere observed to be straight in our experiment. Thus, the major
xis of the execution error ellipse is expected to be aligned with
h-hp. Error along the direction of movement, �A.p, was chosen to
e normally distributed with standard deviation 	A.p proportional to
ovement amplitude. Thus, 	A,p�rA.p�Ah-hp is the length of the
ajor axis of the error ellipse. Variation of execution noise ellipse
spect ratio with movement direction (van Beers et al., 2004) can be
pproximated by the function aPeripheralNoise�0.75�sin�2�h�hp��3�. This

unction has maxima of 3 at 45 and 225°, and minima of 1.5 at 135
nd 315° and is plotted in Fig. A.

To vary aspect ratio the minor axis of the ellipse was chosen
o be 	A.p/aPeripheralNoise, such that error orthogonal to the direction
f movement, �o.p, was normally distributed with standard devia-
ion 	o.p�	A.p/aPeripheralNoise. To retain equal noise magnitude, i.e.
llipse area, across changes in movement direction, and thus
spect ratio, we multiply each axis of the ellipse by�aPeripheralNoise,

uch that area is ��0.25�	2
A.p. The error ellipse fits into a

angent cone originating at h and with slope of each leg �

A.p�aPeripheralNoise ⁄ 2aPeripheralNoise. Thus, the angular spread of exe-
ution noise is independent from movement amplitude. Coordi-
ates of execution noise contaminated movement endpoints for
very trial are given by

ig. A. Plot of the function aPeripheralNoise�0.75 (sin(2�h–hp)�3). This func-
ion has maxima of 3 at 45 and 225°, and minima of 1.5 at 135 and

15°. It was used to model movement direction dependent changes in
llipse aspect ratio for execution noise.
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�cos(�h�hp) �sin(�h�hp)

sin(�h�hp) cos(�h�hp)
� � �o.p

�A.p�Ah�hp
���hx

hy
�

here hx and hy are the coordinates of hand starting position h.
ssuming zero mean noise, error ellipses for execution noise
re positioned on planned movement endpoint hp. Ellipse area

s determined by rA.p and vector amplitude Ah-hp, aspect ratio by
PeripheralNoise and orientation by vector orientation �h-hp. Note that mag-
itude and direction of vector h–hp determine execution noise.

imulation parameters

e simulated central and peripheral noise models at levels from 0%
o 100% execution noise, in 10% steps and at overall noise levels of
.5%, 10% and 15% or base settings of rA�0.075, 0.1 or 0.15,
espectively. In order to keep absolute noise area constant, we
caled rA.c and rA.p accordingly. For example, at total noise level 7.5%
rA�0.075) and execution noise level 10%, rA.p would be equal to
.075· .1 and r would be equal to 0.075· .9. Both central noise
� A.c �
odels were simulated with aCentralNoise set to 2.5, 2, 1.7, 1.3 and 1. f
The different geometries of two central noise models, i.e.
ndpoint and vector coding, result in different absolute noise
agnitudes, i.e. ellipse areas, for same values of rA.c. For exam-
le, subjects’ eyes and head are always further away from the
timuli than subjects’ hands, such that the amplitude of the
ye-target vector generally exceeds the amplitude of the hand-
arget vector. If we computed errors based on the same noise
evel rA.c without any additional adjustment, absolute noise

agnitude, i.e. ellipse area, would be much larger for endpoint
oding, such that peripheral noise would contribute less to
ndpoint coding than to vector coding models for same values
f rA.c. Since the two central noise models make different
redictions regarding expected error magnitude for different
isual targets, it is theoretically unreasonable to equate ellipse
reas for individual targets or displacements. Thus, we decided
o match average ellipse area between vector and endpoint
oding models across all main and filler targets and/or displace-
ents, by introducing a scaling factor for different levels of r ,
A.c

or the endpoint coding model.
(Accepted 24 December 2008)
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