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A new computational analysis is described that is capable of estimating the 3D shapes of continuously curved surfaces with
anisotropic textures that are viewed with negligible perspective. This analysis assumes that the surface texture is
homogeneous, and it makes specific predictions about how the apparent shape of a surface should be distorted in cases
where that assumption is violated. Two psychophysical experiments are reported in an effort to test those predictions, and
the results confirm that observers’ ordinal shape judgments are consistent with what would be expected based on the
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for surfaces viewed with large amounts of perspective.
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Introduction

In his influential book, The perception of the visual
world, Gibson (1950) introduced the concept of texture
gradients as a potential source of optical information
about the layout of surfaces in the environment. Since
then, many different properties of optical texture have
been identified that can be used to estimate various
aspects of 3D surface structure (Gårding, 1992, 1993;
Purdy, 1958), and many psychophysical experiments have
been performed in an effort to determine which of these
potential sources of information are most relevant to
human perception. The literature on this topic contains
many conflicting results, however, and there is no clear
consensus as yet on how patterns of optical texture are
perceptually analyzed by human observers.
One of the most popular computational models for

estimating 3D shape from texture is based on an
assumption that variations in reflectance on a surface are
statistically isotropicVi.e., that they are approximately
equal in all directionsVand that anisotropic patterns of
texture within a visual image can be attributed to
variations in surface slant. These distortions are often
referred to as texture foreshortening. They can be
measured from the aspect ratios of individual optical
texture elements (Stevens, 1981a, 1984), the distribution of
edge orientations in each local image region (Aloimonos,
1988; Blake & Marinos, 1990; Blostein & Ahuja, 1989;
Marinos & Blake, 1990; Witkin, 1981), or from the
relative anisotropy of their local amplitude spectra (Bajcsy

& Lieberman, 1976; Brown & Shvayster, 1990; Krumm &
Shafer, 1992; Sakai & Finkel, 1995; Super & Bovik,
1995).
Although foreshortening is probably the most popular

source of information in computational analyses of shape
from texture, there is a growing body of evidence to
indicate that it has little or no influence on observers’
perceptions of surface slant (Backus & Saunders, 2006;
Gillam, 1970; Todd, Christensen, & Guckes, 2010; Todd,
Oomes, Koenderink, & Kappers, 2004; Todd, Thaler, &
Dijkstra, 2005; Todd, Thaler, Dijkstra, Koenderink, &
Kappers, 2007). Consider, for example, the image of a
slanted plane under orthographic projection in the top
panel of Figure 1. Any of the computational models cited
above would be able to correctly determine that the
depicted surface has a 50- slant relative to the fronto-
parallel plane. However, when the same image is presented
to human observers, they are unable to perceive any slant
at all.
An alternative source of information for estimating

shape from texture is based on an assumption that
distributions of reflectance on a surface are statistically
homogeneousVi.e., that they are the same at all surface
locationsVand that systematic gradients of optical texture
across different regions of an image can therefore be
attributed to variations in surface depth, slant or curvature.
The first computational analysis of texture gradients was
performed by Purdy (1958), who examined the spatial
variations of several different aspects of optical texture
elements, including their major axes, minor axes, areas,
aspect ratios and density. He showed that the any of these

Journal of Vision (2010) 10(5):17, 1–13 http://journalofvision.org/content/10/5/17 1

doi: 10 .1167 /10 .5 .17 Received October 29, 2009; published May 11, 2010 ISSN 1534-7362 * ARVO

http://faculty.psy.ohio-state.edu/todd/
http://faculty.psy.ohio-state.edu/todd/
mailto:todd.44@osu.edu?subject=http://journalofvision.org/0/0/1/
mailto:todd.44@osu.edu?subject=http://journalofvision.org/content/10/5/17
http://psychology.uwo.ca/
http://psychology.uwo.ca/
mailto:lthaler2@uwo.ca?subject=http://journalofvision.org/content/10/5/17
mailto:lthaler2@uwo.ca?subject=http://journalofvision.org/content/10/5/17
http://journalofvision.org/content/10/5/17


properties 2(7, +) at a point on a planar surface in a visual
direction (7, +) can be used to determine the optical slant
A(7, +) at that point from the normalized gradient defined
by the following equation:

tan A 7; +ð Þ ¼ k
l2ð7; +Þ
2ð7; +Þ ; ð1Þ

where k is a constant that is peculiar to each type of
gradient. Gårding (1992) later extended this analysis to
include curved surfaces. He showed that the normalized
major axis gradient is the only one that that can be used to
estimate local surface slant independently of surface
curvature. This is often referred to as a scaling gradient.
It can be measured by calculating the relative lengths of
texture elements in different regions of an image (Purdy,
1958), or from the affine correlations between the
amplitude spectra in those regions (Clerc & Mallat,
2002; Malik & Rosenholtz, 1994, 1997).
A recent series of studies by Todd et al. (2005, 2007,

2010) has shown that the ability to distinguish slants from
texture for planar or asymptotically planar surfaces
requires relatively large viewing angles, which provides
strong evidence that observers’ perceptions cannot be
based on computational analyses within small local
neighborhoods, such as spatial derivatives. In light of this
finding, they proposed that perceived shape from texture
for this class of surfaces is based on an alternative source

of information called scaling contrast, as defined by the
following equation:

Z 7; +ð Þò1Max j 1ð7; +Þ
1Max þ 1Min

; ð2Þ

where Z(7, +) is the relative depth of a surface point in a
visual direction (7, +), 1(7, +) is the projected major axis
of a texture element at that point, and 1Max and 1Min are
the maximum and minimum major axis lengths. Note that
this is similar to a normalized gradient, but it is designed
to evaluate the variations in scaling over large regions of
visual space, rather than small local neighborhoods.
The scaling contrast model predicts that slanted surfaces

presented under orthographic projection should have no
apparent depth at all because there are no variations in
texture scaling. For slanted surfaces under perspective
projection, the model predicts that the magnitude of
perceived relief should increase systematically with the
depicted field of view as has been demonstrated by
Backus and Saunders (2006) and Todd et al. (2005,
2007, 2010). It can also account for differences in
perceived relief between concave and convex surfaces
(Todd et al., 2005, 2007), and the perceptual distortions
that occur when images of textured surfaces are observed
from an inappropriate viewing distance (Backus &
Saunders, 2006; Todd et al., 2007, 2010).
If scaling contrast is the primary source of information

for the perception of 3D shape from texture, then the
magnitude of perceived relief should be reduced to zero
when a surface is rendered under orthographic projection
so as to remove all variations in scaling. That is exactly
what occurs with images of slanted planes as is shown in
Figure 1. However, continuously curved surfaces can
produce a compelling perception of shape from texture,
even under orthographic projection (see Figure 2), and the
apparent depths of those surfaces are relatively unaffected
by the addition of perspective (see Todd & Akerstrom,
1987; Todd & Oomes, 2002). These observations suggest
that texture scaling may be the primary source of
information for surfaces that are planar or asymptotically
planar, but that some other aspect of texture must also be
used in other contexts.
Could that other aspect of texture be foreshortening?

The perceptual appearance of the surface in Figure 2
provides strong evidence that this is probably not the case.
This surface has an anisotropic texture that is elongated in
a vertical direction. If any of the foreshortening models
cited above were applied to this image, all of the points
along a vertical cross-section through its center would
have an estimated slant of 41-, and they would all be
interpreted as inflexion points in the depth profiles of the
horizontal cross-sections. That is not how the surface is
perceived, however. Despite the fact that the texture
elements in the central axis of the cylinder are all

Figure 1. An image of a planar surface with a 50- slant that was
rendered under orthographic projection.
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noticeably foreshortened, they appear nonetheless to have
a frontoparallel orientation, and they are perceptually
interpreted as local depth minima rather than inflection
points.
Todd and Akerstrom (1987) investigated observers’

perceptions for displays that were quite similar to Figure 2,
and concluded that the primary source of information
must be the systematic variations of texture element
widths in the direction of slant. Fleming, Torralba, and
Adelson (2004) have more recently pointed out that the
pattern of texture compression along an arbitrary surface
cross-section has a functional form that is quite similar to
the pattern of surface slant. In the discussion that follows
we will extend these observations to develop a specific
computational model for estimating the 3D shapes of
objects like the one in Figure 2.
The basic insight underlying this model is that the

optical projections of texture elements at local depth
extrema along a surface cross-section can be used as
anchors to estimate the local slants of all other points that
are aligned in the same direction. Figure 3 shows a narrow
cross-section of the image in Figure 2, together with the
depth profile of the depicted surface. The projected width
of a texture element at a position 7 on the cross-section is
labeled 5(7), and the local width maximum that occurs at
the depth extremum is labeled 5Max. Consider a vector

N(7) in the plane of the surface cross-section that is
normal to its outer boundary at the position7. If the surface
is depicted with negligible perspective and its texture is
homogeneous, then the angle A(7) of this vector relative
to the z-axis can be determined by the following equation:

cos A 7ð Þ ¼ 5ð7Þ
5Max

: ð3Þ

It is important to recognize that the vector N(7) will not
in general be a surface normal. Rather, it is the component
of the surface normal that is in the plane of the cross-
section. Similarly, surface points at the local depth
extrema will not generically have fronto-parallel orienta-
tions. They are the points along a cross-section that are
closer to fronto-parallel than their neighbors. It should
also be noted that edge density along a cross-section is the
reciprocal of texture width, and could therefore provide an
alternative measure for calculating slant in Equation 3.

Figure 2. An image of an elliptical cylinder with an anisotropic
texture that was rendered under orthographic projection.

Figure 3. A horizontal cross-section of the texture pattern in
Figure 2 and the depth profile of the depicted surface. The slant
of the vector N(7) relative to the z-axis can be determined by the
projected texture width at position 7 relative to the projected
texture width at the local depth minimum.
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Indeed, this would be the preferred approach for surfaces
with more fine scale textures whose elements are not
easily individuated (see Thaler, Todd, & Dijkstra, 2007).
In order to effectively implement this model using

either widths or densities it is necessary to identify the
local depth extrema along arbitrary surface cross-sections.
Todd et al. (2004) have shown that observers can do this
quite accurately, even in some cases when the depicted
surface has an inhomogeneous texture. The stimuli in that
study were created using a technique called volumetric
texturing, which is analogous to sculpting an object out of
a solid material, such as wood or marble. A schematic
illustration of this process is provided in Figure 4A. This
texture was created using a set of spheres that were
distributed in 3D space such that their centers were
constrained to lie on an ellipsoid surface. Any region of
the ellipsoid that cut through a sphere was colored black,
and any region that cut through the space between spheres
was colored white. This produces a pattern of circular polka
dots on the surface that is statistically homogeneous and
isotropic. Local depth minima along surface cross-sections
can be identified in this case by local maxima in the widths

of the texture elements in the direction of the cross-section,
or by local minima of texture foreshortening.
The images presented in Figures 4B and 4C show the

same ellipsoid surface with volume textures that were
created using a set of ellipsoids rather than spheres. For
the surface shown in Figure 4B, the texture ellipsoids
were oriented in a horizontal direction. Note in this case
that the overall pattern of perceived relief is completely
incompatible with what would be expected from an
analysis of foreshortening gradients, because the regions
that appear closest in depth are not the ones whose optical
texture elements are closest to circular. The perceptual
appearance is consistent, however, with what would be
expected from an analysis of directional width gradients.
That is to say, along any given surface cross-section in
any given direction, the apparent near point is always
located in a region where the width of the texture elements
in that direction is a local maximum. Even though this
type of texture is inhomogeneous, an analysis of direc-
tional width gradients will produce qualitatively accurate
estimates of 3D shape whenever the ellipsoids that define
the texture elements are oriented either parallel or

Figure 4. Images of an ellipsoid surface with three different types of volume textures. A) An isotropic texture composed of small spheres
that are centered on the depicted surface; B) an anisotropic texture composed of small ellipsoids oriented perpendicular to the line of
sight; and C) an anisotropic texture composed of small ellipsoids oriented at an oblique angle to the line of sight.
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perpendicular to the surface cross-section an observer is
asked to judge. These estimates will be systematically
distorted, however, when the ellipsoids used to generate
the texture are oriented in depth at an oblique angle to the
designated cross-section. An example of this condition is
shown in Figure 4C. Note in this case that the object
appears perceptually to be slanted to the right, in precisely
the same way that would be theoretically predicted by an
analysis of its directional width gradients. The research
described in the present article was designed to provide
more rigorous empirical support for these anecdotal
observations.

Experiment 1

Methods
Subjects

Seven observers participated in the experiment, includ-
ing the authors, and five others who were naı̈ve about the
issues being investigated. All of the observers had normal
or corrected-to-normal visual acuity.

Apparatus

The experiment was conducted using a Dell Dimension
8300 PC with an ATI Radeon 9700 PRO graphics card, and
a 19 in CRTwith a spatial resolution of 1280� 1024 pixels.
The stimulus images were presented within a 29.3 cm2

region of the display screen, which subtended 20- of
visual angle when viewed at a distance of 83 cm. The
displays were viewed monocularly with an eye patch, and
a chin rest was used to constrain head movements.

Stimuli

The stimuli depicted two possible ellipsoid surfaces,
both of which had circular occlusion boundaries that
subtended 15- of visual angle (see Figure 5). The vis-
ible portion of one of these objects had aspect ratios of
1.37 (depth) � 1 (width) � 1 (height), and its major axis
was coincident with the line of sight. To create the second
object, we compressed the first one by 16% in a horizontal
direction and rotated it 15- about a vertical axis. This
transformed object had the same circular occlusion boun-
dary as the first, but its local depth minimum was shifted
horizontally such that its optical projection was located
at an eccentricity of 3.75-, which was exactly halfway
between the center of the object’s projection and the
occlusion boundary. These surfaces were textured using
the same process described in Figure 4. The texture was
composed of a set of small ellipsoids that were distributed
in 3D space such that their centers were constrained to
lie on the surface of a depicted object. Any region of
the surface that cut through one of the small ellipsoids
was colored black, and any region that cut through the
space between ellipsoids was colored white. This
produces a pattern of elliptical markings on the surface
whose shapes vary systematically as a function of sur-
face orientation. Note that by orientating the texture
ellipsoids at an oblique angle in depth, it is possible to
manipulate the horizontal position of the local width
maximum independently of the position of the local depth
minimum. Thus, there were four main experimental con-
ditions with centered or shifted depth minima, and cen-
tered or shifted width maxima in all possible combinations.
We created eight different distributions of texture for each
of these conditions, half of which had shifts to the left as
shown in Figure 5, and the other half had shifts to the
right.

Figure 5. The four stimulus conditions from Experiment 1.
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Procedure

On each trial an image of a textured surface was
presented together with four green dots to the left and four
red dots to the right that could be moved along a single
horizontal scan line through the center of the image with a
hand held mouse (see the top panel of Figure 6).
Observers were instructed to mark each local depth
minimum on the scan line with a red dot and each local
depth maximum with a green dot, excluding the occlusion
contours. Once all of the depth extrema on that scan line
were appropriately marked, the trial was terminated by
pressing a mouse button, and a new display was presented.
Within each block of trials, all 32 of the possible stimulus
images were presented in a random sequence. Each
observer participated in 4 blocks within a single exper-
imental session.

Results

Although they were free to mark multiple depth
extrema along the surface scan lines, all of the observers
marked just a single depth minimum on every trial, which
indicates that all of the depicted surfaces were perceived
as uniformly convex. Figure 7 shows the judged positions
of these local depth minima averaged over all observers
for each of the 32 possible stimuli. The top graph in this
figure shows the average settings plotted as a function of
the actual depth extrema, whereas the bottom graph
presents the data as a function of the local width maxima.
It is clear from these results that virtually all of the
variance in observers’ judgments among the different

Figure 6. The task for Experiments 1 and 2. Top Panel: In
Experiment 1 observers adjusted the horizontal positions of small
dots to mark the local depth extrema along a scan line through the
center of an ellipsoid surface. Bottom Panel: In Experiment 2
observers marked the local depth extrema on more complex
surface structures. The horizontal scan line on each trial could be
located at one of four possible vertical positions within the image.

Figure 7. The average settings over all observers in Experiment 1
as a function of the ground truth (top) and the local width maxima
(bottom).

Journal of Vision (2010) 10(5):17, 1–13 Todd & Thaler 6



possible stimuli can be accounted for by the positions of
the local width maxima. Experiment 2 was designed to
confirm this finding using textured images of more
complex surface structures that contain both concavities
and convexities.

Experiment 2

Methods

The apparatus and procedure were identical to those
described for Experiment 1. The stimuli were images of
three randomly deformed spheres (see Figure 8) that were
textured using the same procedure as described in Figure 4.
The texture was composed of a set of small ellipsoids that
were distributed in 3D space such that their centers were
constrained to lie on the surface of a depicted object. In
the horizontal condition the ellipsoids were all aligned
parallel to the image plane. In the horizontal-oblique
condition they were rotated 45- about a vertical axis. We
also presented these same images rotated 90- relative to

the line of sight such that the depicted texture elements
were all oriented vertically. These will be referred to as
the vertical and vertical-oblique conditions. Four different
distributions of texture were created for each combination
of object and condition resulting in a total of 48 possible
stimulus displays. These were presented to five of the
observers from Experiment 1, including the two authors.
On each trial an image of a textured surface was presented
together with four green dots to the left and four red dots
to the right that could be moved along a single horizontal
scan line with a hand held mouse (see bottom panel of
Figure 6). Observers were instructed to mark each local
depth minimum on the scan line with a red dot and each
local depth maximum with a green dot. Within a single
experimental session, observers were asked to identify the
local depth extrema along four different horizontal scan
lines for each of the 48 possible stimuli.

Results

To determine the width functions for these stimuli, we
created a new set of images in which the ellipsoids were

Figure 8. The three possible objects from Experiment 2 with horizontal and horizontal-oblique volume textures. These same images were
also rotated 90- about the line of sight in the vertical and vertical-oblique conditions.
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all positioned so that their centers would project to points
along the different possible scan lines for each combina-
tion of object and condition. This provided a dense sample
of texture element widths along each scan line, which
were fit using a cubic spline interpolation in SigmaPlot 11
to generate a continuous function. The red curves in
Figure 9 shows the width functions obtained for two scan
lines on one of the possible stimulus objects. The solid red
curves in this figure show the width functions for the
horizontal condition; the dashed red curves show the
corresponding functions for the horizontal-oblique con-
dition; and the black curves show the surface depth
profiles. It is important to note that in the horizontal
condition the local width maxima are all perfectly aligned
with the local depth extrema and inflection points on the
surface depth profile. This same pattern of alignment also
occurs in the vertical and vertical-oblique conditions. That
is not the case, however, in the horizontal-oblique
condition. Note in Figure 9 how the horizontal-oblique
width maxima can be displaced relative to the depth
extrema, and that the magnitude of this displacement is
greatest in surface regions that have the largest changes in
depth.
The dots on each width function in Figure 9 show the

average positions of the judged depth minima (solid dots)
and maxima (open dots) over all of the different observers
and texture distributions; the numbers just above them
show the percentage of possible trials that each point was
marked; and the horizontal bars depict the standard
deviation of these judgments. It is interesting to note that
observers often misinterpreted the inflection points as
local depth minima, which resulted in false alarm

responses. A typical example of this is evident in the
lower scan line for both of the images in Figure 9.
Observers also sometimes failed to detect shallow con-
cavities on a surface, resulting in misses. These misses or
false alarms occurred on approximately 13% of the trials,
and both types of error always occurred in pairs involving
one depth minimum and one depth maximum (see also
Todd et al., 2004).
The top panel of Figure 10 shows the averaged judged

positions of the depth extrema in all conditions (excluding
false alarms) plotted as a function of the actual depth
extrema. All judgments from the horizontal, vertical and
vertical-oblique conditions are represented by black dots.
An analysis of linear regression revealed that the ground
truth accounts for 96% of the variance among the
judgments in these conditions. The judgments obtained
for the horizontal-oblique condition are highlighted in red,
but their correlation with the ground truth is much lower,
accounting for only 82% of the variance. The lower panel
of Figure 10 shows the same data plotted as a function of
the local width maxima. It is important to keep in mind
that the local depth extrema are always coincident with
local width maxima in the horizontal, vertical and
vertical-oblique conditions, so that the correlation of
observers’ judgments with the local width maxima in
those conditions is identical to their correlation with the
ground truth. The two predictors diverge, however, for the
judgments obtained in the horizontal-oblique condition,
and the local width maxima in that case account for 97%
of the variance. When considered in combination with the
results of Experiment 1, these results provide compelling
evidence that the pattern of texture width changes along

Figure 9. One of the possible stimulus objects from Experiment 2 with horizontal and horizontal-oblique textures. The solid and dashed
red curves in the center panel show the width functions along two designated scan lines, and the black curves depict the surface depth
profile along those scan lines. The dots on each width function show the average positions of the judged depth minima (solid dots) and
maxima (open dots) over all of the different observers and texture distributions; the numbers just above them show the percentage of
possible trials that each point was marked; and the horizontal bars depict the standard deviation of those judgments.
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any given scan line in these images provides the primary
source of information for determining the ordinal pattern
of perceived surface relief.

Discussion

Let us now consider how directional width gradients
can be used to estimate the specific 3D shape of a surface.
We shall begin with the special case of a continuously
curved surface with homogeneous anisotropic texture that
is viewed under orthographic projection (e.g. see Figure 2).
It is important to keep in mind that there are no existing
computational models for estimating shape from texture
that are able to cope with this particular set of conditions,
but it is possible to obtain accurate estimates of 3D shape

using the analysis of directional width gradients that was
outlined in the introduction (see Figure 3).
The first stage in the computation is to interpolate the

local element widths to estimate the directional width field.
We suspect this will be the most difficult aspect of
implementing our model in real world contexts, though
some promising possibilities have been proposed by
Grossberg, Kuhlmann, and Mingolla (2007) and Grossberg
and Mingolla (1987). Note that this does not necessarily
require the identification of individual texture ele-
ments. The underlying geometric invariant described by
Equation 3 could also be estimated from the density of
edges along a surface cross-section (e.g. Thaler et al.,
2007), and this is likely to be a more useful measure for
surfaces with more fine scale textures whose elements are
not easily individuated.
Because of the effects of sampling error (or small

amounts of perspective) the local width maxima along a
given scan line will not all be equal to one another, which
makes it difficult to determine the specific value that
should be used in the denominator of Equation 3. One way
to address this issue for points that are in between two
different depth extrema is to use a distance weighted
average of the two neighboring width maxima as the

Figure 10. The average settings over all observers in Experiment 2
as a function of the ground truth (top) and the local width maxima
(bottom).

Figure 11. The patterns of surface relief that were generated
based on Equation 5 for the four directional width functions
depicted in Figure 9.
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denominator. This guarantees that the ratio 5(7)/5Max(7)
will always be exactly one at the depth extrema, and
between zero and one everywhere else.
Another important problem for estimating shapes from

directional width gradients is that the sign of slant
specified by Equation 3 is mathematically ambiguous.
For surfaces that are bounded by smooth occlusion
contours, this ambiguity can be resolved by the constraint
that surface curvature perpendicular to an occlusion is
always convex (Koenderink, 1984; Koenderink & Van
Doorn, 1982). Thus, moving left to right from an attached
smooth occlusion, the slants are initially all positive, but
the sign of slant is reversed at each depth extremum that is
encountered. Note, however, that the sign of slant is not
reversed at inflection points, so it is important to
distinguish the local width maxima at these points from
those that occur at depth extrema. There are at least two
sources of information for identifying inflection points. In
general, the width maxima at these points will be
significantly smaller than the width maxima for depth
extrema. If a scan line is bounded on both ends by smooth
occlusions, then it can only have an odd number of depth
extrema. Thus, if there is an even number of width
maxima, then at least one of them must correspond to an
inflection point. A good example of this can be seen in
Figure 9 for the scan lines labeled B and D. It is important
to note in this figure that observers sometimes misinter-
preted inflection points as depth minima, but whenever

they did so they also inserted a false alarm depth
maximum so that there was always an odd number of
judged depth extrema on each scan line.
Once the width maxima 5Max(7) have been appropri-

ately adjusted for each position 7 along a scan line, and
the width maxima that correspond to depth extrema have
been distinguished from those that occur at inflection
points, it is then possible to estimate the surface depth
gradients using the following equation:

dz

d7
¼ tan arccos

5ð7Þ
5Maxð7Þ

� �� �
: ð4Þ

By substituting a trigonometric identity and rearranging
terms this can be reduced to:

dz

d7
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Maxð7Þ
5ð7Þ

� �2

j1

s
: ð5Þ

Note that sign of slant in Equations 4 and 5 are always
positive, because 5(7)/5Max(7) is constrained to be
between zero and one, and they are therefore insufficient
on their own for estimating 3D shape. However, this
problem can easily be resolved by combining Equation 5
with the simple rule described above that the sign of slant
reverses at each depth extremum. It is then possible to

Figure 12. Three images of a planar surface. The one depicted in the center panel has a 50- slant and was rendered with a 60- field of
view. The image in the left panel has the same pattern of major axis length changes as the center panel, but the widths of its texture
elements in a vertical direction are all identical. The image in the right panel has the same pattern of vertical width changes as the center
panel, but the major axes of all of its texture elements have identical lengths. The black and red curves below each image show the
apparent depth profiles along a vertical scan line that would be predicted based on Equations 2 and 5, respectively.
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estimate the surface depth profile by integrating the
gradient function to determine the relative depths along
each scan line.
By estimating the depth profiles along several different

cross-sections in several different directions, it is a straight
forward process to bind them together in a least squares
sense to obtain a full blown surface reconstruction, as has
been demonstrated previously by Koenderink, van Doorn,
Kappers, and Todd (2001) for the analysis of observers’
depth profile judgments. This is achieved by moving the
profiles to and fro in depth in order to fit a surface as
well as possible. This also provides a measure of
goodness of fit.
Figure 11 shows the estimated patterns of surface relief

that were generated with this model for the four direc-
tional width functions depicted in Figure 9. Note how the
computed shapes for the scan lines (A and B) from the
horizontal condition are quite similar to the ground truth
(i.e. the solid black curves in Figure 9), despite the fact
that the depicted object violates the model’s underlying
assumption about texture homogeneity. For the scan lines
(C and D) from the horizontal-oblique condition, the shapes
generated by the model are sheared in depth relative to the
ground truth, but they correspond quite closely to how this
object is perceived by human observers.
Although this model can accurately simulate the

apparent shapes of continuously curved textured surfaces
like elliptical cylinders or randomly deformed spheres
(e.g. see Figures 2, 5, and 8), it cannot predict perceptual
performance for planar or asymptotically planar surfaces.
Todd et al. (2007, 2010) have shown that the perceived
3D shapes of this latter class of surfaces can be predicted
quite accurately by the scaling contrast model described
by Equation 2. Note that this model is fundamentally
different from the analysis of directional width gradients.
It computes the depth profile of a surface directly from the
relative lengths of the major axes of optical texture
elements (as opposed to their widths in a designated
direction), and it does not involve any trigonometric
transforms or integrations.
It is important to recognize that these two methods for

estimating the pattern of surface relief from texture are
perfect compliments of one another. Equation 2 is only
effective for planar or asymptotically planar surfaces
viewed with relatively large amounts of perspective,
because those are the only conditions that produce
significant variations in texture scaling. The analysis of
directional width gradients, on the other hand, is only
effective for continuously curved surfaces viewed with
minimal perspective.
To better appreciate how these models could be used in

conjunction with one another, it is useful to consider the
three images presented in Figure 12. The surface depicted
in the center panel has a 50- slant and was rendered under
perspective projection with a 60- field of view. The image
in the left panel has the same pattern of major axis length
changes as the center panel, but the widths of its texture

elements in a vertical direction are all identical. Con-
versely, the image in the right panel has the same pattern
of vertical width changes as the center panel, but the
major axes of all of its texture elements have identical
lengths. The black and red curves below each image show
the apparent depth profiles along a vertical scan line that
would be predicted based on Equations 2 and 5,
respectively. It is clear that neither model alone can
predict the apparent surface structure from all three of

Figure 13. Two images of surfaces with contour textures whose
perceptual appearance cannot be predicted from the models
described by Equations 2 and 5.
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these displays. For the left and middle images with
systematic variations in texture scaling, observers’ per-
ceptions are quite consistent with Equation 2, just as they
were for the images of hyperbolic cylinders used by Todd
et al. (2007). However, for the image on the right with no
variation in texture scaling, observers’ perceptions are
better described by an analysis of directional width
gradients, just as they were in the present experiments
for images of ellipsoids or randomly deformed spheres
(see also Todd & Akerstrom, 1987).
These observations suggest that the perception of 3D

shape from texture may involve an analysis that is context
dependent (see also Cutting & Millard, 1984). When there
are significant variations of texture scaling, observers’
perceptions will be primarily determined by gradients of
texture length, as described by Equation 2. When this
information is unavailable, however, observers will then
rely on directional width gradients, based on Equation 5.
This two-pronged strategy is ecologically quite sensible,
because it facilitates the perception of 3D shape from
texture over a wider range of conditions than would be
possible using either of these models in isolation.
Although Equations 2 and 5 can account for a wide

range of phenomena, a complete theoretical explanation
of the perception of 3D shape from texture is likely to
require at least one more context dependent module in
order to deal with textures composed of extended contours
or orientation flows. Figure 13 shows two examples of
how patterns of image contours can produce compelling
impressions of 3D surfaces. One possible approach for
estimating shape from contours is to constrain the problem
by assuming that the depicted surface is developable (i.e.
that it has no curvature in one direction), and that its
contours are all oriented in the direction of maximum
curvature (Stevens, 1981b) or along surface geodesics
(Knill, 1992, 2001). The empirical evidence suggests,
however, that these models cannot account for the
apparent shapes of surfaces from contour textures. For
example, observers are able to make accurate shape
judgments for the images in Figure 13 (see Todd et al.,
2004; Todd & Reichel, 1990), despite the fact that the
contours on the depicted surfaces do not come close to
satisfying any of the models’ underlying assumptions.
How observers are able to achieve this high level of
performance is an interesting problem that will remain for
future research.
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