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Abstract

Two experiments are reported in which observers judged the apparent shapes of elliptical cylinders with eight different textures that
were presented with scrambled and unscrambled phase spectra. The results revealed that the apparent depths of these surfaces varied
linearly with the ground truth in all conditions, and that the overall magnitude of surface relief was systematically underestimated. In
general, the apparent depth of a surface is significantly attenuated when the phase spectrum of its texture is randomly scrambled, though
the magnitude of this effect varies for different types of texture. A new computational model of 3D shape from texture is proposed in
which apparent depth is estimated from the relative density of edges in different local regions of an image, and the predictions of this
model are highly correlated with the observers’ judgments.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In an influential series of articles that was first published
over 50 years ago, James Gibson identified a new source of
visual information about 3D surface structure that he
referred to as gradients of optical texture. A compelling
example of the perception of 3D shape from texture can
be obtained by examining the image presented in Fig. 1,
which depicts a smoothly curved object that is covered with
a random pattern of circular polka dots. Because of the
effects of perspective, the optical projections of these polka
dots have variable sizes and shapes that are determined by
their relative distances and orientations with respect to the
point of observation. It is the pattern of these systematic
variations (i.e. the gradients) that produces the perceptual
appearance of a 3D surface.
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Although numerous computational analyses have been
developed for determining 3D shape from texture (e.g.,
Aloimonos, 1988; Bajcsi & Lieberman, 1976; Blake, Buelt-
hoff, & Sheinberg, 1993; Gårding, 1992, 1993; Knill, 1998,
2001; Malik & Rosenholtz, 1997; Stevens, 1881), they are
all based on a fundamental assumption that variations in
reflectance on a visible surface have a highly constrained
statistical distribution. Most models assume that the distri-
bution is isotropic (i.e. invariant over rotation), though
there are some that are based on a somewhat less restrictive
assumption that the distribution is homogeneous (i.e.
invariant over translation). Whenever these constraints
are satisfied, any distortions of isotropy or homogeneity
within the optical projection of a surface can be attributed
to variations in the surface geometry, such as depth, slant
or curvature.

It is interesting to note that existing computational mod-
els for determining 3D shape from texture can be separated
into two general categories based on the specific procedures
that are employed for measuring optical texture. One pop-
ular approach to this problem is to first perform a Fourier
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Fig. 2. The relative effects of the amplitude and phase spectra on the
appearance of image edges. The left panel shows a white square with black
triangle on the right. The middle panel shows a white square with black
circle on the left. The right panel shows a composite image that has the
amplitude spectrum from the middle image and the phase spectrum from
the left image.

Fig. 1. A pattern of optical texture that is perceptually interpreted as a
smoothly curved 3D surface.
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transform on various local neighborhoods of an image.
The surface geometry depicted in each image region is then
estimated either from properties of its local amplitude spec-
trum (e.g. Bajcsi & Lieberman, 1976; Brown & Shvayster,
1990; Kanatani & Chou, 1989; Krumm & Shafer, 1992;
Ribeiro & Hancock, 2000; Sakai & Finkel, 1995; Super &
Bovik, 1995), or from systematic changes between ampli-
tude spectra in neighboring regions (Malik & Rosenholtz,
1994, 1997). When considering this class of models, it is
important to recognize that by focusing exclusively on
the amplitude spectrum, all information that could poten-
tially be provided by the phase spectrum is effectively
ignored.

An alternative approach for the measurement of optical
texture is to extract the edges within various local neigh-
borhoods of an image. The surface geometry depicted in
each region can then be estimated either from the distribu-
tion of edge orientations (Aloimonos, 1988; Blake & Mari-
nos, 1990; Blostein & Ahuja, 1989; Marinos & Blake, 1990;
Witkin, 1981), or from systematic changes in the distribu-
tions of edges across neighboring regions (Gårding,
1993). A fundamental difference between this approach
and the analysis of local amplitude spectra is that the
extraction of edges is critically dependent on aspects of
image structure that are represented in the Fourier domain
by the phase spectrum (Oppenheim & Lim, 1981; Piotrow-
ski and Campbell, 1982).1

In order to illustrate the effects of phase on an image’s
apparent edge structure more clearly, it is useful to consid-
1 The phase spectrum of an image determines its higher order correlation
function and therefore its higher order statistics, such as skew and kurtosis
(Yellott, 1993; Thomson, 1999; Thomson, Foster, & Summers, 2000).
Skew measures the symmetry in the distribution of pixel intensities,
whereas kurtosis measures how much the distribution clusters around
certain values. Previous research has demonstrated that these higher order
statistics provide perceptually useful information for texture discrimina-
tion (Yellott, 1993) and natural scene identification (Thomson, 1999;
Thomson et al., 2000).
er the images in Fig. 2. The left panel of this figure shows a
white square with a black triangle on the right. The middle
panel shows a white square with a black circle on the left.
The right panel was created by combining the amplitude
spectrum from the image in the middle panel with the
phase spectrum from the image on the left. The result
shows clearly that the phase spectrum is what primarily
determines the apparent pattern of edges.

Which class of models is most consistent with the anal-
ysis of 3D shape from texture in human perception? One
possible way of addressing this issue would be to indepen-
dently manipulate the information provided by the ampli-
tude and phase spectra of local image regions. If the
perception of 3D shape from texture is based entirely on
the amplitude spectra, as in many computational models,
then independent manipulations of the phase spectra
should have no measurable effect on performance.

In an effort to test this hypothesis, Li and Zaidi (2001)
compared the accuracy of observers’ sign of curvature
judgments for sinusoidally corrugated surfaces with two
different types of texture. On half of the displays, the sur-
faces were textured using a set of natural patterns that were
originally photographed by Brodatz (1966). On the remain-
ing displays, the surface textures were created by combin-
ing the amplitude spectra of the Brodatz patterns with
random phase spectra.2 The results revealed no detectable
differences between observers’ judgments for the two types
of displays, thus suggesting that phase information may
indeed be irrelevant for the perception of 3D shape from
texture.

However, there are two important reasons to question
the generality of this finding. First, the sign of curvature
judgments obtained by Li and Zaidi (2001) are a relative
crude measure of apparent 3D shape, which could not have
2 For patterns of surface markings that are homogeneous, scrambling
the phase spectrum of a physical texture has no effect on amplitude spectra
for local regions of its optical projection. Note that this would not be true,
if the same manipulation was applied globally to the projection of a
textured surface like the one shown in Fig. 1. In this case, phase
scrambling would significantly alter the amplitude spectra within individ-
ual local image regions, although the global amplitude spectrum (by
definition) remains unchanged.
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revealed any potential effects of phase on the overall mag-
nitude of perceived relief. Second, the viewing conditions
employed in their study were less than optimal, in that
the level of perspective3 for many of the texture patterns
was well below the threshold required for accurately deter-
mining the sign of surface curvature (see Todd et al., 2005).
Thus it is possible that the failure to obtain significant
effects of phase was due primarily to a floor effect.

Because of these concerns, the research described in the
present article was designed to investigate the possible
effects of phase on the magnitude of perceived depth for
surfaces presented with a variety of different textures and
with varying degrees of perspective. The stimuli depicted
convex elliptical cylinders whose major axis lengths and
orientations varied across trials. Observers indicated the
apparent cross section in depth of each stimulus surface
by adjusting the shape of an elliptical arc presented on a
separate monitor. The key aspect of the experimental
design is that the set of possible stimulus images was orga-
nized into matched pairs that had the same local amplitude
spectra, but whose local phase spectra were quite different.
If the perception of 3D shape from texture is based entirely
on local amplitude spectra, as argued by Li and Zaidi
(2001), then orthogonal variations in the local phase spec-
tra should have no significant effect on performance.

2. Experiment 1

2.1. Methods

2.1.1. Subjects

Six observers participated in the experiment, including
two of the authors (LT and JT), and four others who were
naı̈ve about the issues being investigated. All subjects had
normal or corrected to normal visual acuity.

2.1.2. Apparatus

The experiment was conducted using a Dell Dimension
8300 PC with an ATI Radeon 9700 PRO graphics adapter.
Stimulus images were presented at a viewing distance of
83 cm on a standard CRT with a spatial resolution of
1280 · 1024 pixels and a temporal resolution of 75 Hz.
The dimensions of the active display area were
36.7 · 29.3 cm, and the size of each stimulus image was
29.3 · 29.3 cm. Thus, each image subtended 20� of visual
angle and matched the camera angle with which it was ren-
dered. The displays were viewed monocularly with an eye
patch, and a chin rest was used to constrain head
movements.
3 The perspective of a scene is typically defined as a ratio between the
depth of its nearest point and the depth of its farthest point (Braunstein &
Payne, 1969). For any surface region in an image that is slanted in depth,
the magnitude of perspective varies systematically with its depicted field of
view (see Todd, Thaler, & Dijkstra, 2005).
2.1.3. Stimuli

The stimuli depicted upright elliptical cylinders whose
occlusion contours were constrained to be located at the
left and right boundary of each image. The center of the
elliptical major axis was located at a distance of 200 cm
from the observers’ eye. Given the occlusion and center
constraints, an elliptical cylinder can be uniquely defined
by the x and z coordinates of the ‘‘near point’’ along a
horizontal cross-section that is closest to the observer in
depth (see Appendix A). Nine different surfaces were cre-
ated with varying extensions in depth, and the optical
projections of their near points were all located at one
of 3 possible eccentricities relative to the center of the
image. Fig. 3 shows the basic scene geometry and sample
stimulus images for each of these shapes. Mirror reflected
versions of these images about a vertical axis were also
used on half the trials in order to avoid directional bias-
es. The elliptical arc above each sample image shows a
horizontal cross-section of the depicted surface as seen
from above. The depth of each surface was defined as
the distance between its near point and the farthest
occlusion boundary, and these varied in magnitude
between 28 and 81 cm.

Each of the different surface shapes was rendered with
6 possible textures, which are shown in Fig. 4. The top
row of the figure shows the texture patterns with their
original Fourier phase spectra, and the middle row
shows these same patterns with randomly scrambled
phase spectra. From left to right the textures are denoted
as ‘dots’, ‘lines’ and ‘flagstones’, respectively, and their
amplitude spectra are shown in the bottom row. The
phase scrambled textures were generated by combining
the amplitude spectrum of the original texture pattern
with a random phase spectrum that was sampled from
a uniform distribution between zero and 2p. Because
phase scrambling alters the maximum and minimum
luminance values within an image, it can create values
that fall outside the monitor’s possible intensity range
of 0–255, and the intensity distribution in that case must
be clipped or rescaled. In order to avoid that, the con-
trasts of the original textures were adjusted so that the
intensity values subsequent to phase scrambling would
all fall within the acceptable range. As a result of this
control, the original textures and their corresponding
phase scrambled versions had identical mean luminance
and root mean squared luminance contrast.

It is important to keep in mind that phase scrambling
was performed on the surface textures, not on the pro-
jected images of elliptical cylinders that were used as
stimuli. When a texture is mapped onto a 3D surface
and then optically projected onto the image plane, the
effects of perspective will cause systematic variations in
the amplitude and phase spectra within different local
image regions. In order to assess the effects of phase
on human perception it is essential that the local ampli-
tude spectra of the actual stimulus images are appropri-
ately matched in the scrambled and unscrambled
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Fig. 3. Some examples of the stimulus images used in Experiment 1. The elliptical arc on top of each image shows a horizontal cross-section of the
depicted surface as viewed from above. Thin straight lines depict the 20� viewing cone. For illustration purposes the point on the generating curve nearest
to the image plane is denoted with a dot.
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conditions. To confirm if that condition was satisfied,
each of the possible stimulus images was partitioned into
an 8 · 8 grid of local square regions, and their local
amplitude and phase spectra were computed individually.
For each combination of base texture and surface shape,
a regression analysis was performed to compare the local
amplitude spectra between the images rendered with
scrambled and unscrambled textures. To provide a base-
line for comparison, regression analyses were also
performed between the local amplitude spectra of the
unscrambled stimuli and those obtained from a duplicate
set of images of the same surfaces whose textures were
repositioned relative to how they were mapped in
the experimental stimuli. Thus, the experimental and



Fig. 4. The textures used in Experiment 1. The top row shows the three
original textures before any phase manipulations were performed. The
middle row shows the same three textures with randomly scrambled phase
spectra, and the bottom row shows their amplitude spectra.

Table 1
The results of a regression analysis from Experiment 1 that compared the
local amplitude spectra in corresponding image regions with scrambled
and unscrambled textures, and corresponding regions with unscrambled
textures in different surface positions (see text for details)

Unscrambled vs.
scrambled

Unscrambled vs.
unscrambled

r2 Slope r2 Slope

Dots Mean 0.97 0.99 0.97 0.98
Stdev 0.01 0.05 0.01 0.04

Lines Mean 0.97 0.99 0.97 0.99
Stdev 0.01 0.05 0.01 0.03

Flagstones Mean 0.97 0.98 0.97 0.98
Stdev 0.01 0.05 0 0.03
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duplicate images shared the same overall patterns of
texture, but the positions of their image contours were
independent of one another.

To summarize the regression analysis, there were 576
correlations performed between the scrambled and
Fig. 5. An example of a stimulus image that was presented directly in front of th
primary monitor. Observers were instructed to manipulate the shape of the adju
depicted textured surface as closely as possible.
unscrambled versions of each texture (9 depicted shapes
by 64 local regions per image), and 576 correlations
between the experimental and duplicate versions of each
unscrambled texture. The results are presented in Table
1, which shows the average r2 and slope for each texture,
as well as their standard deviations. Let us first consider
the results from the baseline comparisons between the
experimental and duplicate versions of the unscrambled
textures. The results in Table 1 confirm that repositioning
a homogeneous texture pattern on a surface has a negligi-
ble effect (less than 3%) on the local amplitude spectra
within its optical projection. This is indeed the primary
underlying assumption for the gradient based model of
3D shape from texture proposed by Malik and Rosenholtz
(1997). Note in addition that the effects of phase scram-
bling on the local amplitude spectra are equally small.
Thus, if the perception of 3D shape from texture is based
entirely on local amplitude spectra, as is the case for several
computational models, there should be no significant differ-
ences in observers’ shape judgments for surfaces depicted
with scrambled or unscrambled textures.

2.1.4. Procedure
On each trial, an image of an elliptical cylinder was pre-

sented on a computer monitor that was directly in front of
the point of observation. A second monitor was located off
to the side of the main display that contained an adjust-
ment figure, which observers could manipulate with a hand
held mouse to match the apparent cross section in depth of
the depicted surface. The overall design of the adjustment
screen is shown in Fig. 5. The adjustment figure contained
an elliptical arc segment whose shape could be manipulated
by controlling the position of its near point with horizontal
and vertical motions of the mouse (see Appendix A). The
shape of the adjustment figure followed the same geometry
as the stimulus, but was reduced in scale to fit on the dis-
play screen – i.e., 1 cm in stimulus space corresponded to
1 mm in adjustment space. Observers were instructed to
manipulate the shape of the adjustment figure so that it
matched the apparent cross-section in depth of the depicted
e observer and the adjustment display the was presented to the right of the
stment figure so that it matched the apparent cross-section in depth of the
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Fig. 6. The average depth settings in Experiment 2 as a function of the depicted stimulus depth for all textures combined (a) and each texture individually
(b–d). The scrambled and unscrambled conditions are represented by open and closed symbols, respectively, and the dashed line represents veridical
performance. The different units on the horizontal and vertical axes are due to the fact that the adjustment stimulus was reduced in scale to fit on the screen
(1 cm in stimulus space = 1 mm in adjustment space).
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textured surface as closely as possible. Once observers were
satisfied with their settings they could move to the next trial
by clicking on a button that was labeled ‘next’. It was also
possible to move backwards in the sequence to modify a
previous response, though none of the observers reported
making use of that option. All observers agreed that the
task felt quite natural and that they had high degree of con-
fidence in their judgments.

2.1.5. Design

To summarize the overall experimental design, there
were 54 experimental conditions defined by the three tex-
ture types (dots, lines, or flagstones), two types of phase
(scrambled or unscrambled) and nine surface shapes. With-
in a given experimental session, each of these conditions
was presented once in a random sequence, and each
observer participated in eight sessions.

2.2. Results

Fig. 6a shows the average depth settings plotted against
the ground truth for all of the different textures. Separate
plots for the scrambled and unscrambled versions of each
individual texture are presented in Figs. 6b–d. The dashed
line in each graph represents veridical performance. It is
clear from these data that the apparent depth of the surfac-



Table 2
Average within-observer standard deviations (in mm) for the depth
settings in Experiment 1

Unscrambled Scrambled

Dots 6.58 6.47
Lines 6.67 6.76
Flagstones 7.16 6.88

Averages were computed by collapsing over depth conditions and
observers.
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es varied linearly with the ground truth in all conditions,
and that the overall magnitude of surface relief was system-
atically underestimated. These findings are consistent with
those obtained in several previous investigations (e.g., see
Todd et al., 2005). For the surfaces textured with lines,
there were no significant differences in judged depth
between the scrambled and unscrambled phase spectra.
That is not the case, however, for the surfaces that were
textured with dots or flagstones. Note in Figs. 6b and 6d
that the phase scrambled versions of these textures pro-
duced psychometric functions with smaller slopes than
those produced by the original unscrambled versions. The
significance of this effect was confirmed by an analysis of
variance, which revealed a significant depth by phase type
interaction for both the dots, F(8,40) = 4.252, p < 0.001,
and flagstones, F(8,40) = 6.070, p < 0.001. It is important
to keep in mind that the projected images of surfaces with
scrambled and unscrambled textures had the same local
amplitude spectra in corresponding image regions. Thus,
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and the off-center near point conditions (right panel) of Experiment 1. Errors
outer edge are indicated by positive values. The dashed line represents veridic
these results show clearly that the observers’ judgments
were influenced by some source of information that is con-
tained within the local phase spectra.

To estimate the reliability of these data, we calculated
the standard deviation of adjusted depth among the eight
repeated judgments of each observer for each possible com-
bination of surface shape and texture. The results of this
analysis are presented in Table 2, which shows the average
standard deviation for the scrambled and unscrambled ver-
sions of each texture. Note that there were no systematic
differences in reliability among the different conditions.

The results presented thus far have focused exclusively
on the overall judged depth of each depicted surface, but
the observers were also required to indicate the apparent
horizontal position of the surface point that was closest in
depth (i.e., the near point). Fig. 7 shows the average error
in the judged horizontal positions of the near point as a
function of judged depth. The left panel in this figure
shows the subset of conditions, in which the depicted near
point was located in the center of the display. Note that
the observers’ judgments in those conditions were quite
accurate. The right panel shows the remaining conditions
in which the depicted near point had an off-center loca-
tion. The pattern of results in those conditions was more
complex, in that the errors were linearly correlated with
the overall apparent depth. The apparent near point was
shifted toward the center of the display for surfaces that
appeared relatively flat, and toward the outer edge of the
display for surfaces that had the greatest apparent depth.
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3. Experiment 2

Why should the perception of 3D shape from texture be
influenced by the phase spectra of some texture patterns
but not those of others? In an effort to shed some more
light on this issue, Experiment 2 was designed to investigate
the perceptual effects of phase scrambling using a wider
variety of textures.

3.1. Methods

The apparatus and general procedure were identical to
those used in Experiment 1. The surface shapes in this
study were the four from Experiment 1 that had the great-
est extension in depth (see Fig. 8), because those were the
X X

X X

Fig. 8. Some examples of the stimulus images used in Experiment 2. The
elliptical arc on top of each image shows a horizontal cross-section of the
depicted surface as viewed from above. Thin straight lines depict the 20�
viewing cone. For illustration purposes the point on the generating curve
nearest to the image plane is denoted with a dot.
ones that produced the largest differences in performance
between the scrambled and unscrambled phase spectra.
Each of the different surface shapes was rendered with 10
possible textures, which are shown in Fig. 9. The left col-
umn of the figure shows the texture patterns with their ori-
ginal Fourier phase spectra, and the middle column shows
these same patterns with randomly scrambled phase spec-
tra. From top to bottom the textures are denoted as ‘open
circles’, ‘filled squares’, ‘open squares’, ‘diagonal lines’ and
‘wing lattice’, respectively. Their amplitude spectra are
shown in the right column.

A regression analysis like the one described for Experi-
ment 1 was performed in order to determine how the local
amplitude spectra of these stimuli are affected when the tex-
ture on a surface is repositioned or presented with scram-
bled phase. The results are presented in Table 3, which
shows the average r2 and slope for each texture, as well
as their standard deviations. These findings demonstrate
that the local amplitude spectra within the optical projec-
tion of a textured surface remain highly invariant (within
3%) over changes in the positions or phase spectra of these
textures.

Six observers participated in the experiment, including
two of the authors (LT and JT), and four others who were
naı̈ve about the issues being investigated. Three of these
subjects had not participated in Experiment 1, and all
had normal or corrected to normal visual acuity.

3.2. Results

Fig. 10a shows average depth settings plotted against the
ground truth for all of the different textures. Separate plots
for the scrambled and unscrambled versions of each indi-
vidual texture are presented in Figs. 10b–f. The dashed line
in each graph represents veridical performance. An analysis
of variance revealed that there were significant effects of
phase for the open circles, F(1,5) = 12.089, p < 0.05, the
open squares, F(1,5) = 31.675, p < 0.005, and the diagonal
lines, F(1,5) = 6.762, p < 0.05, and significant depth by
phase interactions for the open squares, F(3,15) = 7.138,
p < 0.005, and diagonal lines, F(3,15) = 4.843, p < 0.05.
The main effects of phase and the depth by phase interac-
tions were not statistically significant for the closed square
and wing lattice textures.

In evaluating the perceived depths of Experiments 1
and 2 (see Figs. 3, 6, 9 and 10), it appears to be the case
that phase scrambling has the smallest effect for textures
composed of parallel lines or texture elements that are
organized in a line-like fashion (e.g. the lines and wing
grid); it has an intermediate effect for textures composed
of non-overlapping solid shapes (e.g. the dots and flag-
stones); and it has the greatest effect for textures com-
posed of open shapes (e.g. the open squares and open
circles). This categorization is not perfect, however,
because there was an effect of phase for the diagonal
lines textures and an insignificant effect for the filled
squares.
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Open Circles

Filled Squares
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Fig. 9. The textures used in Experiment 2. The left column shows the five original textures before any phase manipulations were performed. The middle
column shows the same three textures with randomly scrambled phase spectra, and the right column shows their amplitude spectra.

Table 3
The results of a regression analysis from Experiment 2 that compared the
local amplitude spectra in corresponding image regions with scrambled
and unscrambled textures, and corresponding regions with unscrambled
textures in different surface positions (see text for details)

Unscrambled vs.
scrambled

Unscrambled vs.
unscrambled

r2 Slope r2 Slope

Open circles Mean 0.98 0.98 0.98 0.99
Stdev 0.01 0.02 0.04 0.01

Filled squares Mean 0.97 0.98 0.97 0.99
Stdev 0.01 0.03 0.03 0.01

Open squares Mean 0.97 0.98 0.98 0.98
Stdev 0.01 0.01 0.03 0.01

Diagonal lines Mean 0.98 0.98 0.98 0.99
Stdev 0.00 0.02 0.03 0.04

Wing lattice Mean 0.98 0.97 0.99 0.99
Stdev 0.00 0.01 0.02 0.01

L. Thaler et al. / Vision Research 47 (2007) 411–427 419
As in Experiment 1, we measured the reliability of these
data by calculating the standard deviation of adjusted
depth for each observer in each condition. The results of
this analysis are presented in Table 4, which shows the
average standard deviation for the scrambled and unscram-
bled versions of each texture. Note that these results are
similar to those obtained in Experiment 1 in that there were
no systematic differences in reliability among the different
conditions.

Fig. 11 shows the average error in the judged horizontal
positions of the near point as a function of judged depth.
(Because all of the stimuli in this study had off-center near
points, the data are all presented on a single graph). These
results confirm that these errors were linearly correlated
with the overall apparent depth of a surface. The apparent
near point was shifted toward the center of the display for
surfaces that appeared relatively flat, and toward the outer
edge of the display for surfaces that had the greatest appar-
ent depth. Unlike Experiment 1, there were some systemat-
ic differences between the scrambled and unscrambled
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Fig. 10. The average depth settings in Experiment 2 as a function of the depicted stimulus depth for all textures combined (a) and each texture individually
(b–f). The scrambled and unscrambled conditions are represented by open and closed symbols, respectively, and the dashed line represents veridical
performance. The different units on the horizontal and vertical axes are due to the fact that the adjustment stimulus was reduced in scale to fit on the screen
(1 cm in stimulus space = 1 mm in adjustment space).
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textures, but this is most likely due to the fact that several
of the scrambled displays appeared almost completely flat.

To summarize briefly, the findings from Exp.2 confirm
the results obtained in Experiment 1: The visual perception
of 3D shape from texture can be influenced by the phase
spectra of some texture patterns but not by those of others.
4. Modeling the results from Experiments 1 and 2

What is the information that determines apparent
shapes of these stimuli? The empirical findings from Exper-
iments 1 and 2 demonstrate quite clearly that the local
amplitude spectra within the optical projection of a surface



Table 4
Average within-observer standard deviations (in mm) for the depth
settings in Experiment 2

Unscrambled Scrambled

Open circles 10.29 9.87
Filled squares 10.87 9.97
Open squares 10.69 8.47
Diagonal lines 11.16 11.73
Wing lattice 9.99 9.85

Averages were computed by collapsing over depth conditions and
observers.
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cannot be the sole source of information for the perception
of 3D shape from texture, and this rules out one popular
class of algorithms as potential candidates for modeling
human perception (e.g. Bajcsi & Lieberman, 1976; Brown
& Shvayster, 1990; Kanatani & Chou, 1989; Krumm &
Shafer, 1992; Malik & Rosenholtz, 1994, 1997; Ribeiro &
Hancock, 2000; Sakai & Finkel, 1995; Super & Bovik,
1995). An alternative possibility is that observers’ percep-
tions of 3D shape from texture may be based on the distri-
butions of edges within different local neighborhoods of an
image (e.g., Aloimonos, 1988; Blake & Marinos, 1990;
Blostein & Ahuja, 1989; Gårding, 1993; Marinos & Blake,
1990; Witkin, 1981). Within the image processing litera-
ture, there are two general approaches for the extraction
of edges: One that is based on local luminance gradients
(e.g. Canny, 1986; Marr & Hildreth, 1980) and another
that is based on local Fourier phase congruence (e.g.
Kovesi, 1999; Morrone & Burr, 1988) – see Hesse and
Georgeson (2005) for an excellent review. Although we
have employed both of these approaches in an effort to
model the observers’ performance in the present experi-
ments, the analyses described below involved a gradient
based method of edge detection that was inspired by Hesse
and Georgeson (2005), and relied heavily on the MATLAB
code in ‘gaborconvolve.m’ made publicly available by Peter
Kovesi at <http://www.csse.uwa.edu.au/~pk/research/
matlabfns/>.

A bank of six quadrature pairs of logarithmic gabor fil-
ters was used to extract the edges in each image. These were
all tuned to a wavelength of 3.2 pixels (i.e., 16 cycles/degree
in our stimulus images at the experimental viewing distance
of 83 cm) and they had six possible orientations of 0�, 30�,
60�, 90�, 120� or 150� relative to vertical. For ease of com-
putation, the convolutions were all performed in the fre-
quency domain and the results were then transformed
back into the spatial domain using the inverse Fourier
transform. In the frequency domain, the two separable fil-
ter components are given by Eqs. (1) and (2),

GðxÞ ¼ e
�ðlogðx=x0ÞÞ2

2ðlogðrxÞÞ2 ð1Þ

GðhÞ ¼ e
�ðh�h0Þ2

2r2
h ð2Þ

where x0 is the center frequency of the filter, h0 is its orien-
tation angle, (x,h) are the polar coordinates of its position
in the amplitude spectrum, and rx and rh are the standard
deviations of its Gaussian envelope in the radial and tan-
gential directions. The value of rx was set to 0.65 and
the value of rh was set to 0.31.

In the spatial domain, the response of each quadrature
pair forms a response vector that is defined by Eq. (3),

½eðx; yÞ; oðx; yÞ� ¼ ½Iðx; yÞ �Me; Iðx; yÞ �Mo� ð3Þ

where I is the luminance pattern at a given image location,
Me and Mo are the even-and odd-symmetric filter compo-
nents, and e(x,y) and o(x,y) are the responses of those
components. As suggested by Hesse and Georgeson
(2005) based on psychophysical data for edge localization,
the final filter output was determined by the largest of the
two component responses as defined by Eq. (4).

F ðx; yÞ ¼ maxðjeðx; yÞj; joðx; yÞjÞ ð4Þ

Using this procedure, edge maps were computed for each
of the 94 stimuli that were employed in Experiments 1
and 2. To provide a specific example, Fig. 12 shows a sur-
face with a dot texture from Experiment 1 together with its
corresponding edge map. Note that the edges are sparsely

http://www.csse.uwa.edu.au/~pk/research/matlabfns/
http://www.csse.uwa.edu.au/~pk/research/matlabfns/
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Fig. 12. The computation of image contours. The top panel shows the
image of an elliptical cylinder with a polka dot texture. The middle panel
shows the edge map that was generated from this image. The lower panel
shows how the edge density varies as a function of the horizontal position.
Edge density was computed as the average filter output within a sliding
window whose dimensions were 1024 (rows) · 140 (columns).

4 It is interesting to note that the edge density measure described in this
paper is positively correlated with local spatial frequency. However, there
is an important difference between these measures that deserves to be
highlighted. Edges were extracted at high frequencies using a non-
linearity, i.e. the max-operator (Hesse & Georgeson, 2005) or the local
energy operator (Morrone & Burr, 1988), which makes the measure
sensitive to phase. Because local spatial frequency is independent of phase,
it cannot account for differences between the scrambled and unscrambled
textures that were obtained in the present experiments.
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distributed in the center of this image, and that the density
increases moving outward toward the left and right edges
due to the effects of perspective and foreshortening. The
lower panel of Fig. 12 shows the edge density plotted as
a function of horizontal position. Each point on this curve
represents the average filter output within a rectangular im-
age region that was 140 pixels wide and 1024 pixels high. In
order to summarize the magnitude of these density chang-
es, it is useful to define a single global measure of density
contrast,

Density contrast ¼ Dmax � Dmin

Dmax þ Dmin

ð5Þ

where Dmin is lowest value of the density function and Dmax

is the highest. For the stimuli in these experiments, Dmin

and Dmax were located at the projected horizontal positions
of the surface regions that were closest and farthest in
depth, respectively, relative to the point of observation.

Because Todd et al. (2005) have shown that the apparent
surface relief for textured dihedral angles is highly correlat-
ed with global changes in texture density, we wondered
whether a similar measure could account for the results
of the present experiments with textured elliptical cylinders.
Figs. 13 and 14 show how the density contrast in an image
varies as a function of depicted surface relief for all of the
textures that were employed in Experiments 1 and 2. Note
that these graphs are qualitatively similar to the psycho-
metric functions presented in Figs. 6 and 10. That is to
say, the density contrast increases linearly with the depicted
surface depth, and it is significantly attenuated for most
textures when their phase spectra are randomly scrambled.4

The left panel of Fig. 15 shows the mean adjusted depth
as a function of density contrast for all of the 94 possible
combinations of surface shape and texture that were used
in the present experiments. A regression analysis of these
data revealed that density contrast accounts for 61% of
the variance in the observers judgments. However, upon
closer inspection of this figure it is clear that the residuals
of the regression are not distributed randomly about the
best fitting linear function. Rather, the data seem to cluster
into three different groups that individually have high line-
ar correlations, but that differ from one another with
respect to their slopes and intercepts. In particular, the
scrambled versions of the dots, flagstones, filled squares
and wing lattice and the unscrambled versions of the open
squares and circles produced more apparent depth relative
to the other textures than is predicted by pure density con-
trast, and the scrambled and unscrambled line textures pro-
duced less apparent depth. It is possible to eliminate these
differences by applying a multiplicative scaling to the den-
sity contrasts within each of the outlier groups, as shown in
the right panel Fig. 15. Thus, with the addition of these two
free parameters, the model can account for 89% of the var-
iance among the 94 possible experimental conditions.
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One possible reason why the density contrast measure
does not fully capture the relative perceptual gain for
the different types of texture is that the human visual
system may employ some sort of edge enhancement
mechanism. The method of edge detection used in the
present model is sensitive to local contrast of an edge,
which is generally reduced for most textures when their
phase spectra are randomly scrambled. One way of
eliminating the effects of local contrast is to threshold
the filter outputs to produce a binary response. We have
tried that with several different threshold settings, but it
does not significantly improve the overall goodness of fit
for the density contrast measure. More sophisticated
methods of edge enhancement involve competitive and
cooperative interactions among neighboring filters that
are capable of filling in edges in image regions where
no local luminance gradients are present (e.g., Grossberg
& Mingolla, 1985, 1987). This type of mechanism would
undoubtedly alter the overall density contrast in an
image, but it remains to be seen whether that can
explain the different perceptual gains that are shown
in the left panel of Fig. 15 (see also Todd & Akerstrom,
1987).

5. Conclusions

The research described in the present article was
designed to compare two different types of algorithm as
potential candidates for modeling the perception of 3D
shape from texture in human observers. One popular
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Fig. 14. The density contrast measure for the stimuli in Experiment 2 as a function of the depicted stimulus depth for all textures combined (a) and each
texture individually (b–f). The scrambled and unscrambled conditions are represented by open and closed symbols, respectively.
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approach to this problem is to first perform a Fourier
transform on various local neighborhoods of an image,
and then estimate the surface geometry depicted in each
region from properties of its local amplitude spectrum
(Bajcsi & Lieberman, 1976; Brown & Shvayster, 1990;
Kanatani & Chou, 1989; Krumm & Shafer, 1992; Ribe-
iro & Hancock, 2000; Sakai & Finkel, 1995; Super &
Bovik, 1995), or from systematic changes between ampli-
tude spectra in neighboring regions (Malik & Rosen-
holtz, 1994, 1997). A fundamental characteristic of this
class of models is that performance is unaffected by the
structure of local phase spectra in an image. Thus, if this
type of mechanism were employed for the visual percep-
tion of 3D shape from texture, then manipulations of the
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phase spectra should have a negligible influence on the
apparent 3D shape of a surface. The results of the pres-
ent experiments show clearly that this is not the case.
For most of the textures employed in these studies ran-
dom rearrangements of the local phase spectra caused
significant reductions in the overall magnitude of per-
ceived relief.

An alternative technique for analyzing 3D shape from
texture is to extract the edges within various local neigh-
borhoods of an image, and then estimate the surface geom-
etry depicted in each region from the distribution of edge
orientations (Aloimonos, 1988; Blake & Marinos, 1990;
Blostein & Ahuja, 1989; Marinos & Blake, 1990; Witkin,
1981), or from systematic changes in the distributions of
edges across neighboring regions (Gårding, 1993). The
model proposed in the present article is a variant of this
general approach. The central assumption of this model
is that changes in depth are optically specified by systemat-
ic variations in edge density (see also Grossberg & Mingo-
lla, 1987; Todd & Akerstrom, 1987). Based on that
assumption, we introduced a new measure called density
contrast to estimate the overall magnitude of perceived sur-
face relief, and we implemented a filter based computation-
al procedure for measuring the density contrast in each of
the 94 images used in our experiments. Much like observ-
ers’ shape judgments, the density contrast measure increas-
es linearly with the depicted depth of a surface, and it is
significantly attenuated when the phase spectrum of a tex-
ture is randomly scrambled. However, in its current imple-
mentation, the model cannot fully explain the variations in
perceptual gain that were observed among different groups
of textures.
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Appendix A

Here we give details of the geometry of the elliptical cyl-
inders. As described in the introduction, the geometrical
constraints on the elliptical cross-section of each surface
were motivated by the desire to have as big a texture gradi-
ent as possible for a given field of view. This means that
the two lines that delimit the field of view are tangent to
the ellipse. Put another way, the occluding contour of the
ellipse fits snugly in the field of view. A second constraint
is that it should be intuitive for participants to manipulate
the test ellipse (see Fig. 5, right panel, in the main text).
Intuition is best served when the participant is able to
manipulate a point on the ellipse. For mathematical conve-
nience, we took as this point the location where the tangent
vector to the ellipse is horizontal (equivalent to the tangent
plane being fronto-parallel for the elliptical cylinder). As
final constraint we fixed the depth of the center of the
ellipse, a choice that is mathematically convenient.

Summarizing the constraints and introducing the nota-
tion we have as input to the calculation:

1. Field of view /.
2. Location of tangent (xt, yt).
3. Depth of center y0.
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The output is an ellipse parametrized with scale factor k,
aspect ratio r, orientation of long axis a and center (x0, y0).
The mathematical problem is to recover the values of x0, a,
k and r (denoted black in Fig. A1) given /, xt, yt and y0

(denoted gray in Fig. A1).
As a first step in the solution we exploit the field of view

constraint. To this end we express both the viewing cone
with field of view / and the tangent cone to the ellipse as
an implicit equation in homogeneous coordinates. The
viewing cone is given by:

x2 � tan2ð/=2Þy2 ¼ 0 ðA1Þ

which is equivalent to a pair of straight lines with slopes
tan//2 and �tan//2.

The tangent cone to the ellipse is a bit more complicated
to derive. We follow the same path as Blinn (IEEE Com-
puter Graphics and Applications, Jan 1995, pp. 78–83).
We express the ellipse in homogeneous coordinates as:

ptQp ¼ 0

with

p ¼ðx; y; 1Þt

Q ¼UtKU

and

U ¼
cos a sin a � cos ax0 � sin ay0

� sin a cos a sin ax0 � cos ay0

0 0 1

0
B@

1
CA

K ¼
ðrkÞ�2 0 0

0 k�2 0

0 0 �1

0
B@

1
CA

The tangent cone from vantage point O = (0, 0,1) equals
(Blinn p. 82):

ptðQOtOQ� OQOtQÞp ¼ 0
rλ

xt

φ

x0 y0

α

yt

Fig. A1. Examples of the notation used in the derivation of the ellipse
geometry. Symbols in gray denote the input to the derivation, while those
in black denote the output.
which leads to:

ðk2ðcos2 aþ r2 sin2 aÞ � y2
0Þx2 þ ðk2ð1� r2Þ sin 2a

þ 2x0y0Þxy þ ðk2ðr2 cos2 aþ sin2 aÞ � x2
0Þy2 ¼ 0 ðA2Þ

Comparison of the viewing cone (A1) with the tangent cone
(A2) leads to the following two constraint equations:

k2ð1� r2Þ sin 2aþ 2x0y0 ¼ 0

k2ðr2 cos2 aþ sin2 aÞ � x2
0

k2ðcos2 aþ r2 sin2 aÞ � y2
0

¼ � tan2ð/=2Þ
1

ðA3Þ

We now use the tangent constraint. Straightforward alge-
bra leads to:

xt � x0

yt � y0

� �
¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 aþ r2 sin2 a
p 1=2ðr2 � 1Þ sin 2a

cos2 aþ r2 sin2 a

� �

ðA4Þ

Multiplying the two equations, we get:

ðxt � x0Þðyt � y0Þ ¼ k2ð1=2ðr2 � 1Þ sin 2aÞ ¼ �x0y0

where we used the top equation of (A3). Simplifying:

x0 ¼ xtðy0�ytÞ
yt

Next, we solve for a by squaring the second equation of
(A4) and substitution in the second equation of (A3):

k2ðr2 cos2 aþ sin2 aÞ ¼ tan2ð/=2Þðy2
0 � ðyt � y0Þ

2Þ þ x2
0

ðA5Þ
Squaring the second equation of (B4) and subtracting it to
the result above leads to:

k2ðr2 � 1Þ cos 2a

¼ tan2ð/=2Þðy2
0 � ðyt � y0Þ

2Þ þ x2
0 � ðyt � y0Þ

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

ðA6Þ

Combining this result with the first equation of (A3) leads
to:

tan 2a ¼ 2x0y0

A

Adding the square of the first equation in (A3) with the
square of (A6) leads to:

ðk2ðr2 � 1ÞÞ2 ¼ A2 þ ð2x0y0Þ
2

Squaring the second equation of (A4) and adding it to (A5)
leads to:

k2ðr2 þ 1Þ ¼ tan2ð/=2Þðy2
0 � ðyt � y0Þ

2Þ þ x2
0 þ ðyt � y0Þ

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

Combining the last two equations, we obtain:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þð2x0y0Þ2
p

2

q
r ¼ B

k2 � 1 ðA7Þ

The four boxed equations represent the solutions.
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