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Abstract—To perform visually guided hand movements the
visuo-motor system transforms visual information into move-
ment parameters, invoking both central and peripheral pro-
cesses. Central visuo-motor processes are active in the CNS,
whereas peripheral processes are active at the neuromuscu-
lar junction. A major share of research attention regarding
central visuo-motor processes concerns the question which
parameters the CNS controls to guide the hand from one
point to another. Findings in the literature are inconsistent.
Whereas some researchers suggest that the CNS controls
the hand displacement vector, others suggest that it controls
final hand position. The current paper introduces a paradigm
and analysis method designed to identify the parameters that
the CNS controls to guide the hand. We use simulations to
validate our analysis in the presence of peripheral visuo-
motor noise and to estimate the level of peripheral noise in
our data. Using our new tools, we show that hand movements
are controlled either in terms of the hand displacement vector
or in terms of final hand position, depending on the way
visual information relevant for movement production is spec-
ified. Interestingly, our new analysis method reveals a differ-
ence in central visuo-motor processes, even though a tradi-
tional analysis of movement endpoint distributions does not.
We estimate the level of peripheral noise in our data to be
less than or equal to 40%. Based on our results we conclude
that the CNS is flexible with regard to the parameters it
controls to guide the hand; that spatial distributions of move-
ment endpoints are not necessarily indicative of central
visuo-motor processes; and that both peripheral and central
noise has to be carefully considered in the interpretation of
movement data. © 2009 IBRO. Published by Elsevier Ltd. All
rights reserved.

Key words: hand movements, visuo-motor transformation,
execution noise, planning noise, endpoint coding, vector
coding.

To perform visually guided hand movements our visuo-
motor system performs several computations that are
noisy, thus resulting in movement errors. Indeed, many
researchers have analyzed movement errors in an effort to
determine the computational properties of central and
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peripheral visuo-motor processes (i.e. Soechting and
Flanders, 1989a,b; Soechting et al., 1990; Flanders et al.,
1992; Gordon et al., 1994; Mcintyre et al., 1997, 1998;
Messier and Kalaska, 1997; Harris and Wolpert, 1998;
Henriques et al., 1998; Carrozzo et al., 1999; van den
Dobbelsteen et al., 2001; Hamilton et al., 2004; van Beers
et al., 2004; Vindras et al., 2005; Simmons and Demiris,
2006). Central visuo-motor processes are active in the
CNS, whereas peripheral processes are active at the neu-
romuscular junction (van Beers et al., 2004; Churchland et
al., 2006).

Since peripheral noise arises at the neuromuscular
junction it depends on physical movement parameters,
such as the muscles involved, movement amplitude, direc-
tion, speed, etc. It follows that peripheral noise will be the
same as long as those parameters are the same. Only
recently has a model of peripheral noise been suggested
that explains a wide pattern of movement data (van Beers
et al,, 2004). However, it has also been reported that
neuronal activity arising prior to movement onset can pre-
dict ~50% of variability in movement speed. Since this
neural activity arises before the movement is performed, it
indicates the contribution of central visuo-motor processes
(Churchland et al., 2006). Based on these results it ap-
pears necessary to consider both peripheral and central
noise sources in the analysis and interpretation of visuo-
motor performance.

With regard to central visuo-motor processes it has
been of longstanding interest to determine which parame-
ters the CNS controls to guide the hand. Consider for
example the simple task of moving the hand from point A
to point B. To perform this task it is possible that the CNS
determines the desired goal state of the hand as an end
location in space (van den Dobbelsteen et al., 2001), as a
goal posture (Rosenbaum et al., 1995; Desmurget and
Prablanc, 1997) or as an equilibrium point (Feldman, 1966;
Polit and Bizzi, 1979; Bizzi et al., 1984) and that it employs
control mechanisms that monitor how the motor apparatus
advances toward its desired goal state. Alternatively, it is
also possible that the CNS determines the desired dis-
tance and direction that the hand has to travel, i.e. the
movement vector, and that it employs control mechanisms
that monitor how the hand traverses this vector (Bock and
Eckmiller, 1986; Gordon et al., 1994; Rossetti et al., 1995;
De Graaf et al.,, 1996; Ghez et al., 1997; Vindras and
Viviani, 1998). Even though the difference between these
two alternative control schemes appears subtle, it is funda-
mental. In the first scenario, which is referred to as endpoint
coding, movement vectors follow from end positions. In the
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second scenario, which is referred to as vector coding, posi-
tions follow from movement vectors. Consequently, endpoint
coding predicts that errors towards a particular point in space
depend on the target, but not on the path that the hand has to
traverse. In contrast, vector coding predicts that movement
errors will depend on the path the hand has to traverse, rather
than on a particular point in space.

Endpoint and vector coding models differ with regard to
the visual information that they use to determine the move-
ment goal. Typically, endpoint coding models determine
the desired end position of the hand based on visual
information in eye or head centered coordinates. By defi-
nition, endpoint coding models have to use coordinates
that define target position regardless of current hand position.
Otherwise, coordinates would specify the hand-target vector,
which would render endpoint coding equivalent to vector
coding. Vice versa, since vector coding models are based on
the idea that the CNS controls the movement vector, they
have to use a coordinate system that defines target position
with respect to the hand (Bock and Eckmiller, 1986; Vindras
and Viviani, 1998). Thus, they cannot use eye-centered co-
ordinates, for example, since distance and direction of the
eye-target vector will not match the hand-target vector, un-
less the movement originates at the eye.

Various methods have been used to investigate if the
CNS controls the final position or the displacement vector
of the hand. One popular approach is to characterize the
shape and orientation of distributions of movement end-
points by means of multivariate gaussian distributions, i.e.
by fitting them with an ellipse (in the plane) or with an
ellipsoid (in three-space). Results that have been obtained
with this method are inconsistent. Distributions that are
aligned with the direction of movement can be interpreted
as evidence for vector coding (Gordon et al., 1994; Mess-
ier and Kalaska, 1997) whereas distributions aligned with
the line of sight or the body can be interpreted as evidence
for endpoint coding (Soechting and Flanders, 1989a,b;
Flanders et al., 1992; Mclintyre et al., 1997, 1998; Carrozzo
et al., 1999; van den Dobbelsteen et al., 2001). Interest-
ingly, distributions in the plane have the tendency to be
aligned with the direction of movement, whereas distribu-
tions obtained in three-space have the tendency to be
aligned with the line of sight. Based on this observation it
has been suggested that subjects employ different central
visuo-motor processes, depending on the movement de-
grees of freedom available (Desmurget et al., 1998). This
interpretation is conditional on the assumption that periph-
eral and perceptual noise do not contribute to differences
between distributions of movement endpoints between
conditions. However, this assumption is difficult to justify
given differences in physical movement characteristics
(i.e. speed, curvature, amplitude, etc.) and overall noise
magnitude between 2D and 3D paradigms. It is important
to point out in this context that peripheral noise will mimic
vector coding whenever the movement trajectory is similar
to the visual hand-to-target vector (van Beers et al., 2004).
This situation might be more likely when movements are
performed in the plane. Thus, differences in peripheral

noise might be an alternative explanation for differences in
endpoint distributions between 3D and 2D paradigms.

Distributions of movement endpoints not only depend
on external factors that affect movement degrees of free-
dom, but also on how visual information is specified (Mess-
ier and Kalaska, 1997). For example, when target distance
and orientation are specified in the same plane as the
movement plane (both horizontal) and subjects can move
their hand towards a visible target, errors in movement
extent and direction increase at the same rate with move-
ment distance (Messier and Kalaska, 1997). In contrast,
when target distance and orientation are presented in the
vertical plane, whereas movements are performed in the
horizontal plane, such that subjects cannot reach towards
a visible target but are forced to mentally transform the
visual displacement into a hand movement, errors in
movement extent and direction follow different scaling
rules (Gordon et al., 1994; Messier and Kalaska, 1997).
Independence of errors in movement extent and direction
in hand-centered coordinates has been interpreted in favor
of the idea that the CNS uses vector coding. However, the
finding that extent and direction errors are dependent on
when subjects move their hand towards a visible target
challenges the generality of this interpretation.

The possibility arises that the way in which visual in-
formation is specified, determines how the CNS controls
movements. For example, it is possible that subjects con-
trol the movement endpoint when they can reach towards
a visible location, but that they control the hand displace-
ment vector when they have to explicitly transform the
visual displacement vector into a hand movement. How-
ever, the contribution of peripheral or perceptual noise
must also be considered in this context—e.g. see Messier
and Kalaska (1997).

In summary, the literature regarding peripheral and
central visuo-motor processes reveals a complex picture
with many seemingly discrepant findings (for more com-
plete reviews see Desmurget et al., 1998; Lacquaniti and
Caminiti, 1998; Desmurget and Grafton, 2000; Todorov,
2004). Of particular importance in this regard is the ques-
tion which parameters the CNS controls to guide the hand.
Some of the inconsistencies in the literature could potentially
be resolved if we assumed that central visuo-motor pro-
cesses (i.e. hand movement control parameters) adapt to
specific task demands. However, as of today the evidence for
flexible central visuo-motor processes is inconclusive be-
cause peripheral and perceptual noise sources have not
been considered as potential confounds.

The current experiments were designed to test if the CNS
is flexible in its choice of movement control parameters. We
decided to test this hypothesis using a sequential movement
paradigm that manipulates the way visual information rele-
vant for movement production was presented to subjects. To
analyze our data we extended a method that was introduced
by van den Dobbelsteen et al. (2001). This analysis method
is potentially more powerful than traditional techniques for
distinguishing vector from endpoint coding and may detect
differences in central noise properties even when distribu-
tions of movement endpoints are undistinguishable. To dem-
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onstrate the validity of our analysis in the presence of periph-
eral noise we modeled both central and peripheral noise
processes and applied our analysis to the simulated data. In
addition to demonstrating the power of our method, the sim-
ulations also enable us to estimate relative proportions of
central and peripheral noise in our data and to compare these
estimates to neuro-physiological estimates reported else-
where (Churchland et al., 2006).

EXPERIMENTAL PROCEDURES
Subjects

Eight subjects (six male, two female), including the authors, par-
ticipated in the experiment. One male subject reported being
left-handed and chose to perform the experimental task with his
left hand. Subjects gave informed consent before the experiment
and were paid for their participation. All subjects had self-reported
normal or corrected to normal vision.

Apparatus

A sketch of the experimental apparatus is provided in Fig. 1.
Subjects were seated on a height adjustable chair. Stimuli were
displayed on a rear projection screen and viewed by subjects in a
front-surface mirror that was mounted halfway between the rear
projection screen and a digitizing tablet. Subjects moved their
hands on the digitizing tablet. Thus, the mirror prevented subjects
from seeing their hand during the experiment. Matched distances
between mirror surface and screen, and mirror surface and tablet
made the mirror reflection of stimuli appear to be in the same
plane as the movement plane on the digitizing tablet.

Hand movements were recorded with a hand held stylus on the
digitizing tablet (AccuGrid, Model A90; Numonics Corporation, Mont-
gomeryville, PA, USA, 1200(H)x900(V) mm, accuracy 0.254 mm) at
a temporal and spatial resolution of 200 Hz and 40 lines/mm, respec-
tively. Stimuli were projected on the rear projection screen with a
VGA projector (Casio XJ-360, Casio Computer Co., Ltd, Tokyo,
Japan) at a temporal and spatial resolution of 60 Hz and
1024(H)x768(V) pixels, respectively. The active display area sub-

VGA Projector

tended 863(H)*x647(V) mm. Displays were viewed binocularly in a
darkened room and a chin rest was used to avoid changes in head
position. Subjects’ eyes were located ~460 mm above the tablet. A
computer (Dell Dimension 8300 PC, Dell Inc., Round Rock, TX, USA,
with an ATl Radeon 9700 PRO graphics card, AMD, Sunnyvale,
California, USA) was used to control stimulus presentation and data
collection. Before each experimental session, a projected 17-point
grid was aligned with a corresponding grid on the rear projection
surface to correct changes in lens position that could occur between
sessions.

Stimuli and task

Subjects performed sequences of hand movements in two condi-
tions that differed in the type of information that was used to inform
subjects of the required hand movement on each trial (Fig. 2). In
“Endpoint” conditions, subjects were presented with sequences of
visual targets, one target at a time. Targets consisted of black 5
mm diameter circles projected onto the virtual movement surface.
Subjects were instructed to move their hand smoothly from one
target to the next during a block, so that the endpoint of one
movement was the starting point for the next movement. In “Dis-
placement” conditions, subjects were presented with sequences
of visual displacement vectors, one at a time. Displacement vec-
tors consisted of one white and one black 5 mm diameter circle
projected onto the virtual movement surface. Subjects were in-
structed to move their hand to a location whose position with
respect to the hand starting point was identical to the position of
the black dot with respect to the white dot. Just as in “Endpoint”
conditions, the endpoint of one movement was the starting point
for the next movement. All stimuli were presented in front of a light
gray background covered with 2500 small, randomly positioned
points. Random positions were recomputed on every block. The
main difference between “Endpoint” and “Displacement” condi-
tions is that subjects can reach towards a visible target location in
“Endpoint” conditions, but that they have to mentally transform the
visual displacement vector into a hand displacement in “Displace-
ment” conditions. However, visual information is always specified
at the same scale and in the same plane as the movement plane.
We chose this presentation mode because we found previously
that perceptual errors in perceived distance are very similar in

Displayed Target Position

Rear Projection Screen
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\“L"‘ Virtual Image

.
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Digitizing Tablet Computer

Virtual Target Position

Fig. 1. Sketch of the experimental apparatus.
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Fig. 2. lllustration of the experimental task performed in “Endpoint” and “Displacement” conditions. In “Endpoint” conditions, subjects were presented with
sequences of black target dots, one at a time. Subjects were instructed to move their hand from one target to the next. In “Displacement” conditions, subjects
were presented with sequences of visual displacement vectors, one at a time. Subjects were instructed to move their hand from their current position to a
location whose position with respect to the hand starting point was identical to the position of the black dot with respect to the white dot.

these two conditions and with the spatial distances tested here
(Thaler and Todd, submitted for publication).

Fig. 3 provides a bird’'s-eye view of the virtual movement
surface and the experimental setup for right-handed subjects. The
setup was mirror symmetric for the left-handed subject. Targets or
visual displacements, respectively, were organized into two differ-
ent target configurations (Fig.3b, d and c, e) that were presented
in different blocks in pseudo-random order. Each configuration
consisted of three main coordinates (diamonds in Fig. 3b—e) and
four “filler” coordinates (crosses in Fig. 3b—e). Filler coordinates
were used to increase the variability of movement paths, but they
were traversed less often than main coordinates. Across filler and
main coordinates, there were 10 spatially distinct coordinates
across both configurations. The three main coordinates in config-
uration 1 (Fig. 3b, d) formed an equilateral triangle, each side
112.5 mm long. The three main coordinates in configuration 2
(Fig. 3c, e) formed a triangle with side length 150, 112.5 and 75
mm. In “Endpoint” conditions coordinates were presented in pseu-
dorandom order, such that the six possible paths between the
three main coordinates of a given configuration and an additional
six paths between any main and “filler” coordinates were traversed
every 12 movements. In “Displacement” conditions, subjects were
presented with visual displacements vectors computed as paths
between main and filler coordinates. The white dot of displace-
ment vectors was translated 100 mm to the left and 160 mm to the
front with respect to the starting point of the hand. Displacements
were presented in pseudorandom order, so that the six possible
paths between the three main coordinates of a given configuration
and an additional six paths between any main and “filler” coordi-
nates would be traversed every 12 movements.

Procedure

Each block began with the display of the hand starting position and
the first target, or displacement vector, respectively. To initiate a
block subjects moved their hand to the starting position. During this
phase subjects received continuous feedback on hand position via a
green cursor dot (3 mm diameter) projected on their real hand
position. Once subjects had remained within the 5 mm diameter
circle around the starting position for at least 1.8 s, a beep would

indicate the beginning of a block. Synchronous with the beep the
on-line hand feedback would disappear, while the target or displace-
ment vector and initial hand starting point would remain visible.

Subjects were instructed to move their hand as accurately as
possible in one smooth movement. No instructions were given
with respect to the speed of the movement. A movement was
considered to have ended when the subject's hand had moved
less than 1.5 mm during the last 400 ms. Then, a beep indicated
the end of a trial and feedback was given. Thus, subjects received
feedback after each single movement. In “Endpoint” conditions,
feedback was given via a green cursor dot (3 mm diameter) projected
onto the position of the hand. In “Displacement” conditions, the
feedback dot was not positioned on the subject’s hand, but indicated
subjects’ moved displacement translated onto the target displace-
ment. Thus, the cursor dot would coincide with the black dot of the
displacement, if a subject’'s movement matched the target displace-
ment. All subjects were aware that the location of the cursor differed
from the location of their hand. After 450 ms, another beep would
signal the next trial, the next target or target displacement would
appear, while the previous target and feedback would disappear.
From their current position, subjects then moved smoothly to the new
target or over the new target displacement. Subjects were instructed
to not move their hand in between trials.

Each block consisted of 49 movements using one of the two
possible configurations. The first movement was considered the
“starting movement” and during the remaining 48 movements
each of the six paths between any two main coordinates was
traversed four times (=24 movements) and the additional 24
movements consisted of paths between two filler coordinates.
“Endpoint” and “Displacement” conditions were blocked in ses-
sions that subjects performed in direct succession. Order of “End-
point” and “Displacement” sessions was counterbalanced across
subjects. In both “Endpoint” and “Displacement” sessions, each
subject performed six blocks, three blocks for each of the two
configurations that were presented in pseudorandom order. Thus,
each subject gave a total of 2 (conditions)x6 (blocks)x49 (tri-
als)=588 responses and 12 responses were given by each sub-
ject to each path between any two main coordinates of a config-
uration in both “Displacement” and “Endpoint” conditions. In the
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Fig. 3. (a) Bird’'s-eye view of the (virtual) movement area (not drawn to scale). (b, c) Configurations used in “Endpoint” conditions. In the actual
experiment, targets were indicated with black circles. Subjects never saw a complete configuration, but only one target at a time. (d, e) Configurations
used in “Displacement” conditions. In the actual experiment, displacements were indicated with white and black circles. Subjects never saw a complete
configuration, but only one displacement at a time. Coordinates of hand starting points are given with respect to subjects’ eye position. Setup for the

left-handed subject was mirror symmetric.

beginning of “Endpoint” and “Displacement” sessions, each sub-
ject performed at least 20 practice trials to get familiar with the
task. Practice trials were not recorded. Total experimental time
was about 50 min per subject. On questioning all subjects re-
ported that both tasks felt quite natural to them.

Data analysis

Analysis of movement kinematics and trajectory shape.
There is the possibility that factors such as average movement
velocity, peak movement velocity, movement duration and trajec-
tory shape differ between “Endpoint” and “Displacement” condi-
tions. If this was the case, peripheral noise is a potential covariate
that would affect our conclusion regarding central visuo-motor
processes. As a numerical measure of trajectory shape, we com-
puted the curvedness of smoothed movement traces as the max-
imum absolute deviation of a point on a trajectory to a straight-line
connecting end and start points, divided by trajectory length (At-

keson and Hollerbach, 1985). We multiplied this value by 100 to
transform the measure into a percentage—e.g. a value of 50%
indicates a semicircular trajectory. Furthermore, we computed the
average movement distance, average movement velocity, peak
movement velocity and movement duration for all movement
traces for each subject. Velocities were obtained by numerical
differentiation. All computations were applied to movement trajec-
tories smoothed with a 7 Hz Butterworth filter.

Analysis of distributions of movement endpoints.  As a stan-
dard analysis, we fit the distributions of movement endpoints using
minimum variance ellipses. The analyses were performed for
every subject separately. To characterize the shape of the distri-
bution we fitted a minimum variance ellipse to all movement
endpoints made along each possible movement path (Gordon et
al., 1994; van Beers et al., 2004) by computing the eigenvalues A
and the eigenvectors of the 2X2 sample covariance matrix R,
whose elements are given by:
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where the deviation 8=p,—p is the endpoint of movement i along
one of two orthogonal axes (rows and columns j, k C {x, y}) and p
is the mean position over n trials. The square root of the eigenvalues
corresponds to the standard deviation of movements along each
axis specified by the associated eigenvectors. The aspect ratio of
the ellipse was determined by dividing the square root of the lar-
ger eigenvalue by the square root of the smaller eigenvalue,
i.e. \/M/~/A2. The larger the ratio, the more elongated the
ellipse. Ellipse size depends on magnitude of the eigenvalues and
computing the SD of movements in the plane is equivalent to
computing ellipse area:

2

In addition to computing minimum variance ellipses we also
computed standard deviation of movement endpoints in the direc-
tion of movement (on-axis errors) and orthogonal to it (off axis
errors) and took their ratio (on-axis/off-axis) (Gordon et al., 1994;
Messier and Kalaska, 1997). This analysis will yield a different
result from the minimum variance ellipse analysis whenever the
major axis of the minimum variance ellipse is not oriented in the
direction of movement. In the extreme, i.e. when the major axis of
the minimum variance ellipse is oriented orthogonal to the direc-
tion of movement, the ratio of on- and off-axis errors is the inverse
of the aspect ratio of the minimum variance ellipse.

The same analyses was performed for movements in “Dis-
placement” conditions, with the difference that we first aligned
movements on those targets that had been used as starting point
in the computation of the target displacement. The reason for
alignment is that the instruction to subjects to always move over
the visual displacement from their current position introduces
shifts of subsequent movements in the direction of any preceding
error. Alignment removes variability due to those instruction-
based shifts.

Control system analysis. In our control system analysis, we
tested to what degree subjects use vector and endpoint coding in
“Endpoint” and “Displacement” conditions. If subjects use vector
coding, movement errors with regard to targets in space should
result from errors that depend on the displacement vector of the
hand. In contrast, if subjects use endpoint coding, errors with
regard to the displacement vector of the hand should result from
errors that depend on targets in space. (Assuming that subjects
look at the target on every trial and assuming that their head
remained stationary in the chinrest, eye- (i.e. line of sight), head-
(i.e. cyclopean eye) and body-centered coordinates remain stable
throughout our experiment and do not vary with the movement
of the hand. Thus, our paradigm and analysis enables us to
distinguish between hand- and target-centered control param-
eters, i.e. between vector and endpoint coding. However, our
analysis does not permit us to distinguish between different
types of endpoint coding. In principle, our paradigm and anal-
ysis could be extended to determine if subjects use eye-, head-
or body-centered endpoint coding by incorporating systematic
shifts of the gaze, head and body.) Our analysis illustrated in
Fig. 4 exploits this logic and is an extension of an analysis
introduced by van den Dobbelsteen et al. (2001).

On each trial, subjects move from one target location to another,
or over a certain target displacement, respectively. We can decom-
pose each movement (Fig. 4a) into three components: Let us define
movement start and endpoints as observed start and observed end-
points (Fig. 4b) and the straight line that joins observed start and
ending points as observed movement displacement (Fig. 4g).

To determine to what degree subjects use hand-centered
control, i.e. vector coding, in “Endpoint” conditions we followed the
steps illustrated in Fig. 4b—f. First, we computed all observed
movement start and endpoints made from any other target to-
wards a certain main target (Fig. 4b). Then, we computed SD,, of
observed endpoints for a particular main target—across all start-
ing points. This is equivalent to computing movement errors with
regard to targets in space (Fig. 4c). Then, we combined observed
displacements with start points from other movements. (The com-
bination of a displacement from one trial with the starting point of
another assumes that all displacements towards a particular tar-
get are planned according to the same visual target displacement.
This assumption is not met in our experiment, because subjects
moved towards a target from various starting points and because
subjects received visual feedback that created a different visual
displacement vector on every trial. Thus, it is conceptually incor-
rect to combine a displacement from one trial with the starting
point of another. We therefore did not recombine displacements
with starting points (as shown in Fig.4d), but we recombined
displacement errors with hand-target vectors instead. The com-
putation of displacement errors and the recombination procedure
are described in Appendix A.) This is equivalent to reshuffling
errors that depend on the displacement vector of the hand (Fig.
4d). From this recombination, we obtained fictional endpoints (Fig.
4e). If subjects use vector coding, errors in movement endpoints,
i.e. target specific error distributions, should result from errors that
depend on the hand displacement vector. Thus, endpoint errors
that result from random combination of observed displacements
and observed start points should be the same as endpoint errors
that we observe in our data. To test if this is the case, we
computed SD,j of fictional endpoints in a next step (Fig. 4f) and
then compared the magnitude of fictional and observed endpoint
SD,p, by taking the ratio of observed over fictional endpoint SD,.
This ratio can be interpreted as the proportion of the variance that
can be explained based on vector coding, i.e. hand-centered
control. If we multiply it by 100, we obtain a percentage. If the CNS
uses hand-centered control, i.e. vector coding, the proportion of
variance that can be explained should be close to 100%. A similar
analysis was performed for “Displacement” conditions, with the
difference, that we first aligned movements on those targets that
had been used as starting point in the computation of the target
displacement to remove instruction based movement shifts. After
alignment, we can then compute observed and fictional displace-
ments in the same way as in “Endpoint” conditions.

To determine to what degree subjects use target centered
control, i.e. endpoint coding, in “Endpoint” conditions, we followed
the steps illustrated in Fig. 4g—k. First, we computed all observed
displacements made from any other target towards a certain main
target (Fig. 4g). We then aligned the displacements at their origin
and computed the SD,, of the aligned observed displacements by
fitting a minimum variance ellipse. This is equivalent to computing
movement errors that depend on the hand displacement vector
(Fig. 4h). In a next step, we combined observed endpoints with
observed start points from other movements that had been made
to the same target. This is equivalent to reshuffling target specific
errors (Fig. 4i). From this recombination, we obtained fictional
displacements (Fig. 4j). If subjects use target centered control, i.e.
endpoint coding, errors in hand displacements, i.e. hand-centered
error distributions, should result from errors that depend on targets
in space. Thus, displacements that result from recombination of
start and endpoints should be the same as the ones that we
observe in our data. To test if this is the case, we aligned the
fictional displacements and computed their SD,y (Fig. 4k) and
then compared the magnitude of fictional and observed displace-
ment SD,, by taking the ratio of observed over fictional displacement
SD,p. This ratio can be interpreted as the proportion of the variance
that can be explained by target centered control, i.e. endpoint coding.
If we multiply it by 100, we obtain a percentage. If the CNS uses
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Fig. 4. lllustration of control system analysis. * Displacements were transformed into displacement errors before recombination (see Appendix A).
** Displacements were normalized before computation of SD,, (see Appendix B).

target-centered control, i.e. endpoint coding, the proportion of vari-
ance that can be explained should be close to 100%. A similar
analysis was performed for “Displacement” conditions with the differ-
ence that we first aligned movements on those targets that had been
used as starting point in the computation of the target displacement
to remove instruction based movement shifts. After alignment, we
can then compute observed and fictional displacements in the same
way as in “Endpoint” conditions.

The analysis described in the previous paragraph and illustrated
in Fig. 4g—k is biased towards endpoint coding, whenever spatial
variability introduced by experimental layout is large compared to
spatial variability introduced by central visuo-motor processes. To
improve the sensitivity of our analysis we thus normalized observed
and fictional displacements prior to computing their SD,,. Please see
Appendix B for a detailed explanation and computational details.

To create fictional endpoints or displacements we recombine
movement components from different trials and due to pseudo-
randomization, we can recombine movement components that
occurred within an average separation of multiples of six trials.
Systematic variation of the number of intervening trials allows us
to determine if there are systematic shifts in performance over
time. If there is a systematic shift, we should see a systematic
change in computed ratios as the number of intervening trials
increases (van den Dobbelsteen et al., 2001).

Model simulations

In an effort to confirm the validity of the control parameter analysis
and to assess how it would be affected by central and peripheral
noise, we simulated the performance of ideal subjects using dif-
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ferent control schemes and analyzed the results using the same
analyses that were applied to the actual subjects. We simulated
subjects using hand- and target-centered control in the presence
of different levels of peripheral noise (0%—100% peripheral noise
in 10% steps). At 0% peripheral noise, all movement errors are
determined by noise that arises in the determination of the goal
state of the hand. At 100% percent peripheral noise, all movement
errors are determined by noise that arises at the neuromuscular
junction during movement execution. Assuming independence
between central and peripheral noise (van Beers et al., 2004)
errors from the two processes were added. However, please note
that even though peripheral and central errors are statistically
independent and thus added, the distribution of peripheral noise is
nevertheless contingent on central noise, because the planned
goal state of the hand determines movement magnitude and
direction and thus distribution characteristics of peripheral noise.

We simulated five different aspect ratios (major/minor axis) of
central visuo-motor error ellipses (2.5, 2, 1.7, 1.3 and 1) as well as
three different total noise levels (7.5%, 10% and 15%). Both vector
and endpoint coding models were simulated 100 times at all levels
of execution noise, yielding 1100 simulated data sets for each
model and central noise aspect ratio. Each simulation “performed”
the same experiment as any of our subjects and thus gave a total
of 2 (conditions) X6 (blocks)x49 (trials)=588 responses and 12
responses to each path between any two main coordinates of a
configuration in both “Displacement” and “Endpoint” conditions.
The following paragraphs briefly describe the gist of our simula-
tions. A more detailed description is given in Appendix C.

Peripheral noise was modeled as noise in the results as
zero-mean, bivariate gaussian errors, or error ellipses, respec-
tively, based on the execution noise distribution characteristics
reported by van Beers et al. (2004). We implemented peripheral
noise in the results, instead of process noise, because result noise
is sufficient to investigate its effect on our analysis.

Central, vector coding noise was modeled as normally distrib-
uted with standard deviations proportional to the amplitude of the
hand-target vector (Gordon et al., 1994; Messier and Kalaska,
1997). In “Endpoint” conditions, the hand target vector was ob-
tained by computing the vector pointing from the current simulated
hand position towards the visible target. In “Displacement” condi-
tions, the hand target vector was equal to the visual displacement
vector. To obtain error ellipses that are elongated in the direction
of the hand-target vector, standard deviation of errors orthogonal
to the hand-target vector was chosen to be a scaled version of
standard deviation of errors along the hand-target vector. Choos-
ing error distributions this way, results in bivariate gaussian error
distributions, i.e. central noise error ellipses, whose aspect ratio is
constant across movement direction and whose area increases
with increasing hand-target vector amplitude. Assuming zero
mean noise, central error ellipses are positioned on the (either
visible or virtual) target.

Central, endpoint coding noise was modeled in the same way
as hand-centered noise, with the only difference that errors were
computed with respect to eye/head-target vector, instead of hand-
target vector (Mclintyre et al., 1997, 1998; Carrozzo et al., 1999;
van den Dobbelsteen et al., 2001). For our model, we assume that
subjects compute target coordinates either with respect to the line
of sight (in eye-centered coordinates) or with respect to the line
passing from the stationary cyclopean eye through the visible or
virtual target (head centered). It follows that eye- and head-cen-
tered models are equivalent in our experiment. Thus, in “Endpoint”
conditions we obtained the eye/head—target vector by computing
the vector pointing from the cyclopean eye towards the visible
target. In “Displacement” conditions, it was obtained by shifting the
visual displacement vector onto the current simulated hand posi-
tion and computing the vector pointing from the cyclopean eye
towards the endpoint of the shifted displacement vector. Since
subjects did not receive feedback on their current hand position in

Table 1. Statistics on various movement parameters computed across
movement paths, configurations and subjects

Mean SD Median  Min Max

Endpoint conditions
Mean velocity (cm/s) 10.5 1.9 10.2 6.8 16.4
Peak velocity (cm/s) 371 8.5 34.9 23.9 62

Duration (s) 1.2 0.2 1.2 0.7 15

Curvedness (%) 4.3* 2.9 35 1.3 16.9

Movement amplitude 119 26 115.0 76 197
(mm)

Displacement conditions
Mean velocity (cm/s) 10.5 1.9 10.4 5.8 16.1
Peak velocity (cm/s) 36.1 74 35.2 20.9 60.7

Duration (s) 1.1 0.2 1.1 0.8 1.6

Curvedness (%) 25 0.7 24 1.2 4

Movement amplitude 113 23 112.0 65 166
(mm)

* Significant difference in means between “Endpoint” and “Displace-
ment” conditions, P<<0.05.

“Displacement” conditions, we assumed for this simulation that
subjects estimated current hand position proprioceptively.

RESULTS
Behavioral results

Movement kinematics and trajectory shape. Table 1
shows the results of the analysis of movement velocities,
duration, distance and curvedness across configurations
and spatial coordinates and subjects. To assess statistical
significance we applied a repeated measures ANOVA with
“condition” and “path” as repeated measures factors,
where “path” was defined as the 12 distinct paths between
any two main coordinates across both configurations. Ex-
cept for trajectory curvedness, none of these measures
exhibited a significant main effect of “condition” or a sig-
nificant interaction. Movement trajectories are significantly
more curved in “Endpoint” than in “Displacement” condi-
tions (F, ,=7.689, P=0.028), as indicated by a 1.8% drop
in curvedness from 4.3% in “Endpoint” conditions to 2.5%
in “Displacement” conditions. However, curvedness values
are overall very low indicating that movement trajectories
were very close to straight-line trajectories in both condi-
tions. In summary, it appears that physical movement pa-
rameters do not differ between “Endpoint” and “Displace-
ment” conditions. Since peripheral noise depends on phys-
ical movement parameters such as movement velocity,
duration, distance and trajectory shape we can assume
that peripheral noise does not differ between “Endpoint”
and “Displacement” conditions.

Error distributions.  Fig. 5 shows ellipses fitted to dis-
tributions of endpoints in “Endpoint” and “Displacement”
conditions. For better visibility, the length of each axis in
Fig. 5 corresponds to four times the standard deviation
along that axis. Ellipses obtained for clockwise and coun-
terclockwise movement directions have been plotted with
solid and dashed lines, respectively. To allow for easy
visual comparison of ellipse size and shape, ellipses are
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Fig. 5. Distributions of movement endpoints in “Endpoint” and “Displacement” conditions for each path between main targets in a configuration. Ellipse
axes denote four standard deviations around the mean. Ellipses were computed for each path after subtracting each subjects mean for that path. For
easier visual comparison, individual subject’'s movement endpoints and ellipses are aligned on the group mean for a (virtual) target. Parts of average
movement traces have been plotted to indicate alignment with the last part of a movement trajectory. Numbers identify ellipses and their corresponding

paths.

positioned on the average movement endpoint across sub-
jects and paths for a given target. To provide visual indi-
cators of ellipse alignment with the last part of a movement
trajectory, the last part of average movement trajectories
along each path has been plotted as well. Numbers identify
ellipses and their corresponding paths.

Overall, it is apparent from Fig. 5 that distributions of
endpoints vary in size, shape and orientation depending on
the movement path. Ellipses are generally elongated in the
direction of movement and aligned with the last part of the
movement trajectory, indicating that movement variability
depends on the direction of movement in hand centered
coordinates. Comparing corresponding ellipses between
“Endpoint” and “Displacement” conditions reveals that
even though some ellipses show a tendency to be more
elongated in the direction of movement in “Displacement”
conditions (i.e. ellipses 1, 6, 11 and 16) differences are
rather subtle. Furthermore, some ellipses do not appear to
differ in elongation at all (i.e. ellipses 3, 4, 13, 14 and 15)
and some are actually less elongated in “Displacement”
compared to “Endpoint” conditions (ellipse 2). Overall, the
size of ellipses, i.e. overall error magnitude, appears to be

similar across the two conditions, even though one ellipse
(ellipse 15) increases noticeable in size in “Displacement”
conditions.

To determine if there are statistically significant differ-
ences in ellipse shape between “Endpoint” and “Displace-
ment” conditions, we applied repeated measures ANOVA
with “condition” and “path” as repeated measures factors
to each of the various ellipse shape measures shown in
Table 2. The “path” factor was defined as the 12 distinct
paths between any two main coordinates across both con-
figurations. None of the analyses revealed a significant
main effect of condition. This result is in agreement with
our observation from Fig. 5 that on a global level ellipse
shape and size does not seem to differ between “Endpoint”
and “Displacement” conditions. However, all analyses re-
vealed a significant interaction between “condition” and
“path.” This result is in agreement with our observation
from Fig. 5 that some ellipses change shape, even though
the change may go into different directions (i.e. increase or
decrease in elongation) for different ellipses. To determine
for which ellipses changes in shape are statistically signif-
icant we computed paired samples t-test for each shape
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Table 2. Various measures of ellipse shape

Statistic Endpoint conditions Displacement conditions Ellipses that are significantly
different (P<0.05)
Average SD Average SD
On axis error (mm) 10.5 4.70 12,5 34 1,15
Off axis error (mm) 7.7 3.20 7.9 2.8 15
ON/OFF 1.45 0.63 1.8 0.99 1,6
Major axis length (mm) 1.4 5.00 131 3.2 1,15
Minor axis length (mm) 6.4 2.30 7.0 2.4 2,12, 15,16
Major/minor 1.83 0.68 2.1 1.1 1
SD,p (Mm?) 64 47.00 75 37 15

Averages and SD were computed across configurations, paths and subjects. Significance was assessed using paired samples t-tests. Ellipse

numbers correspond to ellipse numbers in Fig. 5.

measure between corresponding ellipses in “Endpoint”
and “Displacement” conditions. The results of this analysis
are shown in Table 2. The results are in good agreement
with Fig. 5, in that ellipses that are statistically significantly
different also look different (ellipses 1, 2, 6, 16 and 15).

In summary, ellipse shape appears to depend on the
movement path, i.e. distance and direction in hand-cen-
tered coordinates, in both conditions. Even though there
are some statistically significant differences in ellipse
shape between “Endpoint” and “Displacement” conditions,
our statistical analysis indicates that these differences are
limited to certain movement paths and do not apply on a
global level. Furthermore, changes are not consistent for
the two conditions, i.e. some ellipses increase in elonga-
tion, whereas others decrease. Most importantly, overall
SD,p and thus overall error magnitude is the same in
“Endpoint” and “Displacement” conditions.

Based on this traditional analysis of movement end-
point distributions there appears to be no difference in
distributions of movement endpoints, and thus no differ-
ence in the coordinate system that the CNS uses for
movement planning in “Endpoint” and “Displacement” con-
ditions. Furthermore, the observation that ellipses are gen-
erally aligned with the direction of movement is consistent
with previous reports in the literature that investigated
hand movements in the plane (Messier and Kalaska, 1997)
and one might conclude that subjects use hand-centered
control, i.e. vector coding, in both tasks in our experiment.
However, as mentioned in the introduction, an interpreta-
tion of distributions of movement endpoints solely in terms
of central visuo-motor processes is problematic (Church-
land et al., 2006) and the alignment of movement end-
points with the direction of movement could also be ex-
plained based on peripheral noise (van Beers et al., 2004).

Constant movement errors. Fig. 6 shows each sub-
ject’'s average movement endpoint for a given path. Aver-
ages were computed for movement paths between any
two main targets in a configuration. Group averages in
clockwise and counterclockwise movement directions
have been connected with solid and dashed lines, respec-
tively. It is apparent that movement endpoints in “Endpoint”
and “Displacement” conditions are virtually identical. It is
also evident that despite individual differences average
endpoints of subjects’ movements are shifted in the direc-

tion of movement in clockwise and counterclockwise direc-
tions, respectively. The average spatial shift of endpoints
with respect to each other is 8.4 mm. Overall, it is evident
from the average movement endpoints that subjects are
equally accurate in both “Endpoint” and “Displacement”
conditions. Average movement endpoints therefore do not
differ between the two conditions and one might conclude
that subjects rely on the same central visuomotor pro-
cesses in “Endpoint” and “Displacement” conditions.

Control system analysis. Our control system analysis
is a potentially more powerful tool to investigate how move-
ments are controlled. As mentioned in the introduction the
analysis used in the current paper is an extension of an
analysis first introduced by van den Dobbelsteen et al.
(2001). Fig. 7 shows the results of our analysis for both
“Endpoint” and “Displacement” conditions. Filled and open
symbols indicate average percentage of variance ac-
counted for by endpoint coding (target centered control)
and vector coding (hand centered control), respectively,
across subjects, targets and configurations. Denoted on
the abscissa is the average number of movements that
separated movements used for recombination. Dotted
lines indicate the beginning of a new block. Since presen-
tation order of the two different target configurations was
pseudo-randomized within “Displacement” and “Endpoint”
sessions, each dotted line corresponds to an average gap
of one block of (49 movements). Error bars indicate stan-
dard errors of the mean across subjects, targets and
configurations.

It is apparent from Fig. 7 that in “Endpoint” conditions
endpoint coding accounts for a larger proportion of move-
ment variance (75%) than vector coding (60%). The oppo-
site pattern of results holds in “Displacement” conditions,
where vector coding accounts for a larger proportion of
movement variance (90%) than endpoint coding (65%).
This finding is strong evidence for the idea that central
visuo-motor processes differ between “Endpoint” and “Dis-
placement” conditions. Specifically, our results suggest
that subjects employ hand-centered control in “Displace-
ment” conditions, and target-centered control in “Endpoint”
conditions. Interestingly, our analysis reveals this differ-
ence between “Endpoint” and “Displacement” conditions,
even though standard analyses of distributions of move-
ment endpoints do not.
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Fig. 6. Average movement endpoints in “Endpoint” and “Displacement” conditions computed for every path between main targets in a configuration.

Group means have been connected with lines to show systematic shifts.

In “Endpoint” conditions, there is a small systematic
change in observed ratios over time. However, a repeated
measures ANOVA with “average shift” as repeated mea-
sures variable revealed that neither linear nor quadratic
trends are significant. Thus, we conclude that there is no
systematic shift in hand position over time in our data.

The results obtained on the group level hold for indi-
vidual subjects as well. To obtain a compact measure of
performance for each subject we computed the normalized
difference d in explained variability between hand- and
target-centered control for “Endpoint” and “Displacement”
conditions as d=(Pyger—Phana)/ \/ (Starget+ Shand) / 2, Where
P is the average proportion of explained variability and s
is the sample variance across targets, configurations and
movement shifts. d is negative when hand-centered con-
trol, i.e. vector coding, explains a higher proportion of vari-
ability and positive when target-centered control, i.e. end-
point coding, explains a higher proportion of variability. Fig. 8
shows d plotted separately for “Endpoint” and “Displace-
ment” conditions. As expected, d is positive (mean=1.2)

for all subjects in “Endpoint” conditions and negative
(mean=—1.1) for all subjects in “Displacement” conditions
and the difference is significant (t,,=4.79, P=0.002, t-test
for paired samples, two-tailed). We did not find systematic
differences between targets.

Simulation results

Validity of control system analysis. To confirm the
validity of our analysis we simulated the performance of
ideal subjects using endpoint and vector coding in the
presence of different levels of peripheral noise. We then
applied the control system analysis to each simulated data
set in the same way that we analyzed the movement data
of the actual subjects to determine the normalized differ-
ence d in the proportion of explained variability between
target- and hand-centered control for each simulation. It is
important to keep in mind that d is negative when hand-
centered control explains a higher proportion of variabil-
ity and positive if target-centered control explains a hig-
her proportion of variability. Thus, if this is indeed a valid
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Fig. 7. Results of the control system analysis in “Endpoint” and “Displacement” conditions. Denoted on the ordinate is the average percentage of
variance accounted for by endpoint and vector coding, i.e. target- and hand-centered control, respectively, across subjects, targets and configurations.
Denoted on the abscissa is the average number of movements that separated movements used for recombination. Dotted lines indicate the beginning
of a new block (gap of 49 movements). Error bars indicate standard errors of the mean across subjects, targets and configurations.

analysis, then d should be positive when a data set is
generated by the endpoint coding model, and it should be
negative when a data set is generated by the vector coding
model. For each condition, we also computed the proba-
bility that our analysis correctly recovers the model that
generated the data p(m|m).

We found that d and p(m|m) were unaffected by aspect
ratio of central noise as well by absolute level of noise.
Therefore, Fig. 9 shows d collapsed across aspect ratios of
central noise and total noise levels and plotted as a func-
tion of peripheral noise level. The left and right panels
show the results in “Endpoint” and “Displacement” con-
ditions, respectively, and filled and open symbols repre-
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-1 -g- Group
Mean
2 ©
Endpoint Displacement
Conditions Conditions

Fig. 8. Normalized difference in proportion of explained variability
between hand- and target-centered control (D) in “Endpoint” and “Dis-
placement” conditions.

sent average d for data sets generated by endpoint
coding and vector coding models. Numbers above each
data point indicate p(m|m) across aspect ratios of plan-
ning noise and total noise levels. Error bars denote
standard deviation of d.

It is evident from Fig. 9 that d and p(m|m) are system-
atically affected by levels of peripheral noise. In both “End-
point” and “Displacement” conditions, d is well above zero
for data sets generated by the endpoint coding model and
well below zero for data generated by the vector coding
model when peripheral noise level is zero and p(m|m) is
one or close to one. This indicates that our control system
analysis correctly recovers the model that generated the
data when no peripheral noise is present. However, as
peripheral noise increases, d as well as p(m|m) decreases
for data sets generated by the endpoint coding model. In
“Endpoint” conditions, d is well above zero and p(m|m) is
larger then 0.9 until peripheral noise level reaches 60%.
In “Displacement” conditions, d is well above zero and
p(m|m) is larger than 0.9 only until peripheral noise level
reaches 30%. Thus, when peripheral noise exceeds 60%
in “Endpoint” conditions and 30% in “Displacement” con-
ditions, our coordinate system analysis has a bias to at-
tribute higher proportion of explained variability to the vec-
tor coding model, even though the data set was actually
created by the endpoint coding model. The bias is stronger
in “Displacement” conditions. In summary, the results sug-
gest that our analysis will reliably identify an endpoint
coding model, when peripheral noise is less than or equal
to 60% in “Endpoint” conditions and less than or equal to
30% in “Displacement” conditions. Otherwise, peripheral
noise mimics vector coding in our analysis. This is ex-
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Fig. 9. Normalized difference in proportion of explained variability between hand- and target-centered control (D) for data generated by the vector
coding model (open symbols) and endpoint coding model (filled symbols) in “Endpoint” and “Displacement” conditions plotted as a function of
peripheral noise level. Numbers above each data point represent the probability to correctly recover the model p(m|m) that generated the data.
Average d and p(m|m) was computed across noise aspect ratios and absolute noise levels. Error bars denote standard deviations.

pected, since the movements that we simulated were sim-
ilar to the visual hand-target vector.

Given the fact that peripheral noise mimics central
noise stemming from vector coding processes in our anal-
ysis, it follows that the average normalized difference d
and recovery probability p(m|m) of target-centered control
in “Endpoint” conditions can serve as indicators of the
degree of peripheral noise present in the data, i.e. if d is
around 1 and we recover endpoint coding 100% of the time
in “Endpoint” conditions, the level of peripheral noise is
expected to be between 40% and 50%. In contrast, if we
recovered vector coding 75% of the time in “Endpoint”
conditions, this could indicate either hand-centered control
or that peripheral noise level is 90%.

In the analysis of our subjects’ data, endpoint coding
won all samples in “Endpoint” conditions, and average d is
1.2 (compare Fig. 8). Based on this we can assume that
peripheral noise is around 40% in our experiment. Further-
more, given the high similarity of movement velocity and
duration between “Endpoint” and “Displacement” condi-
tions, we can also assume that peripheral noise is compa-
rable across the two tasks. We conclude that our analysis
is a valid indicator of visually induced differences in the
way movements are controlled in our experiment.

Estimate of peripheral noise in our data. As stated in
the previous paragraph, endpoint coding won all samples
in “Endpoint” conditions and average dis 1.2. Furthermore,
movement velocity, duration, distance, etc. are very similar
in “Endpoint” and “Displacement” conditions, such that
peripheral noise can be assumed to be constant. Based on
these observations we could estimate the peripheral noise
level in our data to be approximately 40%. An estimate of
40% would be similar to a recent estimate derived from

neuronal activity in dorsal premotor and primary motor cortex
(Churchland et al., 2006). In their experiment, Churchland et
al. (2006) measured movement speed and found that neu-
ronal activity prior to movement onset predicts 50% of the
observed variability in movement speed, suggesting that the
remaining 50% are due to peripheral noise arising during
movement execution. Churchland et al.’s (2006) task was
highly repetitive. In contrast, our task required the planning of
new movement parameters on every frial. If we assume that
the estimate of 40% is a correct estimate of peripheral noise
level in our data, we are therefore led to the conclusion that
even for non-repetitive tasks the contribution of peripheral
noise can be as high as 40%.

The analysis described above is based on the implicit
assumption that subjects use either pure endpoint coding
or pure vector coding. However, another possible interpre-
tation of our results is that the CNS uses a combination of
endpoint and vector coding to guide the hand (Abrams et
al.,, 1990; De Grave et al., 2004), and in that case the
amount of peripheral noise needed to explain our data
would be less than 40%. Based on the idea of a hybrid-
control system, differences between “Endpoint” and “Dis-
placement” conditions would be caused by differences in
the relative contribution of endpoint and vector coding in
the two tasks. Since peripheral noise mimics the use of
hand-centered control in our experiment, it is impossible to
distinguish the use of vector coding from the presence of
peripheral noise. However, there are two reasons why we
think that it is likely that subjects use combination of target-
and hand-centered control in our experiment. First, it has
been shown that when subjects move towards a visible
target the perception of length in hand centered coordi-
nates contributes approximately 8% to overall movement
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amplitude (De Grave et al., 2004). This finding suggests
that vector coding might contribute approximately 10% to
overall movement variability in our “Endpoint” task, and
that the level of peripheral noise might be approximately
30%. Second, the d-value of —1.1 in displacement condi-
tions in our experiment is highly indicative of a combined
use of endpoint and vector coding, because that value
would only be expected if 30% of the variability in “Dis-
placement” conditions is due to endpoint coding (see
Fig. 9). Thus, for both “Endpoint” and “Displacement” con-
ditions there is good reason to suspect that subjects use a
combination of target- and hand-centered control, but that
the relative contribution of either process differs between
the two tasks.

In summary, we cannot give an exact estimate of pe-
ripheral noise in our data, because peripheral noise mimics
the use of hand-centered control in our experiment. Based
on other reports in the literature, however, an estimate
between 30% and 40% appears reasonable.

Explaining error distributions (Fig. 5) based on our
control system analysis (Figs. 7 and 8)

In light of these conclusions, it is useful to reconsider our
finding that distributions of movement endpoints are
aligned with the direction of movement in both “Endpoint”
and “Displacement” conditions (Fig. 5). The alignment of
movement endpoint distributions in “Displacement” condi-
tions is expected, since our control system analysis re-
veals that subjects use vector coding in these conditions
(Figs. 7 and 8). However, the alignment in “Endpoint”
conditions is unexpected because our control system anal-
ysis suggests that subjects use endpoint coding in these
conditions (Figs. 7 and 8). In fact, based on endpoint
coding we would expect that distributions of movement
endpoints towards the same target overlap perfectly and
that there should be no systematic alignment with move-
ment direction.

Fortunately, we can reconcile these seemingly incon-
sistent results based on the finding that only 60% of move-
ment variability in “Endpoint” conditions is due to target
centered control, and therefore, that the remaining 40%
are due to either peripheral noise and/or hand centered
control. Since both processes will result in endpoint errors
that depend on the visual hand-target vector in our exper-
iment, their contribution to overall movement variability in
“Endpoint” conditions will align movement endpoint distri-
butions in “Endpoint” conditions with the direction of move-
ment.

To test if this explanation is borne out in practice we
ran simulations for both “Endpoint” and “Displacement”
conditions. Based on a suggestion by an anonymous re-
viewer, we used our empirically observed values of d (Fig.
8) to select relative contributions of target-, hand-centered
and peripheral noise for our simulations. Since d was 1.2 in
“Endpoint” conditions, the contribution of endpoint coding
to movement variability in “Endpoint” conditions was cho-
sen to be 60%. The remaining 40% in “Endpoint” condi-
tions was chosen to consist of 30% peripheral noise and
10% vector coding. In “Displacement” conditions, model

parameters were chosen based on the following reason-
ing. First, peripheral noise level in “Displacement” condi-
tions has to be the same as in “Endpoint” conditions, i.e.
30%. Second, we observed an average d of —1.1 in “Dis-
placement” conditions, which implies that endpoint coding
contributes ~30% to overall movement variability. Choos-
ing 30% endpoint coding noise and 30% peripheral noise
leaves a remainder of 40% movement variability that must
be due to vector coding in “Displacement” conditions. To
summarize, for “Displacement” conditions the contribution
of endpoint coding, vector coding and peripheral noise to
movement variability was chosen to be 30%, 40% and
30%, respectively.

For simulations in both “Endpoint” and “Displacement”
conditions, we used noise characteristics described in Ap-
pendix C. We deliberately chose the aspect ratio of central
noise error distributions to be 1.7 and total noise level to be
15%. We simulated 100 data sets for each condition. We
then analyzed distributions of simulated movement end-
points in the same way as we had analyzed our subjects’
data (see Experimental Procedures: “Analysis of Distribu-
tions of Movement Endpoints”).

Fig. 10 shows simulated distributions of movement
endpoints for “Endpoint” and “Displacement” conditions
plotted in the same format as our empirically observed
data in Fig. 5. The only difference between Figs. 5 and 10
is that Fig. 5 shows portions of average movement traces
to illustrate alignment with direction of movement, whereas
Fig. 10 shows portions of the visual hand-target vector
instead. Choosing aspect ratios smaller or larger than 1.7
for the simulations will result in ellipses that are overall less
or more elongated, while leaving variations in aspect ratio
between paths, configurations and conditions unaffected.
Choosing different total noise levels will result in scaled
versions of the same ellipses.

It is evident from Fig. 10 that simulated ellipses align
with the direction of movement in all conditions. Further-
more, it is also evident that there are differences in ellipse
shape between different movement paths and between
“Endpoint” and “Displacement” conditions, i.e. ellipses are
more or less elongated or larger and smaller for certain
paths. To determine quantitatively how the simulated data
capture variations in endpoint distributions generated by
our subjects we computed major and minor axis lengths of
corresponding ellipses shown in Fig. 10 and Fig. 5. We
then correlated corresponding axes lengths separately for
major and minor axes and for major and minor axes com-
bined. We also computed the orientation of ellipses by
computing major axis orientation. We limited major axis
orientation to the range 0-179°, since left/right up/down
pointing ellipses are the same. To determine quantitatively
how similar major axis orientation is between subject gen-
erated and simulated data, we computed the angular-
angular correlation between corresponding major axes ori-
entations (Fisher, 1993). Figure 11 shows plots of ellipse
axes orientation and length in the left and right panel,
respectively. Correlation coefficients are indicated in each
plot.
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Fig. 10. Distributions of simulated movement endpoints in “Endpoint” and “Displacement” conditions for each path between main targets in a
configuration. Ellipse axes denote four standard deviations around the mean. For easier visual comparison, ellipses are aligned on the group mean
for a (virtual) target. Parts of the visual hand-target vector have been plotted to indicate ellipse alignment with the simulated direction of movement.
Numbers identify ellipses and their corresponding paths and correspond to numbers in Fig. 5.

It is evident from the left panel in Fig. 11 and the high
angular-angular correlation (r=0.86, z=3.31, P<0.001)
that ellipse orientation between subject-generated and
-simulated data correspond well. For ellipse axis length,
we observe that axes of simulated data generally exceed
those of subject-generated data, because we arbitrarily
chose 15% overall noise level. Since overall noise level is
a scale parameter it does not affect variation in ellipse axes
length, however. With regard to variations in ellipse axes
length, observe that our model predicts differences be-
tween major and minor axes lengths well. This is indicated
by the comparably low scatter in Fig. 11 (right panel) and
the high correlation coefficient when it is computed for
minor and major axes combined (r=0.86, t5=11.4,
P<0.0001). Correlations drop when we correlate simu-
lated and subject generated axis length separately for
minor and major axes (major axes: r=0.61, t,,=3.6,
P<0.005) minor axes: r=0.52; t,,,=2.86, P<0.01). This
indicates that our model simulations predict variation be-
tween major and minor axes lengths better than variations
within minor and major axis lengths.

We discovered that we could make the simulated data
predict our subjects’ data better by changing peripheral
noise characteristics, such as the direction in which exe-
cution noise ellipses are maximally elongated (compare
Fig. A'in Appendix C). Even though van Beers et al. (2004)
report that execution noise is affected by location of work-
space and subjects specific differences, we do not have a
principled way to determine those parameters for our cur-
rent data. Thus, even though it is possible to create a
better fit between simulated and observed data, Figs. 10
and 11 only show the results based on general execution
noise characteristics reported by van Beers et al. (2004).

In conclusion, our analyses suggest that ellipses de-
rived from our simulated data correspond reasonably well
to ellipses derived from subject-generated data. Thus,
even though the results in Fig. 5 and Figs. 7 and 8 appear
contradictory at a first glance, they are not. In fact, simu-
lations that incorporate both central and peripheral noise
sources can account for various aspects of our data. This
finding further emphasizes that distributions of movement
endpoints are affected by both central and peripheral noise
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processes and that this has to be considered in their
interpretation.

DISCUSSION

One of the major research questions regarding central
visuo-motor processes regards the question which param-
eters the CNS controls to guide the hand. In the literature,
models that use hand- and target-centered control are
referred to as vector and endpoint coding models, respec-
tively. Here we used a sequential movement paradigm that
manipulated the way visual information relevant for move-
ment production was presented to investigate if the CNS is
flexible in its choice of control parameters. We analyzed
spatial movement errors using a traditional analysis of
movement endpoint distributions and a new analysis that
uses different recombination rules to investigate the con-
tribution of endpoint and vector coding to movement con-
trol. We used simulations to test if our new analysis recov-
ers the control model that generated the data under differ-
ent levels of peripheral noise.

Our control system analysis reveals that subjects em-
ploy target centered control, i.e. endpoint coding, when
they can reach towards a visible target but that they use
hand-centered control, i.e. vector coding, when they can-
not reach towards a visible target but have to explicitly
compute the displacement vector of the hand. Our simu-
lations strongly suggest that our analysis is a reliable tool
to detect differences in central visuo-motor processes,
unless peripheral noise level exceeds 60% in “Endpoint”
and 30% in “Displacement” conditions. “Endpoint” condi-
tions can be used to identify the level of peripheral noise in
our data and we estimate it to be between 30% and 40%.
Since physical movement characteristics were almost
identical in the two experimental tasks, we conclude that
our analysis is a valid indicator of how the CNS controls
movements in our experiment. Therefore, we conclude
that the CNS does not employ a monolithic control system,
but that it can change the coordinate system used to

control the limb depending on task demands. Thus, sub-
jects use predominantly endpoint or vector coding, de-
pending in the way visual information relevant for move-
ment production is specified. Based on this finding we
suggest that the scientific investigation regarding central
visuo-motor processes and visuo-motor transformations
should not investigate if the CNS uses endpoint or vec-
tor coding to guide the hand, but rather the conditions
under which one or the other control strategy is used.

Our traditional analysis of movement endpoints did not
reveal any systematic differences between “Endpoint” and
“Displacement” conditions, and the distributions were
aligned with the direction of movement in all conditions.
Yet, our control system analysis reveals a difference in the
way movements are controlled in the two tasks. Based on
this finding we conclude that shape and orientation of
distributions of movement endpoints are not necessarily
indicative of the way the CNS plans and controls move-
ments.

We estimate the level of peripheral noise in our data to
be between 30% and 40%. Even though our analysis is
ambiguous with respect to the exact level of peripheral
noise, our findings in combination with other reports in the
literature (De Grave et al., 2004; Churchland et al., 2006)
nevertheless raise the strong possibility that even in a
non-repetitive task the contribution of peripheral noise
sources can be substantial. In agreement with Church-
land et al. (2006), we therefore suggest that in order to
better understand how the CNS transforms visual infor-
mation into movements, empiric data have to be inter-
preted in terms of both central and peripheral visuo-
motor processes.

In our experiments, we pitched vector coding and end-
point coding models against each other. Our experimental
design does not distinguish between head- and eye-cen-
tered endpoint coding. Furthermore, we cannot determine
the possible involvement of body-centered control mech-
anisms, because not only the head, but also the body and
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shoulder remained stationary throughout the experiment.
However, our paradigm can be extended to systematically
test the involvement of eye, head and body by introducing
systematic shifts of the gaze, head and/or body from trial to
trial.

Contribution of perceptual noise to movement
variability

One possible factor that we have not yet considered is the
potential impact of perceptual noise on observers’ move-
ment performance. Suppose, for example that observers’
judgments of distances in “Displacement” conditions were
less reliable than their judgments of position in “Endpoint”
conditions. Other things being equal, we would expect in
that case that the perceptual noise would influence the
reliability of subjects’ hand movements such that variability
in “Displacement” conditions would be greater than in
“Endpoint” conditions. The results show clearly, however,
that there were no significant differences in movement
variability between these conditions and average move-
ment endpoints were virtually the same. Thus, it is reason-
able to conclude from this finding that the “Displacement”
and “Endpoint” conditions had comparable levels of visual
perceptual noise.

In addition to visual perceptual noise, distributions of
movement endpoints are also affected by perceptual noise
that arises for example when head, eye, body and hand
position are sensed based on proprioceptive and efferent
information. For these noise sources it is also reasonable
to assume that they affected “Endpoint” and “Displace-
ment” conditions equally, because there were no differ-
ences in movement variability or average movement end-
points between “Endpoint” and “Displacement” conditions.

In conclusion, even though we cannot give exact esti-
mates of the contribution of perceptual and/or peripheral
motor noise to movement variability in our experiment,
neither of these noise sources is likely to have contributed
to the differences in movement coding that were revealed
by our control systems analysis.

Relation to previous results

It has been reported previously, that the way visual infor-
mation is presented, affects errors in movement extent and
direction (Messier and Kalaska, 1997). Specifically, errors
in movement extent and direction follow the same scaling
rule when subjects reach towards a visible target, but they
scale independently when subsets have to compute the
visual displacement vector. As stated in the introduction,
this could be taken as evidence for the use endpoint vs.
vector coding in those two conditions. Yet, at the same
time, large differences in overall error magnitude in Mess-
ier and Kalaska’'s experiments made a direct comparison
between the two conditions difficult because peripheral
and perceptual noise represent potential confounds. In the
current paper, we used a traditional analysis of movement
endpoint distributions to investigate if endpoint distribu-
tions differ between the two conditions and we did not find
any systematic differences. Thus, we can exclude periph-
eral and perceptual noise as potential confounds. At the

same time, our control system analysis suggests that sub-
jects use different central visuo-motor processes in the two
conditions. Therefore, our data are consistent with the
interpretation of Messier and Kalaska’'s (1997) results
given in the introduction.

It has been reported that errors in pointing movements
to remembered targets depend on the direction of gaze,
suggesting the use of eye centered coordinates to guide
the hand towards a remembered location in space. These
findings hold for both single hand movements (Henriques
et al.,, 1998) and movement sequences (Sorrento and
Henriques, 2008). As mentioned in the introduction, end-
point coding models need to employ visual coordinates
that define target location independent from hand position,
and eye/head-centered coordinates are typically used. Our
finding that subjects use endpoint coding in “Endpoint”
conditions is consistent with the finding that gaze shifts
induces gaze-dependent pointing errors to remembered
targets. At the same time, we predict based on our results
that a shift of gaze should not result in gaze-dependent
pointing errors to remembered targets, when subjects per-
form in conditions equivalent to our “Displacement” condi-
tions. The reason for these predictions is that vector coding
models need to employ visual coordinates that define the
hand displacement vector. Thus, they cannot employ eye-
centered coordinates, because the eye-target vector will
not match the hand-target vector unless the hand starts at
the eye. The effects of gaze shifts on pointing errors to
remembered targets in “Displacement” conditions remains
to be tested in future experiments.

Sequential hand movements have been used by other
researchers in order to investigate how movements are
controlled. Two widely cited studies in this context were
conducted by Bock and Eckmiller (1986) and Bock and
Arnold (1993). In both studies, the authors used a para-
digm that required subjects to point open loop to se-
quences of six to eight targets on each trial. They showed
that errors accumulate (Bock and Eckmiller, 1986) and that
errors on subsequent movements are correlated (Bock
and Arnold, 1993). In an open loop pointing task, errors are
expected to correlate, if subjects use vector coding and if
subjects do not correct their errors. In contrast, if subjects
either correct their errors or use endpoint coding, then the
accumulation and correlation of errors should not occur.
Van den Dobbelsteen et al. (2001) suggested that the
accumulation (and thus correlation) of errors observed by
Bock and Arnold (1993) is caused by systematic shifts in
hand position that arise when vision of the hand is pre-
vented during sequences of open loop pointing (Wann and
Ibrahim, 1992; Brown et al., 2003; Smeets et al., 2006).
However, systematic shifts may also arise from error ac-
cumulation. Thus, it is difficult to determine if shifts and
error accumulation are either cause or effect.

The use of visual feedback in the current experiments
should have prevented any systematic shifts in perceived
hand position so that errors in successive movements
should not have been correlated. In order to test this
prediction we applied the regression analysis described by
Bock and Arnold (1993, pp 113, 114) to our data in “End-
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point” conditions separately for each subject and path. To
test if correlations are significantly different from zero, we
averaged correlation coefficients separately for errors
along and orthogonal to the direction of movement across
paths for each subject and applied t-tests (two tailed) to
these averages. The analysis reveals that correlations are
significantly larger than zero both along the direction of
movement (r=0.3, t,,=5.37, P=0.001) and orthogonal to
it (r=0.18, {7,=5.03, P=0.0014). The correlations we ob-
serve are considerably lower than those observed by Bock
and Arnold (which are around 0.6), but they differ from
zero. The correlation of errors we observe is puzzling and
it is not explained by any current model of either endpoint
or vector coding for conditions in which subjects receive
visual feedback about their current hand position (Feld-
man, 1966; Polit and Bizzi, 1979; Bizzi et al., 1984; Bock
and Eckmiller, 1986; Gordon et al., 1994; Rosenbaum et
al.,, 1995; Rossetti et al., 1995; De Graaf et al., 1996;
Desmurget and Prablanc, 1997; Ghez et al., 1997; Vindras
and Viviani, 1998; van den Dobbelsteen et al., 2001).

One speculative explanation of the correlations we
observe in our subjects’ data are that subjects used a
hybrid control strategy in “Endpoint” conditions (i.e. 60%
endpoint coding, 10% vector coding, 30% peripheral
noise), and that the vector component of the movement
commands was not completely updated by the visual feed-
back we provided. Additional research will be required to
more clearly resolve this issue.

Visuo-motor processes in 2D vs. 3D

It has been suggested that the CNS may employ different
central visuo-motor processes depending on the move-
ment degrees of freedom available (Desmurget et al.,
1998). Our analysis in “Endpoint” conditions is similar to
one used previously in 3D (van den Dobbelsteen et al.,
2001). The analysis used in “Displacement” conditions is a
significant extension of that, which is introduced here for
the first time. Where comparable, i.e. in “Endpoint” condi-
tions, our results replicate previous findings (van den Dob-
belsteen et al., 2001). Since our results obtained in 2D
agree well with those obtained in 3D we believe that the
CNS uses the same central visuo-motor mechanisms in
2D and 3D. Furthermore, we suggest that differences in
the observed distributions of movement endpoints be-
tween 3 and 2D are caused by differences in peripheral,
rather than central visuo-motor processes. In this context,
it remains to be investigated how the results obtained in
“Displacement” conditions generalize to 3D.

Changes in peripheral vs. central visuo-motor
processes

Is it possible that differences between “Endpoint” and “Dis-
placement” conditions are not caused by differences be-
tween central, but by differences in peripheral visuo-motor
processes? Physical movement characteristics are the
same in the two conditions. Therefore, peripheral noise
that arises at the neuro-muscular junction cannot explain
performance differences between “Endpoint” and “Dis-

placement” tasks. However, even though peripheral noise
itself is the same, it is nevertheless possible that the CNS
uses a different control law to deal with the peripheral
noise in “Endpoint” and “Displacement” conditions. Thus,
even though differences in peripheral noise per se could
not explain the results, differences in the control law cho-
sen by the CNS could.

It has been suggested that the CNS is flexible in its
choice of laws used to control noise that arises at the
neuromuscular junction (Todorov and Jordan, 2002;
Todorov, 2004). According to the framework of optimal
control (Todorov and Jordan, 2002; Todorov, 2004) an
initial planning stage selects higher order goals that are
then used to define task relevant errors that determine the
choice of error control laws. In our experiment, the task
relevant error as instructed to subjects can be considered
constant, since in both “Endpoint” and “Displacement” con-
ditions subjects were asked to move their hand as accu-
rately as possible to a location that was located at a certain
distance and direction with respect to their current hand
position. However, even though the instruction-based task
relevant error can be considered constant, it is possible
that subjects redefined the task and therefore, that we
have different higher order goals in “Endpoint” and “Dis-
placement” conditions. For example, the higher order goal
in “Endpoint” conditions could be that the endpoint errors
be minimized (i.e. deviations from the trajectory along the
way are left uncorrected, as long as they do not increase
final position error), whereas the goal in “Displacement”
conditions could be that the trajectory be traversed as
accurately as possible (i.e. deviations from the trajectory
along the way are corrected, even if this leads to an
increase in final position error). If we permit a redefinition of
higher order goals this way, our results are consistent with
the model of optimal control. However, in order to predict
our results, a model of optimal control would need to
incorporate a mechanism that chooses a control law based
on the type of visual information that is used to specify the
required movement on each ftrial. It follows that our con-
clusions about task dependent flexibility remain valid re-
gardless of whether one interprets the results in terms of
alternative control laws for peripheral noise or alternative
types of movement coding parameters.
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APPENDIX A

Here we explain how we computed displacement errors and how
we recombined displacement errors with hand-target vectors from
other trials. Displacement errors were computed in terms of am-
plitude and direction of the observed displacement, d, compared
to the hand-target vector, h-t, that pointed from the current hand
starting position to the target location. Displacement amplitude
errors were computed by dividing the observed displacement
amplitude by the corresponding hand-target amplitude, i.e.
ea=Ay4/A.. Displacement orientation errors were computed as
angular difference in orientation between observed displacement
and hand-target vectors, i.e. ¢,=604—6,,.. To recombine displace-
ment errors with hand-target vectors from other trials, amplitude
error was multiplied by the amplitude of the new hand-target vector
and orientation error was added to the orientation of the new hand-
target vector. Coordinates of fictional endpoints are then given by
cos(eyt+0p_)(eaAn—) +Xy—¢ @and sin(eg+ 0, )(esAn—o) +Yn—1, respec-
tively, where x,,. and y,, are coordinates of the hand starting
position of new hand-target vector. Displacement errors were
computed in the same way in “Displacement” conditions. But
please note that in “Displacement” conditions, the hand-target
vector, h-t, was equivalent to the target-to-target vector, t-¢, or the
target displacement vector, respectively, because subjects were
instructed to always move over the target displacement from their
current position.

APPENDIX B

Here we explain the reason for, and the computation of normal-
izing observed and fictional displacements before computing their
SD,p. If we compute SD,, of displacements that occurred to the
same target from various starting points in either “Endpoint” or
“Displacement” conditions, the variance of displacements partially
depends on variability due to the spatial separation of the different
starting points with respect to the target. This in turn is determined
by the experimentally designed spatial layout of the target config-
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uration. It is easy to see that the more distant the different starting
points are to the target and to each other, the larger the spatial
variability introduced by experimental layout. If the spatial variabil-
ity introduced by experimental layout is large compared to the
variability introduced by errors in hand movements, the ratio of
observed to fictional displacement SD,, will always be close to
one, which would bias our analysis towards endpoint coding. The
bias is reduced when analyzing single start—endpoint-paths. How-
ever, since the variance of starting points for a single path in the
“Displacement” condition is always zero, due to the alignment that
removes instruction-based errors, we have to invoke multiple
starting points to perform our analysis. To overcome the bias in
the analysis introduced by variability due to experimental layout,
we normalized observed and fictional displacements with respect
to their corresponding target-to-target paths before computing
their SD,p.

Observed and fictional displacements were normalized by
dividing their amplitudes, Ay, by the amplitude of the correspond-
ing target-to-target vector, A, and by computing the angular
difference in orientation between the displacement 6, and the
target-to-target vector 6,,. Normalized displacement coordinates
are then given by cos(6,—0,_)(Ay/ A and sin(0,—6,_)(As/ A,
respectively.

APPENDIX C

Here we describe the implementation of central and peripheral
visuo-motor noise models.

Vector coding models assume that the goal state of the hand
is determined based on the vector h-t pointing from the hand to the
target. Vector h-t has amplitude A,=|h—t| and orientation 6.
Central error along vector h-f, 5., was modeled as normally
distributed with standard deviation o4 . proportional to vector am-
plitude. Thus, o .=ra.XAp is the length of the major axis of the
central error ellipse. Error orthogonal to vector h-t, ¢, ., was mod-
eled as normally distributed with standard deviation o, .=0x /
AcentraiNoises SO that @centranocise determines aspect ratio of error
ellipses. To retain equal noise magnitude, i.e. ellipse area, for
different ellipse aspect ratios, we can multiply each axis of the
ellipse by A\ /@cenramoise» SUCh that area is 7Xx0.25X 0%, .. The
error ellipse fits into a tangent cone originating at h and with slope
of each leg *r,.\/Acentrainvoise” 28centramoise- COOrdinates of error
contaminated goal state, hp, for every trial are given by

COS(Oh,l) _Sin(ohft):| [ €oc :| I |:hx:|

Sin(0p-) €os(0p—) || eactAnt h,
where h, and h, are the coordinates of hand starting position h.
Assuming zero mean noise, error ellipses are positioned on the
(visible or virtual) target t. Ellipse area is determined by r, . and
vector amplitude A, aspect ratio by aceniranoise @and orientation
by vector orientation 6, . In “Displacement” conditions vector h-t
pointing from the hand to the target is the same as the visual
displacement vector t-f.

Endpoint coding models assume that the goal state of the
hand is determined based on the vector o-t pointing from the
subject’s cyclopean eye to the target. Vector o-t has amplitude A,
and orientation 6, We modeled central errors for eye/head co-
ordinates based on the cyclopean eye because the subject’s head
remained stationary throughout the experiment (we used a chin
rest) and because we can assume that subjects shift their gaze to
look at the target or target displacement, respectively, on every
trial. Thus, the coordinate system is stationary both in eye cen-
tered (representation along the line of sight) and head-centered
coordinates and the cyclopean eye is a reasonable approximation
to both. Central error in eye/head-centered coordinates was mod-

eled in the same fashion as in hand-centered coordinates, with the
difference that errors were computed with respect to vector o-t,

instead of vector h-t. Coordinates of error contaminated goal state,
hp, for every trial are then given by

cos(6,-) —sin(0,_¢) €00
Jleu2.]

Sin(eoft) 003(004) A.C+A0*t

Assuming zero mean noise, error ellipses are positioned on
the (visible or virtual) target t. Ellipse area is determined by r,
and vector amplitude A, aspect ratio by acentramncise @and orien-
tation by vector orientation 6,_. In “Displacement” conditions, tar-
get t is obtained by translating the visual displacement vector t-t
onto the current hand position. Since visual feedback in “Displace-
ment” conditions was translated with respect to the physical hand
position, we assume that this transformation could be achieved
based on a proprioceptive estimate of hand position.

Peripheral noise was modeled according to the execution
noise characteristics suggested by van Beers et al. (2004). On
every ftrial, the hand moves from its current position h to the
desired goal state hp or along vector h—hp with orientation 6y, ,,
and amplitude A, ,,=|h—hp|, respectively. Movement trajectories
were observed to be straight in our experiment. Thus, the major
axis of the execution error ellipse is expected to be aligned with
0rnp- Error along the direction of movement, ¢, ,, was chosen to
be normally distributed with standard deviation o, ,, proportional to
movement amplitude. Thus, oa ,=ra , XA, is the length of the
major axis of the error ellipse. Variation of execution noise ellipse
aspect ratio with movement direction (van Beers et al., 2004) can be
approximated by the function @perigherainoise=0-75(siN(26,,_1,) +3). This
function has maxima of 3 at 45 and 225°, and minima of 1.5 at 135
and 315° and is plotted in Fig. A.

To vary aspect ratio the minor axis of the ellipse was chosen
to be oa ,/ @peripherainoises SUCh that error orthogonal to the direction
of movement, &, ,, was normally distributed with standard devia-
tion 0 =0 p/@peripheraiNoise- 10 retain equal noise magnitude, i.e.
ellipse area, across changes in movement direction, and thus
aspect ratio, we multiply each axis of the ellipse by @peripheralNoise:

such that area is 7T><O.25X02A_p. The error ellipse fits into a
tangent cone originating at h and with slope of each leg *
r'ap\/ 8perip ise” 28perip Thus, the angular spread of exe-
cution noise is independent from movement amplitude. Coordi-
nates of execution noise contaminated movement endpoints for

every trial are given by

ise:

90°
1352 45°
3
2
1
180° 0°
1
S o

270°

Fig. A. Plot of the function @peipneraincise=0-75 (SiN(26;,_,,,)+3). This func-
tion has maxima of 3 at 45 and 225°, and minima of 1.5 at 135 and
315°. It was used to model movement direction dependent changes in
ellipse aspect ratio for execution noise.
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SiN(6h-pp)  COS(Op-pp) €aptAn-np h,

COS(Gh,hp) - Sin(ehfhp) :| |: Eop :| |:hx:|

where h, and h, are the coordinates of hand starting position h.
Assuming zero mean noise, error ellipses for execution noise
are positioned on planned movement endpoint hp. Ellipse area
is determined by r, , and vector amplitude A;,_,,, aspect ratio by
@peripheralNoise @Nd Orientation by vector orientation 6,,,. Note that mag-
nitude and direction of vector h—hp determine execution noise.

Simulation parameters

We simulated central and peripheral noise models at levels from 0%
to 100% execution noise, in 10% steps and at overall noise levels of
7.5%, 10% and 15% or base settings of r,=0.075, 0.1 or 0.15,
respectively. In order to keep absolute noise area constant, we
scaled rp  and r, , accordingly. For example, at total noise level 7.5%
(ra=0.075) and execution noise level 10%, r,, would be equal to
0.075-\ /.1 and r, . would be equal to 0.075- /.9. Both central noise
models were simulated with acenramoise S€t 10 2.5, 2, 1.7, 1.3 and 1.

The different geometries of two central noise models, i.e.
endpoint and vector coding, result in different absolute noise
magnitudes, i.e. ellipse areas, for same values of r, .. For exam-
ple, subjects’ eyes and head are always further away from the
stimuli than subjects’ hands, such that the amplitude of the
eye-target vector generally exceeds the amplitude of the hand-
target vector. If we computed errors based on the same noise
level rp . without any additional adjustment, absolute noise
maghnitude, i.e. ellipse area, would be much larger for endpoint
coding, such that peripheral noise would contribute less to
endpoint coding than to vector coding models for same values
of ra.. Since the two central noise models make different
predictions regarding expected error magnitude for different
visual targets, it is theoretically unreasonable to equate ellipse
areas for individual targets or displacements. Thus, we decided
to match average ellipse area between vector and endpoint
coding models across all main and filler targets and/or displace-
ments, by introducing a scaling factor for different levels of rp ,
for the endpoint coding model.
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